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GEOMETRIC STIFFNESS MATRIX TO ANALYZE THE LATERAL-
TORSIONAL BUCKLING OF CURVED MEMBERS

By Khaled MAALLA*, Shigeru KURANISHI** and Tetsuo IWAKUMA***

The curved member is assumed to be an assemblage of straight members connected to
each other at nodal points whose coordinates are introduced in the initial configuration.
Although it has been recognized by many researchers that the straight beam element
cannot always model the curved member properly, the present work proves that this
conclusion is not true provided that the usual geometric stiffness of the thin-walled
straight beam element is adjusted by taking into consideration the out-of-balance of the
internal forces at the joint of two adjacent elements meeting at an angle

Keywords . thin-walled straight beam element, lateral-torsional buckling, quasi- and
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1. INTRODUCTION

Closed form solution for the out-of-plane instability of circular arch caused by uniform bending moment
applied in the plane of the curvature has been already established by Vlasov? in 1961. The corresponding
results have been shown in Ref2). when the warping of the cross section is neglected.

Recently, this problem has been reanalyzed by Yoo”? who obtained closed form solution which is not
consistent with the previously cited ones, Moreover, a finite element solution of this problem modeled by
16 straight beam elements developed by Hasegawa e al.” has confirmed the solution by Yoo. An earlier
finite element solution based on straight beam element model for curved beams was presented by Bazant and
El-Nimeiri®, They concluded that the straight beam element cannot model the curved beam, especially
when the curvature is large or the arch is slender. This was also the opinion of Hayashi and Iwasaki®
particularly when the curved beam is under initial bending.

Hayashi and Iwasaki arrived at these conclusions after solving this problem numerically using both
curved and straight beam elements, They found that the use of the curved beam element model which is
naturally more accurate than the other one leads to results qualitatively and quantitatively consistent with
those of Vlasov, However, results not consistent neither in quality nor in quantity with those of Vlasov and
similar to those of Yoo have been obtained when the straight beam element model is used. Other numerical
solutions for this same problem were obtained by Rajasekaran and Ramm®. In order to show the
incorrectness of Yoo’s solution, they modeled the curved beam by the degenerated plate/shell elements.
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The computed critical moment was in good agreement with that of Vlasov.

Papangelis and Trahair? have also contributed to this problem by an independent closed form solution
which turns out to be more or less in agreement with that of Vlasov. Another closed form solution has been
reported recently by Yang and Kuo”’. They compared their solution with those of Yoo, Vlazov and
Timoshenko. Although their results seem to be consistent with those of Vlasov and Timoshenko on a
semi-logarithmic plot, the errors are as high as 90% for the moderate curvature cases. They attributed
the discrepancy in Yoo's formulation and that of Hasegawa et a/. to the neglect of the potential energy due
to shear stress, However it must be noted that the shear is not involved in this particular problem.,

Now, from this short review, one can conclude that any solution not consistent with that of Vlasov is
wrong. But the fact that the straight beam element model gives completly deviated results, remains still an
unclear point that needs further research before recourse to the development of a curved element which is
certainly more complicated,

To this purpose, the present work develops a finite element formulation using straight beam element
slightly different from the usual one in the context that it takes into consideration the balance of each nodal
point, Its accuracy is demonstrated by application to the lateral buckling of circular arch under uniform
bending.

2. BASIC EQUATIONS

(1) Kinematics

It is well known that the theory of torsion and flexure of thin-walled members can be greatly simplified if
the following kinematic assumptions are taken into consideration : (1) Apart from warping, the cross
section is assumed to be rigid on its own plane; (2) The shear strain of the middle surface is zero ; and
(3) stresses normal to the plane of the wall are neglected. According to the first assumption, the lateral
displacements of an arbitrary point P of the cross section are given in terms of those along the reference
axis (indicated by the subscript () by, (Fig.1)

v=UG~y(1—cos ¢)—zsin¢ .................................................................................... (l-a)

w=1w,— 2(l—cos ¢)+ysin¢ ................................................................................... (1.b)
in relatively small flexural displacements. The displacement in the longitudinal direction at that point may
also be given in terms of the deformation of the reference axis, as follows

u=u»—y¢o+zxo—w¢' ......................................................................................... (1-(:)
in which u, is the longitudinal displacement of the point on the reference axis x; ( )’ denotes the
derivative with respect to x; ¢, and Y, are the slopes of the reference axis in the x-y and z-x planes,
respectively ; ¢ is the rotation of the cross section about x-axis (see Fig.1) ; y and z are the principal
centroidal axes making a right-hand Cartesian coordinate system with x ; and  is the normalized warping

