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IN-PLANE ULTIMATE STRENGTH OF
DECK-TYPE FIXED-END ARCH BRIDGES

By Tetsuya YABUKI* and Shigeru KURANISHI**

Fixed-end restraint effect of arch ribs on the over-all, in-plane ultimate strength of deck
type steel arch bridges is studied by an accurate nonlinear finite element approach. This
approach takes into consideration the two important factors on nonlinearities, namely,
geometric and material. The interaction between bending moment and axial thrust, the
changes in deflection mode, and the progress of yielding and unloading zones with load level
until the ultimate state are throughly examined. The load-deflection behavior, until the
stability limit load is reached, has also been analyzed by elastic theory. Special
characteristics of the local member failure of arch rib between the posts are finally
investigated.
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1. INTRODUCTION

As main members of arch bridges are in combined compression and bending, their ultimate strengths are
characterized by instability failing with the effect of nonlinearities due to both the change of geometry and
yielding of material. These nonlinear behavior is receiving increasing attention following the move towards
ultimate strength design concepts. Several researches have been made on inplane ultimate strength of
deck-type, two-hinged steel arch bridge systems so far’? and considerable findings concerning them have
been summarized by Ref. 3) . Through these studies, characteristics of the ultimate strength of the hinged
arch bridge system are fundamentally understood. Data on elastic instability of this type bridge systems
have also presented recently?. Very few researches, however, have been reported so far on the ultimate ‘
strengths of fixed-end arch bridge systems and the most past works on them have dealt with arch ribs
only?~?. The nonlinear behavior and the ultimate strength characteristics on deck-type, fixed-end, steel
arch bridge systems are not clear yet. Namely, the data available to date are not sufficient to develop a
direct statistical, empirical relationship that includes the fixed-end restraint effect of the arch ribs on the
ultimate strength of the deck-type bridge systems.

The purpose of this paper is to discuss characteristics of the inplane ultimate strength considering the
geometric and material nonlinearities of fixed-end steel arch bridge model systems that include an arch rib,
a deck girder and connecting elements between them (herein termed posts) such as shown in Fig. 1, using
the ultimate strength analysis originally developed by the first author®, The same analysis has been
adopted in Refs. 1), 3), 5), 6) and 7). Only the deck-type is considered, because this type is the most
vulnerable among arch bridge types so far as the instability effects are considered. First of all, the overall

* Member of JSCE, Dr. Eng., Professor, Department of Civil Engineering, University of Ryukyu (Okinawa).
** Member of JSCE, Dr. Eng., Professor, Department of Civil Engineering, Tohoku University (Sendai).

375s



206 T. YABUKI and S, KURANISHI

instabilities are examined using a linear theory, a second order elastic theory and the accurate nonlinear
theory by comparing their load-deflection relationships, Then, numerically studied are considerable
characteristics of the incremental deflection modes of the fixed arch ribs in the bridge systems from the
initial unloaded states to the ultimate states of the systems, The effects of beam-column member behavior
of the arch rib between the adjacent posts in a panel are also examined. These results on the deflection
modes and bending moment diagrams are used to clarify the mechanism of yielding and unloading caused by
the strain reversal. Furthermore, the interaction paths between the resultant bending moment and axial
thrust of the arch rib, until the ultimate state, are investigated. Next, fundamental characteristics on the
ultimate strengths are briefly examined. Finally, special characteristics of local member failure (i.e,
local member instability) is discussed.

The ultimate strength analysis has been carried out by the nonlinear finite element method using the
modified incremental load method and the tangent stiffness approach®. In the numerical calculations by the
nonlinear theory, the effects of finite deformation, yielding of the material, unloading caused by strain
reversal and reloading, spreads of yielding, unloading and reloading zones in the cross sections and along
the length of structural members, residual stress due to welding, and fixed-end effect of the arch rib are

all taken into account®~?_ The material behavior is idealized elastic-perfectly plastic and strain hardening
is neglected in the analysis.

