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EFFECT OF MULTIPLE COLLAPSE MODES ON DYNAMIC FAILURE
OF STRUCTURES WITH STRUCTURAL INSTABILITY

By Akinori NAKAJIMA*, Hidehiko ABE** and Shigeru KURANISHI***

In this paper, in order to establish the dynamic failure criteria of multi-degree
structures with structural instability, the true dynamic ultimate strength of two-degree
flexural systems with structural instability as well as the response parameters which
determine these ultimate strength are investigated numerically. In particular, effects of
the collapse mode shape on the dynamic ultimate strength and the amount of energy are
examined.

As a result, it is revealed that the effective input energy governs the dynamic ultimate
state of two-degree systems with structural instability and that the input energy depends on
the collapse mode shape.

Furthermore, the method of estimating the effective input energy of two-degree systems
is proposed from the results of the single-degree systems.

Keywords . dynamic failure, structural instability, multiple collapse modes, effective

input energy

1. INTRODUCTION

When a dynamic lateral loading is applied to a column under the static axial compression which is smaller
than the buckling load, the column may become unstable and collapse due to rapid development of the
overall or local structural instability and the yielding of material. The behavior is mainly affected by the
static load, and in the case where structures with such a static structural instability are subjected to
dynamic loadings, most structures have a possibility of the above described collapse.

In the case of designing structures subjected to dynamic loadings as well as evaluating their ultimate
strength, the dynamic loadings have been replaced by static loadings until several years ago. Therefore, in
fact, the true dynamic ultimate strength of structures with structural instability is not known well, From
this point of view, a number of investigations have been carried out to obtain the dynamic ultimate strength
and the failure criteria of structures subjected to dynamic loadings by comparing the maximum strain
energy absorption of structures with the input energy exerted by the dynamic loading.

One of earlier researches related to structures with structural instability was done by Kato and
Akiyama"-?, They analyzed single- and five-degree-of-freedom shear vibrating systems with the restoring
characteristics deteriorated by the P-A effect. Then, they assumed that the static critical displacement,
where the restoring force became zero, governed the dynamic ultimate state. Ishida and Morisako also
investigated the dynamic collapse behaviors of single-degree systems with structural instability
theoretically and numerically?. Hirac et al. investigated seismic performance of steel piers using
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single-degree systems where the deteriorated restoring characteristics was incorporated on the basis of
the energy concept”. Furthermore, Bernal showed some kinds of response spectra of single-degree
systems with structural instability from the viewpoint of aseismic design®. However, the strain energy
absorption up to the specified displacement is affected by the kinetic energy and the hysteretic energy, so
the energy absorption up to the static critical displacement as well as the displacement are considered not
to govern the true dynamic ultimate state.

Then the writers investigated the dynamic collapse of single-degree systems with structural instability®
As a result, it was revealed that the effective input energy, which was obtained by subtracting the energy
dissipated by the hysteretic damping and other types of damping from the input energy exerted by the
disturbing force, governed the dynamic ultimate state and that the system collapsed when the effective
input energy exceeded the maximum strain energy absorption of the system., The displacement in the
dynamic ultimate state was also found to be smaller than the static critical one,

However, a structure with multiple degrees of freedom is considered to absorb energy by the distributed
multiple springs in the structure. Then the results obtained in the case of single-degree systems are not
always applicable to the case of multi-degree systems.

Kato and Akiyama also showed a basic law which governed the distribution of damage in shear-type
multi-structures under earthquakes?”-¥ Ohno and Nishioka investigated the effect of the mass and
stiffness on the energy distribution by the equivalent linearized method for multi-degree shear vibrating
systems” ¥ However, the true dynamic ultimate strength of multi-degree structures with structural
instability is not clear in these studies and the skeleton of the restoring characteristics of the system
subjected to a static load which causes the structural instability depends on the static load, the mode shape
and the structural properties. Then it is not easy to incorporate the restoring force-displacement
relationship into the shear vibrating system. Therefore, in order to investigate the dynamic collapse
behavior of structures with the deteriorated restoring characteristics affected by the several factors, it is
better to employ the multi-degree flexural system considering the effect of the structural instability easily.