function, Although the following approach applies for members

with the non-symmetric cross section, only doubly symmetric I

section is used here for simplicity, and emphasis is put on the

modification of the geometric stiffness matrix. A relation ° > y

between the rotations ¢, and , and the lateral displacements can :J]P(y'z)
be obtained through the second assumption as —

w=v,cos p+wysing, xe=vising—wicoss--(2) [ o ) )
Then the non-zero components of Green's strain are only the yoing vzcasé
normal strain as !
e=Ue— Y Ui — ZWi— wd’ — YPws + 2 vy - Ycos¢-zsing
+[o2+ w62+(y2+22)¢'2]/2 ............................. (3-a) v
and the shear strain of the St. Venant type as
Ye=2 Tl‘l’/ ......................................................... (3.b) Fig.1 Displacements is a cross section.
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in which 7 is another coordinate taken along the thickness of the wall and originated on the middle surface.
It should be noted that in the derivation of Eq. (3), the trigonometric functions of ¢ are expanded by the
Taylor series and the third and higher order quantities are neglected.

(2) Virtual work principle

In the absence of the body forces, the virtual work equation of a body with the volume V and its surface
S is given by

[(o‘?j“f‘ Uij>8egjdv—£(Tg+ TJ&u,-dSzO ...................................................................... (4 )

in which ¢,; and e,; are the incremental components of the second Piola-Kirchhoff stress tensor and the
Green strain tensor, respectively; T, and u, denote the external load components applied at S and their
corresponding displacements, All these quantities are measured from the reference state where o9 and T
are acting. For convenience sake, e,; and u, are separated into their linear and quadratic parts indicated
by the superscripts (/) and (g), as
€ @ @0 Uy U T e e (5)

Substituting Eq. (5) into Eq. (4) and taking into account that the system is in equilibrium with respect
to the small displacements near the reference state, we can simplify Eq. (4) as

[:(Gijé\eﬁj-l"o?jé‘e?j)dv—l(Tﬁ%*F TS UIAST0 ooverereememeeei i (6)

It should be noted that in the derivation of Eq. (6), only the quadratic terms remain including 7?8 4?
which has been usually neglected, and will play an important role.

(3) Stiffness equation

The stiffness equation of a thin-walled straight beam element concerning the out-of-plane instability
considers only p and ¢ as non-zero displacements, These are regarded as the lateral-torsional buckling
displacements measured from an already stressed reference state with the normal stress ¢° due to in-plane
loading, which is defined by

o k]
A ML b 7

in which A=area of the cross section IZZ:_[ZZdA is the moment of inertia about the centroidal axis y ;
A

and N° (positive in tension) and M2 are the initial axial force and bending moment about y axis,
respectively. Substituting Eqs. (3) and (7) into Eq. (6) and taking into account the linearity of the
material lead to

[ (ELyvi8 vi+ EL¢"08"+ GJ§ 68 dx—+

A
[ (N“U;803+N01p¢'5‘¢'+M°Z¢5v;’+Miv'o'5¢)dx‘£(Ti(?uﬁ“l“ T UDNAS=0 cvvervrmererenenns (8)
in which Iyyzlysz ; IwZZa)’dA ; J=£(2 n)dA; L=+ L.)/A; E is Young’s modulus and G is the

shear modulus. Two models of displacement functions are considered. The first model uses the
2 3 2 3 2 3 2 3
interpolation function [nsjz[l—él%-+zl:f ;— +2 ‘;C ?2 ; Slf 2;" ;xT chz ] for both 7, and ¢ in

order to take the warping effects into account. This model must correspond to the results by Vlasov. On

the other hand, the second model neglects the warping and uses the function [n,)= - ;£ for ¢, which
171

will lead to the results by Timoshenko. In both models, the final form of the stiffness equation can be

written as

[K9+Kg]r:R .......................................................................................................... (9)
where, in model 1, the nodal displacement vector r is

rTI[Ui —2’)2 v; ”‘U;§¢g ._¢; &, _.¢;] ..................................................................... (10.3)
and in model 2

rT:[Ui _U:, v; "“U;;¢i ¢,] ...................................................... (10.}))
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Explicit expressions of the matrices K, and K, are given in the APPENDIX. For the linear buckling
analysis, the current loading step is considered as the buckled state. Hence the increments of the applied
forces are kept zero, and the first term of the last integral of Eq. (8) vanishes, However the second term
will have non-zero components. By using Eq. (7) and the quadratic terms in Eq. (1-c), it can be easily
shown that R reduces to
RT:[O ~M2i¢i 0 _M%quj;Mﬂzivfi 0 ngv; 0] i e. R:qu ........................................... (11)

where K, is also given in the APPENDIX, Therefore taking into consideration Eq. (11), the stiffness
equation Eq. (9) becomes

