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MATERIAL NONLINEAR ANALYSIS OF RIGID PLANE FRAMES
BY TOTAL COMPLEMENTARY ENERGY MINIMIZATION

By Sadaji OHKUBO* and Koji MAKINO**

A new and powerful material nonlinear analysis method for rigid plane frames is prop-
osed on the basis of the principle of minimum complementary energy and mathematical
programming algorithms. The analysis problem is formulated as the total complementary
energy minimization problem subjected to the equilibrium equations at the free nodes in
terms of the unknown forces acting at the ends of member elements. The unknown mem-
ber end forces are determined by solving the energy minimization problem using a mod-
ified sequential quadratic programming algorithm.

The problem formulation and analysis algorithm of the proposed method are applicable
for rigid frame structures with any types of nonlinear materials. The power, reliabi-
lity, efficiency and practical usefulness of the method presented are demonstrated by
comparing the results obtained with ones by the displacement method of analysis for
several statically indeterminate rigid frame structures with three types of nonlinear
materials.

Keywords . nonlinear analysis, material nonlinearity, rigid plane frame, complementary

energy minimization, sequential quadratic programming

1. INTRODUCTION

Beginning with the early works on limit analysis by Van den Broek”, Prager and Hodge? and others in
the 1940~50 s, numerous contributions have been devoted to the development of analysis methods for rigid
plane frames subjected to material nonlinearity.

The main approaches for the nonlinear frame analysis can be classified into the following two categories

: one based on the theory of limit analysis combining linear programming algorithms® and the other based
on the finite element method, in which the stiffness matrix is updated according to the changes in stress
state in the finite elements?~", )

Bogner et al. investigated the formulation of nonlinear frame analysis on the basis of the principle of
minimum potential energy with the aid of mathematical programming algorithms in the 1960 s®.

Recently, Ohkubo et al. developed new analysis methods for trusses and continuous beams based on the
energy principles and mathematical programming algorithms. The results are published in Refs . 9) ~11).
In these studies, the total complementary energy of the structure is expressed in terms of unknown member
end forces, axial forces in the truss and bending moments in the continuous girder. The unknown member
end forces are determined exactly and effectively by minimizing the total complementary energy subject to
equilibrium equations at the free nodes using modified sequential quadratic programming (SQP) and linear
programming (LP) algorithms.

In this paper, the analysis methods are extended further, to the rigid plane frame problems subjected to
material nonlinearity and a powerful analysis method is proposed.
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38 S. OukUBO and K, MAKINO

In the frame structure, the member elements are each cut at the nodes and the simple span beams system
is assumed as a primary structure in which 3 member end forces acting at both ends of each beam are
selected as the unknown member end forces. The total complementary energy of a structure and
equilibrium equations at the free nodes are expressed in terms of the unknown member end forces, and the
unknown forces are determined by minimizing the total complementary energy under equilibrium conditions
at the free nodes with the aid of modified SQP and LP algorithms. In the computation of the complementary
energy, the contribution of shearing force to it is neglected.

As the numerical examples, the results of portal, 2-bay/1-story and 2-bay/2-story frames with three
types of nonlinear materials are demonstrated, and the results are compared with ones obtained by the
displacement method of analysis to clarify the generality, accuracy, reliability and efficiency of the
proposed method.

2. TOTAL COMPLEMENTARY ENERGY OF RIGID PLANE FRAME

(1) Distributions of strain and stress in member cross section by bending moment and axial force

Consider the stress distribution in a cross section of a beam element which is subjected to a bending
moment M and an axial force N. If the stress-strain relationship is linear elastic, the stress distribution
due to M and N in a beam cross section can be determined simply by adding the stress distributions due to
M and N. However, if the stress-strain relationship is nonlinear as depicted in Fig.1, the stress
distribution must be determined so as to satisfy the strain distribution and equilibrium conditions in the
cross section. In practice, it is recognized as reasonable to assume that plane sections of beam elements
which are subjected to a bending moment and an axial force remain plane sections after deformation in the
relatively small strain range.

On this assumption, if the magnitudes of extreme fiber strains ¢, and ¢, are assumed, the strain ¢ (y) at
the point of y from the lower surface of a cross section (see Fig.2) is given by

€(y)=€z+(5u_61)/H‘y ......................................................................................................................... (1)
in which H is the height of the cross section. The stress ¢ () corresponding to ¢ (y) is given directly from
the stress-strain relationship of the material, therefore, ¢ (y) can be expressed as

0(y)=¢(5u, By Q) Tt e e e (2)
By considering the equilibrium in the cross section, the following equilibrium equations on the normal
force and the bending moment are to be satisfied :

_[:a(y)dA=N, ——lzr(y)ydA=M—Nyc. .................................................................................................. (3)
in which y; is the distance from the lower surface to the centroid of the cross section.