In this paper, in order to establish the dynamic failure criteria of multi-degree structures with
structural instability, first, the true dynamic ultimate strength of two-degree systems with structural
instability and the response parameters which determine this ultimate strength are investigated
numerically. Second, the influences of the collapse mode shape, the static load and the frequency of the
disturbing force on the dynamic collapse behavior and the amount of energy are examined. This system is
the most fundamental model of multi-degree systems and consists of masses, rigid bars and rotational
springs. Furthermore, the method of estimating the response parameters which govern the dynamic
ultimate state of two-degree systems is proposed using the results of single-degree systems,

2. ELASTO-PLASTIC RESPONSE OF TWO-DEGREE SYSTEM WITH STRUCTURAL
INSTABILITY

(1) Equation of motion

A two-degree-of-freedom system shown in Fig. ] is considered here™, The
mode] consists of masses, rigid bars and rotational springs and a static load P,
which causes the structural instability is applied only to the mass m, as shown
in Fig. 1. Considering the equilibrium of moment about each rotational spring,
the equation of motion is

Lma X+ (L4 L) mads+ Ry= L i+ L+ 1) fo+ Pax,

Lm 2o+ Re= L fot+ Py (2~ 21)
in which [;, m,, x;, f;and R;(i=1, 2)are the length of the rigid bar, the mass,
the horizontal displacement of the mass, the disturbing force as shown in Fig, 1

. Fig.1 2DOF system with
and the restoring moment of the rotational spring, respectively. It is assumed structural instability.
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that there is no viscous damping in the system and that the rotational angle is small enough to neglect the
geometrical nonlinearity. Eq. (1) is rewritten concisely in matrix form as

U0 bl il ade o= Y R P (2)
in which
[h L+l [m: 0 X
_{0 L } M"[o m} x:{:fzg
MRI B 0 P, 5 fl ...................................................... (3)
B=lR, _{—-Pz PJ T x} =

The restoring moment vector R is expressed as the product of the rotational spring constant matrix k and
the angle of rotation vector § within the elastic range of the spring, Then

R oo o v e e s ( 4 )
in which
[k 0 |6
_[ 0 k.j 6= 02! ............................................................................................. ( 5 )
The geometrical relationship between x and § yields
B o Pl R ( 6 )

Substituting Eqs. (4) and (6) into Eq. (2), the equation of motion, which considers the equilibrium of
horizontal forces within the elastic range of the spring, is written as

il PR O B o I PP (7)
The equation results in the same form as the general equation of motion by using the following notation :
k'=L_1{k(L]T1—'P} ................................................................................................. (8)

Therefore, time histories of responses can be obtained by using the step-by-step integration method,
even if the system has the nonlinear restoring characteristics®®.
(2) Buckling load and vibrational mode shape :

When a static load is applied only to the mass m, as shown in Fig, 1, the buckling load is obtained by
setting the determinant of Eq. (8) equal to zero. If [[=[,= and k,=7k,, the buckling load becomes
P B/ D142 /T4 g )/2 ceeeeeee e (9)
Since only the lower value of P, is of practical interest, the minus sign should be used in Eq. (9). By

using the notations a=P,/P., (0<e<1) and g=P,l/k, Eq.(9) becomes k

G (L2 /T )/ e eveeee ettt (10)

The natural frequencies and their corresponding mode shapes of the system subjected to the static load
are the eigenvalues and eigenvectors of Eq. (7), where the right-hand side equals zero.

Here, if it is assumed that the restoring characteristics is the ideal elasto-plastic one as shown in Fig, 2
and that the yield rotational angles of both the springs are the same, there seems to be three fundamental
mode shapes as shown in Fig, 3 from the viewpoint of the dynamic collapse. The mode shape of type 1

Ry‘R
A 9
By 61/ 61>6: 6 8:1<0; 6/ 6,26,

(a) Type 1 (b) Type 2 (c¢) Type 3

Fig.3 Collapse mode of 2 DOF system.