[Ke+Kgq] () L 12)
where
Kgqm= K K g -+ eeme e (13)

The last matrix K, which stems from the quadratic components of the kinematics has never been introduced
by any researcher. Note that the bending moment MY of Eq. (7) is assumed to vary linearly along the
length of the element and has the form

Mo=— gi(l_QC[)Jngj (2;.) ..................................................................................... (14)

in which M¢, and MY, are its corresponding values at the left and right ends of the element, respectively.
3. CORRECTION OF THE GEOMETRIC STIFFNESS MATRIX

As mentioned before, the curved beam will be considered as an assemblage of straight elements which are
connected to each other at the nodal points, As far as the out-of-plane problems are concerned, it has been
shown by Argyris el al. ' that the joint of two members meeting at an angle subjected to out-of-plane
rotations will be in imbalance because the bending moment resulted from the stress distribution given by
Eq. (7) behaves quasitangentially. Consider the two-member planar frame and let it be subjected to a
constant bending moment applied at the free end as shown in Fig. 2. A, and A, are, respectively, the cross
sections of element 1 and 2 meeting at an angle (7—a). The quasitangential moments'” on these sections
are the moments which are decomposed into a couple force of its magnitude M acting on a unit length rigid
lever as shown in Figs.2 and 3, When the joint undergoes a rotation ¢ applied with respect to the
longitudinal axis of element 2, it can be seen from the table in Fig, 3 that as long as the meeting angle is

Section A Section Ay
$roso

/ 2
.’L__,l

X’—" Element 2 M ‘ . 24’
N Zz

Each Arrow =M F = Fy =F =0
x  Lever Am=Unity My= Mo cosd sina
My=M-M=0
My=-Mo +Mo cosZa

Fig.3 Imbalance at the joint when moment is

Fig.2 Planar frame under a quasitangential bending moment.. decomposed quasitangentially,
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different from 7 (case of straight beam), there y
will be always an imbalance of moments at the

joint. However, if we consider that the bending s b

moment is not quasitangential but semitangential®?, Built-in

L) X
' /§ ™M

f
;
et T

the moment is decomposed into two couple forces i
of M /2 as in Fig. 4, it can be proven that the joint -
retains its equilibrium even in the presence of the 2 - (al Angle Frame Under Bending
out-of-plane rotations, This can be demonstrated ¥

in Fig. 4, where two members under the uniform

bending are connected by the right angle. There-
fore, it seems necessary to make modification on —< T™ « ¢
the nodal force vector R in Eq. (11) by replacing /“/7._% T
the quasitangential bending moment by a semi- //A.
tangential one as Argyris et al ' have shown. The

(b) Joint Before Rotation

Each Acrow :% M

Lever Arm =Unity
geometrical consideration leads to the fact that the

presence of an in-plane semitangential bending

moment MY results in two out-of-plane moments
(c)Middle Surface of the Joint

After Rotation

M. and M, due to the out-of-plane rotations, given
bym

Mx:%*M"zé’z;My=% Mg¢ ................... (15)

where 4, is equivalent to ¢} in our formulation,
Although the similar expressions naturally result ) _
from the quadratic terms of the displacement in Fig.4 Equilibrium of the joint in case of semitangential
Eq. (11), the moment is treated as the quasi- moment
tangential quantity and “1/2” in Eq. (15) does not Y
appear. Since R in Eq. (11) is simply proportion-

al to M, the modification can be done by replacing

M% by M2/2. Hence follows the corrected stiff-

ness equation as

Mg

M
[K9+Kgs] Fo=() e (16) ( 5 J
where Kgs:Kg-——%- K,. '

Fig.5 Circular arch in uniform bending.