Substituting Eq. (2) into Eq. (3), we can express the equilibrium equations in terms of ¢, and ¢, :

Silew, Ez):N, Sty T M = N Yga oot (4)

The details of f, and f,, for a rectangular cross section for the three types of nonlinear materials shown
in Fig. 3 are given in the APPENDIX. Eq. (4) is a set of nonlinear simultaneous equations, and by solving
the equations for ¢, and ¢,, we can determine the strain distribution caused by the given N and M. In this
paper, the Newton-Raphson method is used to solve Eq. (4 ). The iterative relation can be written as
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Fig.1 Nonlinear stress-strain relationship. a finite element,
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rkﬂ:rk_f.[‘]k]ﬂsk, ........................ T S S S S (5)
where r¥=[¢f, of17, r*'=[ef", ",
k[ A] — I3 — _ BT I'4
S [N fN(r )a M Nyc fM(r )] (kgf/en? )| {kgf/em? )|
X 5 =0, 2250_~- - Ea=0.1x108
afs  ofk 2000k~ Ea=01x100 e L oasaion
Dey og; /i 1=075x100
: =0,
Ji= LEv=2.0x 108 {kgf/cn? ) 100 i
ofk ofk ; | E=2.0x100 (kgf/cnt )
Be, 06 B I R T
u ]

(kgf/cm? )
2500

Note that the superscript T denotes the transposed form.
Each element in the Jacobian J is calculated approximately by

the finite difference formula. .

o

Since the accuracy of ¢, and ¢, calculated by the above

process essentially affects the accuracy of the complementary Fig.3 Three types of nonlinear stress-strain

energy in each member element, the convergence criterion in relationships.
the Newton-Raphson process (CNVNWT) is set rigorously as 1/100 of that in the numerical integration of
the complementary energy in a member element by the Simpson’s rule (CNVSMP). The numerical
examples of this investigation on convergence criteria are given in section 5, but it should be noted here
that 5~10 iterations of the Newton-Raphson process are sufficient to satisfy the 107°~107" convergence
criterion.

By using ¢, and ¢, obtained by the above process, the strain and then stress distributions in the cross
section shown in Fig.2 can be determined.

(2) Total complementary energy of rigid plane frame

The complementary energy in the cross section per unit length 7., (x) at an arbitrary point x in the j-th
member element is given by

re®)= [ _Buly)dd, where lgm(y)zﬁm”” €(G)digeeeesrereneres e (6)

Biz(y) and g (y) are the complementary energy density (the shaded area in Fig.1) and the stress
respectively at the point y from the lower surface in the cross section. A, (x) is the cross-sectional area.
The details of calculation formula r.; for a rectangular cross section of the three types of nonlinear
materials shown in Fig.3 are also given in the APPENDIX.

The complementary energy in the ;-th member element with length ], IT.; and total complementary energy
of the structure with 7 member elements ]I, are given by

Hcizllt nei{x)dx, chg:lﬂci ....................................................................................................... (7),(8)

In this study, II.; is numerically integrated by using the Simpson’s rule, Each member element is
partitioned at the points where the cross sections are varied, and concentrated loads are applied. The
calculations of I, (x) in the partitioned section are made at the equally divided points by the n-th power of
2. n is started from | and is continued to increase until the changing rate in [I; satisfies the imposed
convergence criterion CNVSMP=1.(0X10~*. This convergence criterion CNVSMP is also determined by
investigating the accuracy of the final solution due to the magnitude of the criterion. The numerical
examples of this investigation are also given in section 5.

3. FORMULATION OF ANALYSIS PROBLEM AS COMPLEMENTARY ENERGY MINI-
MIZATION PROBLEM

The principle of minimum complementary energy states that “Among all the sets of admissible stress oy,
Oy, *teee , and 1., which satisfy the equations of equilibrium and the prescribed mechanical boundary
conditions on §;, the set of actual stress components makes the total complementary energy [I. an absolute
minimum”?, The part S, over which boundary conditions are prescribed in terms of external forces,

In this study, each member element in a rigid plane frame is released at the nodes, and the simple span
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beams system shown in Fig.4(a) is assumed as the primary structure in which the axial and shearing
forces and bending moment acting at both ends of each member element (Fig.4(b)) are the unknown
member end forces, However, by using the three equilibrium equations, 7 H=0, > V=0, and Y, M =0,
in the released member element, these six unknown member end forces can be reduced to three unknowns,
namely M;;, M, and H,; in Fig. 4 (¢ ). Using these three unknown forces, the axial force N, (x), bending

moment M;(x) and shearing force S,(x) at point x are given as
Mi.i Mi

Ni(x)=~H;;+ N;»(x), M;(Jc)=-lg£ (My;+ M) — M+ Mip(x), S,(:C)z’“lw+ lvk“f‘Sw(x). ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (9)

In the above expressions, N, (x), Si(x), M, (x) are the axial and shearing forces and bending
moment, respectively, acting at point x due to the external loads which are calculated by assuming the
released j-th member element as a simple beam. Note that the positive sences of N;, S,, and M, are in
tension, 1} and ({)), respectively, in Eq. (9).