Fig.2 Restoring characteristics of rotational spring.
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corresponds to the case where the yielding occurs in the lower rotational spring only and the system
collapses after the yielding, The mode shape of type 2 corresponds to the case where the yielding occurs in
the upper spring only, The mode shape of type 3 corresponds to the case where both the springs yield and
thereafter the system collapses.

(3) Restoring characteristics of system

From the results in Ref.6), it can be seen that for a single-degree system with the deteriorated
restoring characteristics, the system collapses when the effective input energy exceeds the maximum
strain energy absorption, However, a multi-degree system with structural instability has the multiple
dynamic collapse modes and the skeleton of the restoring characteristics of the system depends on the
multiple spring constants, the displacements of the masses and the static load. Therefore, it is difficult to
obtain analytically the true restoring characteristics and the maximum strain energy absorption of
multi-degree systems in the same manner as in the case of single-degree systems.

Then, in order to confirm the outline of the restoring characteristics of the two-degree systems with
structural instability, the restoring characteristics of the system of type ] is examined conceptionally as an
example, when the restoring characteristics of the system is transformed into the one in a shear vibrating
system on the basis of some assumptions.

From the second and third terms of Eq. (2), the restoring force R’ of the system is derived as

R’=L“‘(R—-Px) ...................................................................................................... (11)

In the case where k,=nk,, x,=wxx:, Lh=0L=1, 6,=6,=x,/1, P,=qk,/[ and the restoring moment of
rotational spring 1 only reaches the yield restoring moment R, (=k,6,), the elements of the restoring
force vector become

’

_k Xy—(u—2)2 n—q)x:
Pl le—Dn—g—nlx

in which the restoring characteristics of rotational springs 1 and 2 are assumed to be the ideal
elasto-plastic ones. If the restoring force of the system at the position of the lower mass, thatis, the first
row of Eq. (12) is set equal to zero, the displacement of the mass m, becomes the static critical one, x.,
and is expressed as

xﬂ;—_xy/{ (#_2)(2 nﬁq)} ............................................................................................ (13)
Fig. 4 shows the outlines of the restoring characteristics of the system of type 1 and these characteristics
result in the ones of springs in a shear vibrating system. In the figure, while R} is proportional to x,, the
sum of the elasto-plastic strain energy E, and uE, is considered to become the maximum strain energy
absorption Eg,. '

In this case, while it is assumed that only rotational spring | yields R"
and x, is equal to ux;, the latter assumption is satisfied only in a single
natural mode of elastic vibration. Therefore, it is generally difficult to
incorporate the true restoring characteristics of these types of

structures into the shear vibrating systems, because the nonlinear

. D Xy Xer
responses as well as the properties of structures and loads must be ki (L-2)(q=21) +1 }/|2
clear in advance, Then, in the next chapter, the true dynamic ultimate (@) R'; - x,
strength of two-degree systems with structural instability and the RY
parameters which determine the ultimate strength will be estimated I il (=1 =g ) T/ 2
numerically. |

%“
3. NUMERICAL RESULTS 0 ®) Ry - % Xor
(1) Parameters and properties of model Fig.4 Restoring characteristics of
The restoring characteristics and maximum strain energy absorption system (Type 1).
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of a two-degree system of type 1 with structural instability can be obtained analytically on the basis of some
assumptions as mentioned above. However, it is difficult to generalize the analytic discussion to systems
with various properties and their maximum strain energy absorptions can hardly be estimated directly,
because the skeleton of the restoring characteristics of the system is affected by several factors and is not
easily incorporated into the shear vibrating system. But, it is clear from the results of single-degree
systems in Ref. ) that the effective input energy, which is obtained by subtracting the energy dissipated by
the hysteretic damping and other types of damping from the input energy exerted by the disturbing force,
govern the dynamic ultimate state and that the effective input energy almost coincides with the maximum
strain energy absorption,