4. APPLICATION TO THE LATERAL-TORSIONAL BUCKLING OF CIRCULAR
ARCHES

Using Eq. (16), the critical moment for the arch shown in Fig. 5 is computed for certain subtended
angles 4. The applied moment in this figure is reckoned positive. The ordinary procedure of FEM using an
appropriate number of straight elements leads to the eigenvalue problem in this special case, because M9 is
constant along the arch. If the boundary conditions are changed, the bending moment may no longer uniform
in the arch. In such a case, the in-plane problem is solved for the unit applied forces to obtain the
distribution of the internal forces. Then the eigenvalue problem using the obtained distribution of the
internal forces may be solved.
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Tahle1 Critical positive moment (in kN-m). Table 2 Critical negative moment (in kN-m).
Subtended angle in degree Subtended angle in degree
Besearcher Researcher
0.05 10.0 30.0 50.0 90.0 0.05 10.0 30.0 50.0 90.0

1 1

Vlasov 2 346.8 590.2 1257.1 1996.3 3519.2 Vlasov R 344.9 202.0 92.5 55.3 R25.5
Timqsshenko 312.8 561.0 1241.0  1986.0  3513.0 Timc;shenko 310.9 1731 76.2 45.2 20.8
Yoo . 345.8 345.9 339.3 323.8 266.1 Yoo . 345.8 343.8 333.6 315.0 253.0
Yang 347.8 905537 2343.0 . 3756.2  6121.5 Yang 343.9 13;.2 48.3 27.1 10.9
Rajasekaran and Ramm Rajasekaran and Ramm

PSE" 3838.3 PSE" 241

* 3% 3

SBE . 5238.2 SBE . 12.8
Bazant , 347.8 909.5 2438.5  4101.9  6820.1 Bazant . 343.9 132.3 51.8 33.1 22.2
Hasegawa 345.8 345.9 339.4 324.8 261.1 Hasegawa 345.8 343.6 333.0 315.5 2441
Present : Present :

Model 1 346.8 589.8 1257.3  1998.1  3529.8 Model 1 3449 203.0 95.0 58.3 35.0
Model 2 312.9 561.2 1242.2 1988.1  3520.5 Model 2 311.0 174.0 78.5 49.1 30.2

* Plate/Shell Element ; ** Straight Beam Element * Plate/Shell Element ; *¥* Straight Beam Element

For the sake of comparison with the results in other references, the following material and sectional
properties are adopted : £ =200 GN/m?; G=77.2 GN/m*; A=92.9 em®; I,=11 360 cm*; I.,=3 870 cm';
[,=555 900 ¢m®; J=58. 9 cm* and the length of the arch is 10. 24 m. The computed positive and negative
critical moments for several subtended angles are shown in Tables 1 and 2, respectively. Here the case
with the small subtended angle, i.e. §=0. 05, is examined in order to show that the present new geometric
stiffness matrix leads to the well-known, already established and confirmed results for the straight beams,
and thus the new terms in this matrix play a significant role when there exists a very small but non-zero
angle between elements. The rate of convergence of solutions has been found very rapid for both these two
models, and all the results in the tables have been obtained using 16 elements.

5. SUMMARY AND CONCLUSIONS

A geometric stiffness matrix for analyzing the out-of-plane instability of thin-walled members with
doubly symmetric cross section has been derived through the use of the virtual work equation of an initially
stressed and equilibrated continua. The geometric stiffness is modified by considering the semitangential
moment transfer between elements.

The accuracy and validity of this approach is examined by computing the critical moment of a circular
arch and making comparison with the solutions of Vlasov and Timoshenko whose correctness has become
very clear after the works of Rajasekaran and Ramm who used degenerated plate/shell element model and
Hayashi and Iwasaki who used curved beam element model.

Finally, even without correcting the geometric stiffness matrix but taking into account the work of the
external forces with the quadratic terms of displacements, results similar to those of Bazant and
El-Nimeiri are obtained. Since these results are much better than those of Yoo and comparable to some
extent with the exact solution of Vlasov and Timoshenko, it seems necessary to include the quadratic terms
of the displacements in the derivation of the virtual work equation.
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from the Japanese Ministry of Education, Science and Culture to Tohoku University.
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APPENDIX

| o 6 | 5 INI=NORE —MERI+ M2+ M) kY
e™ wo | 3 Ko=

Symm. ELKE+GJ k3 ’ Symm. %(N?*N?) 3’

where the submatrices are given by
m ' x\”
ko= [Cndr (3 (%) do

in which m or n denotes the degree of differentiation and p is the exponent power.
Explicit expressions are given below :

12 —61 —12 —61 36 —31 —36 —31
w1 —61 401° 61 2rI w_ 1 | =31 4 31 =0
’y—-12 61 12 61 [ #3010 —36 31 36 31
—61 21> 61 4@ —30 = 31 4p

—36 331 36 31 -3 61 3 =31
wo_ 1 | 30 —4P =31 r w110 = 0 b

®7301| 36 —37 —36 —330] 30133 —61 —33 —271

31 P =31 —4r 30 0 =31 =30

All components of the matrix K, are zero except the following ! K, (2,5) =K, (5,2) =—M%,;; and K,
4,7 =K, (7. 4) =— M},
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