As seen fromEq. (9), N, (x), M:{(x) are expressed in terms of unknown forces H,;, M;;, M, then the

complementary energy in the j-th member element II; and that in the whole structure II, can also be

expressed in terms of the unknowns. Namely,

Hei=Io(Hisy Migy Mig)mIi( X)) veernreereemmmsmsm ettt (10)
Hc:?; TLsJ0mm LT (), v eeeee e e (11)

where X=[X7, X7, , X0,
X,=[Hi, My, M) =[Xss-2, Xair, Xoi]
Furthermore, the remaining member end forces V;;, Hy, Vi which are to be used for the equilibrium
equations at the free nodes, can be expressed as follows,
M | M

Vij:Si(O):7T{+‘-_l%E+SEP(O)
Hom N L)= = Hy Nipll) ) et 12)
V== Sdl)=——" ="~ Sis(l)
lg lz
Then the member end force vector Z; in the j-th member element is written in matrix form as
Z: =B Hijy Mijy Mup T+ K= B X Ky ooeeeeerereeeneeeeeenes (13)
* ' ] BEEEENRAREEERN
where  Z;=[H;, Vij, My, Hir, Vir, Mus] H
f1 0 0 l J'
11 0 RRK
L A 54(0) F s —d
_1 0 1 0 0
B:= -1 0 0 » K= Nkl l
0 211 =Sl o L =
I i 0 l
Lo o 1 |
77 77 7%
Collecting all of the member end forces Z, in a whole ()
structure, Z is written as M My
ZmmBX A, ovooveeen e (14) J HE “E' I
Hij Hik
where Z=[Z] Zj, - L Zhr vt [©) f
ij Vik
B, 0 K, T (b)
Bz - Mij Mik
B= K= (o D o
0 B. Kn il ®
[ )
By using Eq. (14), a system of equilibrium equations at Fig.4 Primary structure of rigid plane frame,
the free nodes can be expressed as i-th member element and three unknown
F=TZ=F—TK~TBX=0, - reereramieaann. (15) member end forces,
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where T is the force transformation matrix (m X6 n), F is the external load vector acting at the free

nodes, and m is the degree of freedom of structure. Now let

P=F —TK, Cm=TB. - ettt ittt et e s (16)
Then, Eq. (15) can be written as the following simple expression,
e 00, €1 | TR T T T T TETTRPTEPEPRPP (17)

Finally, according to the principle of minimum complementary energy, the problem of determining the
true unknown member end forces can be formulated as the following nonlinear complementary energy
minimization problem.

Find X, which

minimize HC(X)ZL_% L) - eeee e 18)

SUBJECE T0 G P G20 -+ +seressessesesemse e cs et s 19)
where g=[g\(X), +-- , gn(X)]" are the equilibrium equations at the free nodes.

4. SOLUTION ALGORITHM

The total complementary energy minimization problem expressed by Egs. (18) and (19) is a nonlinear
programming problem in which all of the constraints are equality linear constraints and the objective
function is a nonlinear function of the unknown member end forces.

Several types of solution algorithms can be applied to solve the minimization problem. However, the
sequential quadratic programming (SQP) algorithm'® ' whose efficiency is clarified in Refs. 9), 10) and
11), is used as a basis for the solution algorithm. The details of the solution algorithm have been described
in Refs.9) and 10), so only the outline is described in this section.

(1) Formulation of approximate quadratic programming problem

By approximating the nonlinear objective function to the quadratic form (Eq. (20)) and expressing the
linear equilibrium equations in terms of AX (Eq. (21)), we can introduce the following approximate
quadratic programming problem at the k-th stage.

Find AXF  which

minimize QAAXH=V IOF" AX"-{—-;— AXET HE A X oeeveeeene ot (20)

subject to - A (AXP=g;(XH)—CIAX*=0 (j=1, - L) 21)
where

k k
AXF=[AXET, enee L AXET Vﬂfgz[aﬂc GHC]T

X’ > 90X
HE : positive definite matrix, and improved by the BFGS formula
Cj:[cjh """ 5 Cj3n]T (]’:], """ N m), _____ P
C, . (i, j) th element of matrix C{mX3n) in Eq. (19).
As clearly seen from Eq. (18) and Fig.5, only the
complementary energy of the i-th member element I is

affected by the changes in unknown member end forces
AXsis, AXaoy, and AXs;. So that the element of V II%
oI%/8Xs:.»r (r=2, 1, 0), can be calculated approximately
by the following simple finite difference expression, This

M —diagram

simplicity in the calculation of sensitivities gives a great
computational advantage to the proposed analysis method.