Then, in this chapter, the effective input energy of two-degree systems is examined by the parametric
analyses using a step-by-step integration procedure where the modified Newton-Raphson method and the
Newmark 8 method (§=1/4) are combined?. In particular, this study focuses on the effects of collapse
modes on the dynamic ultimate strength, so the effects of the frequency of the disturbing force, the spring
constant and its yield rotational angle on the effective input energy is examined. For the Newmark B
method, the time interval is set equal to 1/64 of the period of the disturbing force. The dynamic ultimate
state is defined as the state at the time step after which the displacement diverges without subsequent
application of the disturbing force®. The disturbing force due to the following harmonic support motion
such as earthquake excitation is considered here .

fi=—miZsin wt (izl, 2) ........................................................................................ (14)
in which Z and ¢ are the acceleration amplitude and the natural circular frequency of the disturbing force,
respectively, The acceleration amplitude is given by the yield strength coefficient, which is defined by

7=Rm/Z{mlll+mz(l1+lz){ ...................................................................................... (15)
This coefficient denotes the ratio of the yield restoring moment of the rotational spring 1 to the moment at
the support caused by the inertia force, which is assumed to be applied to the masses statically.

As mentioned in Article 2, ( 2 ), there are three fundamental mode shapes of collapse according to the
properties of two-degree systems. Unless otherwise mentioned, the collapse behavior is investigated
under the condition that == m,=m, 6,=0,=46, and the circular frequency of the harmonic
disturbing force is equal to the first natural circular frequency ), of the system and that the static load is
equal to a half of the buckling load in Eq. (9). Hereafter, this condition is called the reference condition
and the magnitude of the static load is expressed by @, its ratio to the buckling load. Fig.5 shows the
properties, the natural circular frequencies and the mode shapes of each model, in which the rotational
spring constant k, is fixed, whereas k, changes and ¢=0.5. The first natural mode shapes in this figure
correspond to the collapse modes in Fig. 3.

(2) Displacement response and restoring characteristics of system

Examples of time histories of the rotational angles of the springs in the cases of types 1 and 2 are shown
in Figs.6 (a) and (b), under the reference condition, where the circular frequency o of the harmonic
disturbing force is equal to the first natural circular frequency of the system and that the static load is
equal to a half of the buckling load (¢=(.5). The ordinate shows the rotational angle of the spring
normalized by the yield rotational angle g, and the abscissa shows the elapse time normalized by the period
T of the disturbing force. The solid line corresponds to the rotational angle of spring 1 and the dashed line
corresponds to that of spring 2. As shown in Fig.6 (a), the rotational angle of spring ] is greater than
that of spring 2 in the initial elastic vibrating state as inferred from the first natural mode shape,
Therefore, spring 1 yields first and thereafter the system collapses. On the other hand, in the case of type
2 shown in Fig.6 (b), the rotational angle of spring 2 becomes greater and the system collapses. This
implies that the collapse mode of type 2 is different from that of type 1.

Figs.7 (a) and (b) show the restoring force-horizontal displacement relationships of the system of
type 1 in the positions of masses m, and m,, respectively. The ordinate shows the restoring force of the
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Property I1st Mode 2nd Mode

Type 1
k1=k2=200(Nm)
mi=m2=50(kg)
1=L2=2=5(m)
By1=0y2=0y=0.2
Per=15.279(N)
w1=0,118(rad/s)
w2=0,924(rad/s)
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Type 3
k1=200(Nm)
k2=120(Nm)
mi=m2=50(kg)
L1=R2=L=5(m)
By1=0y2=6y=0.2
Pgr=1¥.7Sg(N)
w1=0.113(rad/s)
w2=0.742(rad/s)

L

0 TS T T e/ 10

(b) Type 2

Fig.5 Properties and mode shape of model. Fig.6 Rotational displacement-time curve.

system and the abscissa shows the horizontal displacement normalized by the yield displacement x, (=
16,). Both the restoring characteristics in Fig,7 show almost linear restoring force-displacement
relationships until spring 1 yields, and the displacement of the mass m, is found to be proportional to that
of the mass m,. On the other hand, after the yielding of spring 1, both the restoring force-displacement
relationships become complicated and the assumption that x,= ., is not satisfied. However, both the
envelopes of the relationships is found to become the deteriorated restoring characteristics, Then, if the
magnitude of the horizontal restoring forces are always the same and if the forces are assumed to become
zero simultaneously after the yielding of spring 1, the restoring characteristics obtained by Eq. (11) result
in the ones shown by the dashed lines in Figs,7 (a) and (b). These restoring characteristics agree
comparatively with the envelopes of the time hystories of the restoring ones. Thus, two-degree systems
with structural instability are considered to also have maximum strain energy absorption,