2. BRIDGE MODELS

Data presented herein are obtained using numerical model. The model is illustrated in Fig, 1 and its
properties are also listed in the figure, where L=span length; R=rise of arch rib; h, h,=depth of
cross section; by, by=width of cross section; I,,, o, la; Lgy=thickness of a plate composing cross
section ; A,,;, Agp,=cross-sectional area of a plate composing cross section ; Fy=yield stress level of
material ; subscripts a, d, f and w=structural property of arch rib, deck girder, flange and web,
respectively. A single-plane, ten-panel model is employed. Although for comparison purpose, eight and
six panel models are also occasionally used. The arch rib has a constant box-shaped cross section with a
modified residual stress by welding? ™ and is fixedly supported at the ends, The rib has a perfectly
parabolic, symmetric, axial configuration, except for the cases giving different explanations from this
configuration in particular. Over the rib, the deck girder is intermediately supported by the posts with
hinged-hinged ends at the panel points. The girder is on rollers at the ends, however, is rigidly connected
with the rib at the crown. Namely, the deck does not contribute to the longitudinal axial force. The deck
girder is fabricated by constant I-shaped cross section. A distributed pattern of the residual stress in the
I-shaped cross section by welding is modified as shown in Fig. 1 (i. e., a maximum stress at the welds equal
to the yield stress level of material and the maximum stress in compression equal to 40 % of the yield
stress) . The girder has the same material with the arch rib. To avoid the
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consists of a reinforced concrete slab connected by shear studs to steel Fig.1 Reference Bridge Model
stringers that is turn are supported by transverse floor beams. Then the (arch geometry, loading
floor beams are supported by the deck girders at the panel points. and cross sections).
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In-Plane Ultimate Strength of Deck-Type Fixed-End Arch Bridges 207

Considering this structural detail of the deck system, the model is loaded by a series of concentrated loads
on the deck girder at the panel points, By refering the results of pre-examination”, the ultimate strengths
are investigated under the loading manner as shown in Fig. 1, i.e., the load acting at the each panel point
on the left half of the model is ¢ and that on the right half is g, where 7 is a load intensity ratio. In all the
numerical calculations the arch rib and the deck girder are respectively divided into 60 segments with equal
length along the span. By dividing the cross sections of the arch rib into 36 segments and the deck girder
into 27 segments the elements of tangent stiffness matrix are evaluated numerically, The structural
parameters and their ranges are selected in the study as given below;

R/L=0.1~0.3; Ar=100~300 3 1/ I,=0.1~10;

r=0~0.99 3 E/Fy=457~875 ; E=2.1X10° N/mm’

where ), is the slenderness ratio of the entire structural system of the arch bridge and is defined by the

ratio of the curvilinear length of the arch axis to the square root of (I,+1,)/Aq4; I, or I, is the second
moment of area; and E is the Young’s modulus, The slenderness ratio of an arch rib itself is evaluated as

D N I 3 T LT TR TR PR (2)

The ranges of these parameters are generally within found in steel arch bridges.

3. RESULTS OF STUDY

(1) Deflection behavior

Some selected results for dimensionless loads, ¢/g,, versus total vertical deflections, »/L, at a
quarter point of an arch rib with fixed-end restraints and stiffened by a deck girder (I,/I,=1.0), until the
ultimate states for r=0.5 and (. 99, are shown in Fig, 2 by solid curves. In what follows, the-applied load
is nondimensionalized by dividing it by g,. This load, when applied at all panel points, will cause full
yielding at the springing of arch rib under axial thrust only?~" It is given by :

o AdFy
D G R et wir ]

i=1

in which 7=number of panel points including end-supports, [,=(i—1)/(n—1), L=1—1, and j=order of
panel point (Fig.1). It can be seen from this figure that the deflection at the ultimate state greatly
increases with the increased lack of symmetry of the load. The results of the elastic instability analysis are
also shown as the dashed curves for comparison purpose, in which the geometric nonlinearity produced by
prebuckling deformation is only taken into account, The elastic analysis shows that the maximum load,
Gmaxetasuc does not change with the value of 7 very much. A similar conclusion was arrived at in Ref. 7) on
the elastic behavior of fixed parabolic arch rib only. As is evident from this figure, the instability solution
based on the elastic theory overestimates the ultimate strength of the arch bridge system by a large
amount, This fact clearly represents that the reduction in the stiffness brought by the material nonlinearity
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considerably exerts influence on the ultimate strength,