aH?/aXKi—r:—T{Hci(X;Lz, X:’ici-7‘+ AXsi-r, X;Ci)_ﬂci<X?>}/AX3iv1 N
....................................................................... (22) i Py | X
(2) Determination of AX* ’ gD
Since all of the constraints are equality linear constraints, =~ Fig.5 Changes in M and N distributions due to
an initial feasible solution A X#is determined simply by using AMy;, AMi, AH.
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42 S. OHKUBO and K, MAKINO

the modified linear programming algorithm described in Refs. 9) and 10). After the determination of AXE
search direction d* and step length o* to the minimum of (J. along d* are determined by means of the
gradient projection method :

df=—pPr.v QC(AX§), ......................................................................................................................... (23)
where Pr=I— CT(C. CT)-l C’ 1 . unit matrix (3 nX3 n) ............................................................................ (24)

ak="'{V QC(AX{f)Tdk}/dkTH'c‘dk. ........................................................................................................... (25)

Then the improvement of X at the k-th stage is given by adding AX & and o*d”*,

AXkZAXfH' QL e (26)

Because of the equality linear constraints of Eq. (21), although they are expressed in terms of AX, are
true, i.e. not approximate constraints, once an initial feasible solution AX” has been determined by the
LP algorithm, and if the search direction d* is calculated by Egs. (23) and (24) without serious round off
error at every modification of X, the LP algorithm becomes unnecessary.

(3) Modification of approximate quadratic programming problem

By using AX* obtained by Eq. (26), X**' is improved as

XFrl= Y%+ A K (27)

Then the values of constraints g, (X*!) (j=1, - , m) and the gradient V JI, at X*'' are
recalculated. Furthermore the coefficient matrix H, in Eq. (20) is modified by the following BFGS
formula :

H?AX"AX"H’CZ‘ e (28)
AXFHEAX® — AX"q°
where AXP=X*"'—X"* 9=V O(X*")—V O.(X".
The final member end forces X* can be obtained by iterating the improvement of X and the modification

K+l __ k
c+ _HC

of approximate quadratic programming problem stated above until II, and X converge to the constant
values. The changing rate 10~° is imposed for the convergence criterion on [I, (CNVSQP) . The details are
also given in section 5.

5. NUMERICAL EXAMPLES

The proposed nonlinear analysis method described in sections 2, 3, and 4 has been applied to the analysis
models shown in Fig, 6. The three types of nonlinear materials, the stress-strain relationships are
depicted in Fig. 3, are prepared for the frames. The effects of the magnitudes of convergence criteria on
the accuracy of final solutions are investigated, and comparisons of the final results obtained by the
proposed method and the displacement method of analysis are made to investigate the generality, accuracy,
reliability and efficiency of the proposed nonlinear analysis method,

In the proposed analysis method, the initial values of unknown member end forces X are assumed to be of
the same sign and same order as those obtained by the linear analysis with the modulus of elasticity E=2.(
X10°kgf/em? namely 4100 (tf or tf-m) for all the analysis models,

The material nonlinear analysis of rigid plane frame by the displacement method of analysis has been
performed by the following procedures in this study.

(@ Divide each member element into a number of finite beam elements with length A], then assume the
axial forces N and bending moments M acting on the ends of each finite beam element. The pseudo axial
rigidity EA and pseudo flexural rigidity EJ for each finite beam element are calculated by the following
expressions .

EITM e H [ 61—y -+rrrereeeos oo ettt (30)
where ¢, and ¢, are determined by solving the system of equilibrium equations, Eq. (4), substituting
assumed NV and M. &,in Eq. (29) is determined as the corresponding strain to the stress o,=N/A from the

‘stress-strain relationship for the material used,
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(@ Form the pseudo stiffness matrix for the complete structure by assembling the stiffness matrices
for each finite beam elements. Then solve the stiffness equations for the unknown displacements and find
axial and shearing forces N, S and bending moments }f acting at the ends of finite beam elements,

® Let N and M computed in () be the improved N and M and the procedures (I) and (2) are iterated
until all N, M, EA and EI converge to constant values, The convergence criterion is imposed as 1.0X
10~ to the changing rate in N, M, EA, EI.

In the above displacement method of analysis, the finer partitioning of the finite beam elements yield the
more exact solution but requires a much greater core size and computation time, After the comparison of
the accuracy of the solutions, core size and computation time required at several values of A] we
determined A to be 10 cm. Moreover, the free nodes were numbered to reduce the band width of structure
stiffness matrix mostly to economize on core size and computation time,

(1)  Effects of convergence criteria on accuracy of final solutions X* and computation times

In this section, the effects of magnitudes of convergence criteria CNVNWT, CNVSMP, CNVSQP on
the accuracy of the final solutions X* and the computation times necessary to obtain X* are investigated.

We have analyzed all the analysis models shown in Fig. 6 for three types of nonlinear materials, A, B and
C depicted in Fig. 3, at various combinations of CNVNWT, CNVSMP and CNVSQP. The numerical
results for analysis model 4, material type C, and comparison with the results by the displacement method

of analysis are tabulated in Table 1.