(3) Effective input energy and power up to dynamic ultimate state

Fig. 8 shows the effective input energy E,, and the power S, up to the dynamic ultimate state against the
vield strength coefficient y in the case of type | under the reference condition, The power is obtained by
integrating the square of the value of the disturbing force at each time step from the initial to the ultimate
state. Therefore, the power is considered to represent a kind of energy and is employed to compare the
relative magnitudes of the disturbing force taking into account its amplitude and duration. The abscissa
shows the yield strength coefficient y, which is inversely proportional to the amplitude of the disturbing
force, and the ordinates show the effective input energy and the power. The circles show the effective
input energy and the triangles show the power on a log scale. From this figure, it can be seen that the
effective input energy little varies with 7y, that is, the amplitude of the disturbing force and that the power
does not greatly vary with 7. L

Fig. 9 also shows the effective input energy E,, and the power S, against the yield strength coefficient ¥
under the same condition as that of Fig, 8, except that the frequency of the disturbing force is equal to the
second natural frequency of the system, When y==0.2, that is, the amplitude of the disturbing force is
considerably large, the yielding occurs in spring 1 and the system collapses before the development of the
second mode, because of impulsive application of the disturbing force. Therefore, the effective input
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Fig.9 Effective input energy and power versus yield strength

Fig. 7 Restoring force-horizontal displacement
9 £ coefficient (Type 1, w=w,).

relationship (Type 1).

energy in the case of y=0. 2 becomes smaller than those in the other regions. However, when y>(.2, the
collapse mode is always the one where the yielding occurs in spring 2 and the effective input energy and the
power are almost constant irrespective of 7, ~

According to Figs, 8 and 9, and the similar figures of other types which are not shown here because of
space limitations, the effective input energy does not depend on the amplitude of the disturbing force and
this implies that the effective input energy governs the dynamic ultimate state of the system, But, the
amount of the effective input energy varies with the collapse mode. In Fig, 8, the dashed line corresponds
to the maximum strain energy absorption E,, which is estimated by the sum of the area bounded by the
dashed lines and the abscissa in Figs,7 (a) and (b). From Fig, 8, the effective input energy is found to
be slightly larger than the maximum strain energy absorption and this result coincides with the results of
single-degree systems. However, the maximum strain energy absorption can be obtained only on the basis
of some assumptions and these assumptions are not always applicable to the system with different collapse
mode.

(4) Effect of frequency of disturbing force on effective input energy

Fig. 10 shows the effective input energy E., by circles and the power S, by triangles up to the dynamic
ultimate state against the circular frequency w of the disturbing force within the range of )< <2 (rad/s),
in the case of type 1. The abscissa shows the circular frequency of the disturbing force and the ordinates
show the effective input energy and the power. In this figure, «, and @, are the first and second natural
circular frequencies of the system, respectively., The effective input energy E,, is nearly constant and the
system collapses due to the yielding of spring 1 except in the vicinity of the second natural circular
frequency. There, the collapse mode is the one where the yielding occurs in spring 2 and the effective input
energy is greater than the one in the other regions. On the other hand, the power in the vicinity of the first
natural circular frequency is considerably smaller than the power in the other regions,

Consequently, it is very likely that a two-degree system collapses in a mode shape which is developed
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Fig.10 Effective input energy and power versus circular Fig.11 Effective input energy versus static load.

frequency of disturbing force (Type 1).

from the first natural mode shape and under the disturbing force whose frequency is near the first natural
one,