In calculations that follow, a quasi-symmetric loading (7r=0.99) is adopted instead of the parfectly
symmetric loading (7==1) to avoid convergence problems and to consider ideally the effects of initial
geometric imperfections. Figs,3 and 4 show typical nondimensional forms of incremental vertical
deflections of the arch rib along the bridge span (I;/I,=1.0, A;=200) from low level loading states to the
ultimate states for r=0.5 and 0. 99, respectively. Herein it is termed as incremental deflection mode and
given by dividing the nondimensional incremental deflection (AT=Ap/ L) by the dimensionless
incremental load intensity (AG=A4q/q,). From Fig. 3, it is obvious that the incremental deflection mode
for each loading level under asymmetric loading (r=0.5) is the second order mode, in which the bending
deformation is distinguished for the arch rib (bending deformation mode), until the ultimate state. On the
contrary, from Fig. 4, under the quasi-symmetric loading (7=0.99) the incremental deflection mode for
low loading level is seen to be the first order mode, in which the shortening deformation is distinguished
(shortening deformation mode) because of enough flexural stiffness that the arch rib cross section exhibits
against the low axial thrust. In this case the bending moment becomes negligible for the arch rib, However,
when the axial thrust becomes relatively higher (just prior to the ultimate state) the incremental deflection
mode changes to the bending deformation mode. Thus, the so-called inelastic instability phenomenon
appears, The reasons for this instability phenomenon might be explained as follows : the flexural stiffness
of the arch rib is considerably reduced along the entire arch rib due to the high axial thrust at just prior to
the ultimate state, Therefore the bending moment, which was negligible under the low loading level,
becomes relatively considerable. As the result, the bending deflection (anti-symmetric instability
deflection mode) becomes dominant at the ultimate states of the arch ribs, eventually. The two modes on
the deflection progress clearly show overall collapse configuration. Hereafter, this kind of collapse is
studied except for discussions on local member failures.

(2) Internal force behavior

Fig. 5 shows internal moment diagrams of the arch rib along the bridge span (I,/I,=1.0, A,=200) for r
=().5 and (.99 at the ultimate states (i.e., the state 4 as shown in the insets of Figs,3 and 4). The
internal moment is nondimensionalized by dividing it by the yield beqding moment My and plotted on the
ordinate : the abscissa denotes the longitudinal coordinate set along the bridge span nondimensionalized by
the span length. From Fig.5% can be understood that the arch rib in the deck type bridge system locally
shows a beam-column member behavior in a panel with initial out-of-straightness from a line connecting
with adjacent post-locations over a panel interval. Then, this initial out-of-straightness causes the arch
rib an additional bending moment (hereafter, .this behavior will be termed beam-column effect). If this
beam-column model is illustrated as a free body diagram from the arch rib, it is idealized that the model is
supported at the panel points (i. e., at the model ends) by so-called intermediate support-function provided
by the posts and has rotation-springs at the model ends provided from the arch rib member over the
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adjacent panels as shown in Fig, 6.

It can be seen from Fig, 5 that this beam-column effect is more remarkable when the quasi-symmetric
load is applied, because it causes high axial forces for the modeled members. The resultant bending
moment versus axial thrust relationships at the quarter and center points of arch rib are given in Fig. 7 for
various values of 7. In this figure, the axial thrust plotted on the ordinate is given in nondimensional form
by dividing it by the squash thrust Ny (= A.FY) of the cross section, and the bending moment plotted on the
absissa is nondimensionalized by the yield bending moment. It can be seen from Fig. 7 that the resultant
bending moment under the symmetric loading increases continuously with the axial thrust showing normally
nonlinear behavior until the ultimate state is reached. On the other hand, the bending moment on the
quasi-symmetric loading process becomes smaller, showing nonlinear behavior, as the axial thrust
increases, This phenomenon might be also explained by the beam-column behavior of the arch rib between
the posts. Namely, the flexural stiffnesses of the beam-column model elements composing the arch rib are
markedly reduced by the presence of the high axial compression under the quasi-symmetric loading®.
Therefore, the bending moment that results in the arch rib is also reduced with increase of the axial
thrust.