As clearly seen from this table, no relative difference is recognized in the final results for case 1
(CNVSMP=1.0X10"% ~3 (CNVSMP=1.0X107) ; however, in case 4 (CNVSMP=1.0X107%) small
relative differences, at most (0.2 %, can be observed. The relative differences in the final results for
cases 1 ~3 and those obtained by the displacement method of analysis solved with A/=10 cm are within the

range of (.04~1.0 %.
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Table 1 Comparison of effects of convergence criteria on accuracy of Table 2 Comparison of final results by proposed
final results and computation times (Analysis model 4, method and displacement method of analy-
Material type C). sis (Analysis model 2).

CNVSQP= 1.0x107°
TENND D.H.5 £, Material type A

CASE 1 2 3 4 £ Analysis . > &
CNVNWT | 1,0x10°7 | 1.0x10°7 | 1.0x10°¢ | 1.0x10°5 | 1.0x10°° Hothod |C.EMM. | DM rd le, /e,
CNYSHP__ | 1.0x10°° | 1.0x10°% | 1.0¢10°* | 1.0x10°7 Hie 4451 ~44.50 ) 0.022% | -0.499%
Hi. 0| 65.71 | 65.70 | 65.71 | 65.70 | 65.01 | 0.760% Mie 211 8744 | 87.48 | 0.0467 | 0.455%
My, 2| 91.00 | 91.00 | 91.00 | 90.97 | 90.9% | -0.848% Ha.o 68.35 | 68.40 | 0.073% |-0.519%
Hs.s B I ' B T R O B IS (2 M.z 8744 ) Z8T.48 ) 0.046% | 0.450%
Ms,s ~156.77 | ~156.77 | -156.77 | ~156.74 | ~157.60 | ~1.016% Hs, o -94.69 | -94.74 | 0.053% | -0.172%
Hes -45.04 -45.04 -45.04 ~45.02 -44.85 0.714% M;s. o 68.42 68.47 0.073% 0. 136%
My, s -128.99 | -128.99 | -128.99 | -128.98 |-129.72 | -0.753% Het -70.85 ~70.84 0.014% 0.090%
Hs. ¢ 457.64 | 457.64 | 457.64 | 457.64 | 458.75 | 0.495% My, 7 -52.56 | -52.53 | 0.057% | -0.108%
Ms, ¢ 84.27 84.27 84.27 84.29 84.15 | -1.116% He, s -2.75 -2.79 1.4347% 0.781%
Hg s 228.29 228.29 228.29 228.29 228.79 0.075% . Ms. s -96.48 -96.50 0.021% | -0.785%
Me. s .3 | 2173 | 2173 | 2765 | 27.60 | -0.254% H 115,457 11550 7 0 008y T 0,728y
Hys -4.15 -4.15 -4.15 -4.14 -4.27 1.050% Mi, s 96.48 96.50 0.021% | -0.901%
Mys | -161.24 | ~161.24 | ~161.24 | -161.25 | -160.71 | -1.054% PP IS 0 T I v S e e
Hs. 7 236.66 236.66 236.66 236.65 236.24 0.756% Mz, i9 116.08 116.02 0.052% 1.399%
My, 7 97.62 | 97.62 | 97.62 | 97.63 | 97.49 | ~1.094% H T e

5.5 33.7 . 0.266% 0.004%
Hio. s 109.53 109.53 109.53 109.53 109.34 0.488% H 159,43 159.39 0.025% 120 0207
Mio. s 71.30 71.30 71.30 71.33 70.86_| -0.615% Sl toe 2% : :
Hioo <1093 [ 7909.53 | 7109.53 ] 7109.53 | Z109.34 ] “0.949% CPUCLTE)?’ | 0.707(24)] 1.869(29)
Mig.s 95.49 | 95.49 | 95.49 95.50 | 95.11 | 0.796% 1) Axial force at member end(tf)
. * 18.89595 | 18.89595 | 18.89597 | 18.89732 2) Bending moment at member end(tf-m)

CPU(ITE) > | 3.971(25)] 2.179(25)] 1.211(25)[ 0.609(25)] 3.599(9) 3) %omputation time by FACOM M-360AP
- - number in parenthesis indicate number of iterations)
1) Axial force at member end Qﬂ 2) Bending moment at member end (tf-m) 4) Complementary energy minimization method
3 Computat}on tine by FACOM N-3604P N . 5) Displacement method

(number in parenthesis indicate number of iterations) 6) Relative differences of final results by proposed

4) Complementary energy minimization method 5) stplacemen%lgte_f:.g(')glkm method and displacement method (1££=9.81KkN)

Table 4 Computation time (min.) and number of iterations!