(5) Effect of static load on effective input energy

Fig. 11 shows the relationship between the effective input energy E ., up to the dynamic ultimate state and
the magnitude of the static load in the cases of types 1, 2 and 3, when the frequency of the disturbing force
is equal to the first natural frequency. The abscissa shows the magnitude of the static load by o, the ratio
to the buckling load, and the ordinate shows the effective input energy normalized by the one in the case of
a=0.5. The circles, the triangles and the squares correspond to types 1, 2 and 3, respectively. The
effective input energy increases rapidly as the static load decreases. However, if the systems have the
same static load ratio, the normalized effective input energy in three types have no significant difference,
The relationship between the effective input energy of single-degree systems and the static load ratio
(estimated by the ratio to the buckling load of the single-degree system) is also shown by the solid line in
this figure. The relationship is obtained from Ref. () and written as ,

Eef:‘Esu:E:y (1_..0)/0 ............................................................................................... (16)
in which E, is the maximum elastic strain energy. Eq. (16) gives a good prediction of the relationship
between the effective input energy of two-degree systems and the static load ratio.

Then, if the effective input energy of the system subjected to the static load of an arbitrary magnitude is
known, the effective input energy of the system subjected to the static load of a different magnitude can be
predicted from this figure,

(6) Effect of rotational spring constant ratio on effective input energy

One of the parameters which characterize a two-degree system is the ratio between the rotational spring
constant %, and k,. Then, Fig. 12 shows the relationship between the effective input energy E,, up to the
dynamic ultimate state and the ratio 5 (=k,/k,) under the reference condition. In this case, k, is fixed
(k=200 Nm). The variation of the ratio 7 corresponds to the variation of the stiffness between the upper
part and the lower part of a structure such as a tower. The ordinate shows the effective input energy E,,
and the abscissa shows the ratio 5. The circles indicate the effective input energy obtained numerically for
two-degree systems. When 7>0.6, 6, is greater than §, in the first natural mode shape and the system
collapses as a result of the yielding of rotational spring 1. On the other hand, when <0.6, 4, is greater
than g, in the first natural mode shape and the system collapses as a result of the yielding of rotational
spring 2. Though both the rotational springs yield in the case of §=0.6, the concentration of yielding
occurs actually in one of the two springs. Therefore, the relationship between the effective input energy
and the spring constant ratio 7 is found to be characterized by the two curves. Then, for the two types of
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Fig.12 Effective input energy versus rotational spring
constant ratio (Type 1).

Fig. 13 Simplified 1 DOF model.

single-degree systems which are obtained by simplifying the two-degree system, the relationship between
the effective input energy obtained by Eq. (16) and the ratio 7 is also shown in Fig.12. One of the
simplified single-degree systems has only the lower rotational spring and the other has only the upper
rotational spring as shown in Fig, 13. Hereafter, the former is called Model-A and the latter is called
Model-B. In Fig. 12, the dashed line shows the effective input energy estimated by Model-A and the solid
line shows the energy estimated by Model-B. In this case, the static load ratio ¢ is given according to the
corresponding single-degree system. The effective input energy of the two-degree system is approximately
predicted by the modeled single-degree systems, that is, Model-A for the range of 7>>(. 6 and Model-B for
the range of 7=0.6.

(7) Effect of yield rotational angle ratio on effective input energy

An important parameter other than the spring constant ratio with respect to the restoring characteristics
is the ratio between the yield rotational angles of springs 1 and 2. Fig. 14 shows the relationship between
the effective input energy up to the dynamic ultimate state and the yield rotational angle ratio & for the
system of type 1 under the reference condition except for the yield rotational angle ratio, The ratio £ is
defined as the ratio of the yield rotational angle of spring 2 to that of spring 1, thatis, £=8,,/6, (6, is
fixed). The ordinate shows the effective input energy F.,and the abscissa shows the yield rotational angle
ratio. The circles show the effective input energy obtained numerically for two-degree systems. In the
range of £=(.6, the effective input energy does not change with the ratio £ This implies that in this
range, the system collapses as a result of the yielding of spring 1 and that spring 2 does not yield. On the
other hand, in the range of £<(.6, the system collapses as a result of the yielding of spring 2. Therefore,
the effective input energy decreases with reduction of £, because the maximum strain energy absorption of
the system is considered to decrease with reduction of £ The effective input energy estimated from
Model-A and Model-B is also shown in Fig. 14. From this figure, it is also found that the effective input
energy of two-degree systems can be practically estimated by using simplified single-degree systems in the
case where the yield rotational angle ratio changes,