Table3 Comparison of final results by proposed method

. i Analysis Model 1 2 3 4
and displacement method of analysis (Analysis n | DR D 37 3 9 4 51 6110112
model 3). an WGEMM IG5 (16) 10,707 (20 [0.826 (27) | 1.903 (31)
D.M.  © 10.208 (13) | 1.869 (29) | 0.669 (15) | ** 40(103)
Naterial type B B C.E.M.M, 0.565 (15) | 1.145 (22) | 1.002 (23) | 2.682 (31)
Amalveis o g o D.H. 0.232 (13 [1.022°(15) | 0.579 (12) | 6.800 (17)
Method | C.E.M.M. D.M. r.d. e, /€&, c C.E.M.M. 0.190 (13) 1 0.329 (15) | 0.368 (15) | 1.211 (25)
Hiyy V! 30.81 30.87 0.194% 0.084% D.M. 0.147 (9) [ 0.614 (9) | 0.383 ( 8) |3.599 (9)
M. )| 40.29 | 40.05 | 0.599% |-0.095% -
Ha. o 1694 703 0.101% 10,0355 1) Analysis results by FACOM M-360AP  2) Degree of redundancy
Ma‘ . ~25.00 24,78 0.888% 0.027% 3) Material type 4) Complementary energy minimization method
i T -47‘03 0'1912 0 55y 5) Number in parenthesis indicade number of iterations
3 . . . Lot 6) Displacement method
Ms. s -131.75 | -131.7% 0.000% | -0.591% ) di N N .
id not satisfy the convergence criteria
I{z‘-‘ 23(1"23 23é'§§ 82325 “gg%% (maximum changing rate is 0.0008)
3.3 ~b. ~0. . fa =U. o
Hiy, 4 -231.57 | -231.48 0.039% | -0.084%
M, 4 23.02 | 23.00 | 0.087% | 0.019% Table5 Examples of displacements in analysis models *
Hy. s 43.64 43.72 0.183% 0.675% P P i odels
M. s 138.24 | 138.19 | 0.036% |-0.714% 2, 3 and 4 {(Al=10cm).
. . . .034 0.424%
ﬁzz %gg? {;Z?g 8329;; -Oégg Analysis Model Point No. | &4 '] &y ¥’ 8
He'o 07062 T ET 66 ] 00 034n T -0, 231 2 3 7.42 17004 ) -0, 22x107F
Ms. e 94.22 94.48 0.275% 0.188% Material Type A 4 7.38 1-0.57 0.43x10°*
CPU(ITE) ™ | 1.002(23)] 0.579(12) aterial v 9 7.00 | -0.04 | -1.61x10°2
1) Axial force at member end(tf) 3 2 2.28 170,02 1-0.38x10°2
2) Bending moment at member end(tf-m) . 3 2.26 | -0.14 | -0.74x10"?
3) Computation time by FACOM M-360AP Material Type B 7 555 T B Gax 10+
{number in parenthesis indicate number of iterations) 3 28.68 | -0.13 | -1.37x10-%
4) Complementary energy minimization method 4 - 2 S =y
5) Displacement method Material Type C 5 17.86 1 -0.91 | -1.56x10
6) Relative differences of final results by proposed 10 28.64 | -6.20 | -0.78x107?

method and displac t method 1t1=9. 81kN
© placenent netho ( ) 1) Horizontal displacement(cm), positive value to the right(—)

2) Vertial displacement(cm), positive value upward (+)
3) Rotation(radian), positive to the counterclockwise
The computation time necessary to obtain the final result increases as the values of convergence criteria
decrease, Particularly, as the value of CNVSMP decreases, the computation time for [, increases
remarkably and the ratios of computation times for cases 3, 2 and | to that for case 4 increase to 2.0, 3.6
and 6.5, respectively. On the other hand, SQP iterations necessary to obtain the final solutions retain the
constant values of 25 in all cases.
As a consequence of the above investigation, we decided that the most appropriate combination of the

values of CNVNWT and CNVSMP is that in case 3, in which CNVNWT=1.0X10" and CNVSMP=1_ (X

10~* for the rigid plane frames such as the analysis models shown in Fig, 6.
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It is noteworthy that the final value of JI, is altered slightly in general depending upon the values of
CNVNWT and CNVSMP ; however, as seen in Table 1, the final values of X, X*, arenot always altered
by the values. For the determination of exact X* the significance of the accurate search to the absolute
minimum point of JI, is to be emphasized in addition to the calculation of II., with a certain degree of
accuracy. For this purpose we investigated the effect of the values of CNVSQP on the accuracy of X* and
confirmed that X* could be obtained accurately with the changing rate under 1. 0X107* by setting
CNVSQP=1.0X10"% Thus we decided upon this value:

(2) Investigation of analysis results

The analysis models shown in Fig, 6 have been solved by the proposed analysis method (C.E.M. M.) for
the three types of nonlinear materials depicted in Fig. 3, and the results obtained are compared with ones
produced by the displacement method of analysis (D. M. ). The numerical results for the analysis model 2,
material type A and analysis model 3, material type B are given in Table 2 and 3, respectively, and the
computation times and numbers of iterations required to obtain the final solutions by C. E. M. M. for all
analysis models in Fig.6 are summarized in Table 4.