(8) Effect of mass ratio on effective input energy

For systems with the same properties as the system of type 1 except for the mass, Fig. 15 shows the
relationship between the effective input energy up to the dynamic ultimate state and 7, the ratio of the mass
m, to the mass m,. Here, m, is fixed, whereas m, changes. The ordinates show the effective input energy
E.; and the power S, The abscissa shows the mass ratio ¢ (=m,/m,). The circles show the effective
input energy and the triangles show the power. According to the figure, the effective input energy does not
depend on the mass ratio 7. Because the natural mode shape, thatis, the collapse mode shape does not vary
with variation of the mass in the range treated here, However, the power up to the dynamic ultimate state
tends to decrease with increase of the mass ratio ¢. This point should be investigated to establish the
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dynamic failure criteria of structures with structural instability in relation to the magnitude of a disturbing

force in the future,

4. CONCLUSIONS

In order to study the fundamental dynamic collapse behaviors of multi-degree-of-freedom structures
with structural instability, the behaviors of two-degree flexural systems are investigated mainly by the
numerical method. The system consists of two masses, two rigid bars, two rotational springs and is
subjected to a disturbing force and a static load. Special attention is paid to the effects of the collapse mode
on the dynamic ultimate strength, so the properties of structures and loads on the effective input energy
are examined, In this study, the restoring characteristics of the rotational spring is an ideal elasto-plastic
one and the viscous damping is not taken into account.

The main findings through this study are summarized as follows :

(1) When a two-degree system with structural instability is subjected to a disturbing force and
collapses, the effective input energy governs the dynamic ultimate state of the two-degree system in the
same manner as the case of a single-degree system. The effective input energy is obtained by subtracting
the energy dissipated by the hysteretic damping from the input energy exerted by the disturbing force.

(2) The effective input energy of the two-degree system up to the dynamic ultimate state increases
rapidly with decreases of the magnitude of the static load, which causes the structural instability. This
tendency is the same as the case of a single-degree system. Therefore, for example, if the effective input
energy of the system subjected to the static load equal to a half of the buckling load is known in advance, it
is easy to estimate the effective input energy of the system subjected to the static load of a different
magnitude,

(3) The effective input energy of the two-degree system up to the dynamic ultimate state little
depends on the masses of the system and the magnitude of the disturbing force. On the other hand, it
depends on the collapse mode of the system, However, it is very likely that the system collapses in a mode
shape which is developed from the first natural mode shape and under the disturbing force whose frequency
is near the first natural frequency.

(4) Though the effective input energy of the two-degree system up to the dynamic ultimate state
varies with the properties of the springs, the energy can be approximately estimated by the energy of a
simplified single-degree system which is assumed from the collapse mode shape of the two-degree system.
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APPENDIX ESTIMATION OF NONLINEAR RESTORING FORCE

The equation of motion for the system is written from Egs. (2) and (11) in matrix form as

JUC R o v e e e e —(A'l)

The equation is solved by a step-by-step integration method, where the modified Newton-Raphson
method and the Newmark @ method are combined, and the process of the solution is shown in Ref. 12). The
process of estimating the restoring force vector R’ of the system from the horizontal displacement vector x

of the mass at an arbitrary time is briefly described in the following. R
First, the rotational angle vector g of the spring is obtained from the Ry——
horizontal displacement vector by using Eq. (6 ). Second, the restoring Rif-—f e

. . |
moment vector R of the spring is calculated from the rotational angle |
vector § according to the assumed restoring characteristics, %

1

T

8

For example, if the restoring characteristics of a rotational spring is

an ideal elasto-plastic one such as shown in Fig, A < 1, an element R, of
the restoring moment vector R is obtained from the corresponding  Fig.A<1 Estimation of restoring

rotational angle g, The restoring moment vector R is composed of the moment  from  corres-

elements obtained above. Then the restoring force vector R’ of the ponding rotational angle.

system is obtained from Eq. (11).
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