As clearly seen from Tables 1, 2 and 3, the relative differences of the final results by C.E.M. M. and
D. M. are within the range of (. 00~1.00 % in almost all member end forces, as an exception slightly
larger differences are observed in the extremely small member end forces. From this fact, it can be said
that the final results by both analysis methods are coincide with each other quite accurately. Since the
close agreement of the results obtained by D. M. with A/=10cm with the true solutions has been
confirmed by comparing the results at various A], it is clear that quite accurate solutions can be
determined by the proposed analysis method.

The convergence to the final solutions is excellent. Even if all of the initial values of X are assumed as +
100 (tf or tf-m) for all analysis models, after 4~1( iterations, the solutions converge to the
neighborhoods of final solutions, and after additional 10~20 iterations the final solutions which satisfy the
convergence criteria completely can be determined with certainty. The number of iterations required to
obtain the final solutions increases as the degree of redundanecy increases ; however, the rate of increase is
not very high. Moreover, the number of iterations increases with the reduction of the smoothness of
nonlinear stress-strain relationships from material type C to A. However, the computation time increases
in the order of C, A, B for all analysis models and is, for example, 0.19~0.57 and 1. 21 ~2. 68 minutes
for analysis models 1 and 4, respectively, by FACOM-M 360 AP.

For references, the computation times and the numbers of iterations necessary to obtain the final
solutions by D. M. are also shown in Table 4. Inthe table, ** at analysis model 4, material type A denotes
that the solution did not satisfy the convergence criterion 1. )X 10~* and the changing rate in EA, EJ still
remains at (.0008 even after 40 minutes of computation and 103 iterations by D. M,

(3) Calculation of displacements at arbitrary points

Methods of calculating the displacements of structure subjected to the materially nonlinear behavior have
been developed in several ways?="-9-19  An efficient method of calculating the displacements of structure
by using complementary energy minimization algorithm developed in this paper has been developed by the
author on the basis of the Engesser’s first theorem. However, for the limitation of the pages of this paper,
the details of the displacement analysis method will be given elsewhere, and we here show only the
displacements in the analysis models which were calculated by the following procedures,

(D By using the final strain distribution in the member elements, which is used for the calculation of the
final total complementary energy of the structure, calculate the pseudo axial and flexural rigidities £ A and
EI of each finite beam element (Al=10em) by Egs. (29) and (30).

@ Assemble the pseudo structure stiffness matrix using EA and EJ of each finite beam element and
formulate the stiffness equations for the whole structure. The displacements at arbitrary points are
determined by solving the stiffness equations,
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Examples of the numerical values of displacements in analysis models 2, 3 and 4 are given in Table 5. In
this table, the positions of noted points are indicated on the analysis models in Fig. 6 by the same numbers.

6. CONCLUSIONS

The following conclusions can be drawn from this study.

(1) On the basis of the principle of minimum complementary energy, the materially nonlinear problem
of analysis of a rigid plane frame can be formulated as the total complementary energy minimization
problem subject to the equilibrium equations at the free nodes in terms of the unknown member end forces,
The strain (stress) distribution in a cross section of a beam element which is used for the calculation of
complementary energy can be determined readily by solving a system of nonlinear equilibrium equations in
the cross section by the Newton-Raphson method. The total complementary energy minimization problem
can be solved quite certainly and efficiently by the modified SQP and LP algorithms. The analysis method
proposed is a unified approach applicable to rigid plane frame structures with any types of nonlinear
materials.

(2) The solution algorithm is quite reliable and efficient. Even if the initial values are assumed to be
far away from the final solutions, the solutions enter neighborhoods of the final solutions less than 10
iterations usually. The numbers of iterations to converge to the final solutions increase as the degree of
redundancy and the number of member elements increase, but 13~31 iterations have been sufficient for the
analysis models shown in Fig. 6 to obtain the final solutions satisfy the strict convergence criteria. The
computation times for obtaining final solutions are (). 2~(. 6 minutes for the portal frame and 1.2~2.7
minutes for the 2-bay/2-story frame by FACOM-M 360 AP.

(3) The number of unknown variables is three at each member element. Consequently, the analysis
problem can be solved with a rather small core size in computation, The improvement of the accuracy of the
final solution is accomplished merely by decreasing the values of convergence criteria CNVNWT,
CNVSMP and CNVSQP. This small core size requirement and simplicity in accuracy control are great
computational advantages of the proposed method.

(4) Inall of the analysis models shown in Fig, 6, the accurate final solutions are obtained efficiently
by setting CNVNWT=1.0x10"¢, CNVSMP=].0X10", and CNVSQP=1.0X10"% The relative
differences of the final results by the proposed method and the displacement method of analysis are within
the range of (. 00~1.00 % in almost all member end forces; as an exception, slightly larger differences
are observed in extremely small member end forces. From this fact, it is clear that quite accurate solutions
can be determined by the proposed analysis method.

(5) In the proposed method, the elements of V II. : 8ll./0Xs; » (r=2, 1, 0) can be calculated by
considering only the changes in I, with respect to Xy, , (r=2, 1, 0). This simplicity also gives a great
computational advantage to the proposed analysis method.
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APPENDIX Calculation Formulas of f,, fyand = for Rectangular Section with Height i
and Width W

(1) In the cases of material types A and B

e

fN:'W Aj, fMZ"WE:AJYGn Rcizwgwij9 .................................................................................. (A.])

J=1

[

where A, Y, and ,, are the area, the distance to centroid from the lower surface and complementary
energy of the j-th divided area, respectively, in stress distribution (Fig. A-1). Note that 4, is positive in
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tension and ;; is given by the following processes,
1) ekZO, 5k+1go and Ek<0, 5k+1<0

The stress at y,<y=<y,,, in Fig. A-2 is expressed as

U(y)=0t+Ez<€(y)_5t),
where ¢, E,, & are shown in Fig. A-3. Let 8, be the complementary energy density at ov5 then g (y) at

o {y) is given by
E

ﬂ(y)zﬂﬁ?{ (€8 ) e e e e e
By assuming that plane sections through a beam taken normal to its axis remain plane after the beam is

subjected to bending moment and axial force, we obtain
W)= cyte, dy=(1/C)de, C=(ey— e/ H. - -rrrreeeeereeerone ettt (A-4)
Therefore, ¢, is
wo= [ widy=["" gyt [ - dde=pimi— o+ 2 (L - =L (o] o (a-5)
(2) In the case of material type C
i) e=20, &=0 (Fig.A-4)
(Y)= a0 (Y)F Do), oo L (A-6)
where a=6X10"" cm'/kef?, b=9X107" em?/kgf (see Fig.3).
By using Eqgs. (A-4) and (A-6)
:aaz(y)-%-go(y)-'al’ dyzzao'(i/)—f_b'da. ........................................................................................ (A-7)
Therefore, fy, fy and 7. can be calculated by the following expressions :
1{%(Ui_ag)+g<qi_ag)} ........................................... (A.S)

H ou
F=w [ otwiay=" [" o0)2 aoly)+ b)do="1
in which ¢, and ¢, can be obtained by substituting ¢, and ¢, in Eq. (A-6) and solving the equations for

oy and ¢, respectively,

H Tu
Su==W [ awydy==2% [* o) as*(y)+ boly)—e) 2 aolu)+ bldo
z b*—2 be
:%[_25‘1 (ai*a?)—ig«ll(a;—ai)-—m 5 ae (Gi—a§)+78*(azu ag)} .................................................. (A-9)
H oy 2
re=w ["( [ elo)da) D+ (o= o+ (1= o0} (8-10)
" ik-ﬁ T
—
Aj
i RGN )
e

Strain and stress distributions in cross

section (Material type A, B).

Fig. A-1
Fig. A-2 Trapezoidal strain and stress dis-

tributions in j-th divided part.

\
aly)
N —c.-‘l
Fig. A-4 Strain and stress distributions in
cross section (Material type C).

Fig. A-3 A line stress-strain relationship.
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i) €.<0, >0 (see Fig.2)
If y, is the distance to the point of ¢=0 from the lower surface, Eq. (A7) can be used for y and dy in
the range of ¢=(, namely, 0<y=wy,. In the range of ¢<0, namely, y,<y=H, y and dy are given by

—ao? - _
y:,,g‘iyﬁéﬂ'@_,ﬂ, dyzizﬁﬂy).ﬂ.da‘ ............................................................................... (A-11)

Then, fy, fuand . are

fN=W<f“ U(y)dy+L" G(y)dy>=%{4%ﬂ( i+0§>+g (ui—o%)} ...................................... s (A-12)

Ju=—W <f a(y)ydy+fy‘"a(y)ydy)

2 2 2 b
B L L ] (A-13)
. " 2 2
rem W [ [ (% 2+ @)yt [ (~2 L o)) dy| = {5 (ohm o= (ot ot (ool

i) &,<0, <0

In this case, ¢, ¢,, 01, oy are to be multiplied by -1 first. Then — f,, — fy, and true z, are calculated by
substituting these sign-converted values into Eqs. (A-8), (A-9) and (A-10), respectively. True f,and f,
are obtained by converting the signs of — f, and — f.

) &,>0, <0

In this case, ¢, e, 01, 0y are to be multiplied by -1 first. Then — f,, — fy and true n; are calculated by
substituting these sign-converted values into Egs. (A-12), (A-13) and (A-14), respectively. True f, and
fy are obtained by converting the signs of — f,, and — f.
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