Figs. 8(a) and (b) show the spread of yielding and unloading zones in the cross section of the deck girder
and the arch rib (I;/I,=1.0, A,=200) and along their longitudinal axes for r=0.5 and (.99,
respectively, corresponding to the load level of the state 4 (the ultimate state) as shown in the inset of
Figs. 3 and 4. The locations of the posts are indicated by dushed lines in the figures. It can be observed
that the spread of yielding zones shown in Fig. 8 (a) corresponds to the incremental deflection mode for r=
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0.5, i.e., the bending deformation mode shown in Fig. 3. On the other hand, it can be understood from the
results in Fig. 8(b) that the yielding zones, under the quasi-symmetric loading (7r=0.99) are, broadly
speaking, entirely spread out in the arch rib by the extremely high axial thrust. Furthermore, examined in
detail, it is observed that the intermediate support effect brought by the posts causes unique vielding zones
partially at the post-locations,

(3) Ultimate strength behavior

Selected results on the ultimate strength of the deck-type, fixed-end, arch bridge system (A,=200,
R/L=0.15, E/F,=656) are tabulated in Table 1 for r=0. 5 and 0. 99 with the elastic critical loads. In
the table, gpax indicates the true maximum load carrying capacity (ultimate strength), gmaxeiasiic means
the maximum load obtained by the elastic instability analysis, guuexic i the linear bifurcation buckling load
determined by the Japanese Highway Bridge Specification? in which the load is specified by the parameters
of R/L and A;, @yuna is the elastic limit load determined by the 2nd-order elastic analysis, i.e., the load
level that gives the initiation of material yield in the structural system (residual stress not considered) and
also shown in Fig.2 by the symbol of arrows, and Qyase is the elastic limit load calculated by the
conventional [st-order elastic analysis. The gpaxeiasiic does not change with the value of ¢ very much,
Essentially, the linear bifurcation buckling load should be nearly equal to the elastic maximum load
obtained by the elastic instability analysis for r=0. 999, However, the specified Qouckie 18 20 % larger
than the Guaxeasuc for 7=0.99. As obvious from the results by the elastic instability analysis, neither of
the buckling load and the maximum load evaluates correctly the ultimate strength. Moreover, the
elastic limit load is not able to evaluate the ultimate strength even though by using the 2nd-order analysis.
Typical results of the ultimate strength, g, and the elastic limit determined by the 1st-order analysis,
Qras: that is ordinarily used in design practical to account for the allowable stress, are widely given in
Table 2, where the results of the hinged arch bridge systems having identical, geometric and material
properties and loading condition are also tabulated for comparison purpose. In the traditional approach to
design, the 1st-order elastic limit of a structure has been the basis for the development of design methods,
However, from the calculated results in the table, the magnitude of discrepancy between the ultimate
strength and the elastic limit, (gmax— Qyust), t0 the gnay for the twenty seven cases are scattering, in term
of percentage, from —72 % to +52 % in the fixed arch bridge systems and from —253 % to +16 % in the
hinged ones. The average of the absolute magnitude is 31 % for the fixed systems and 45 % for the hinged
ones, The elastic limit approach leads to quite difference from the ultimate strength for the arch bridge
system. The guucie is also tabulated in the space for r=0.99. For instability of arches, specified

Table 2 Ultimate Strengths of Deck-Type Fixed-End Arch Bridge Systems Compared with those of 2-Hinged Systems,

7 Arch | I/, A = 100 A = 200 Ap = 200

Type Imax/9p | 9¥151/%p | Donckic/Gp | Amas/Op | av151/p | Buchte/9p | Gmac/Tp | 9¥.15t/9p | Touckic/9p
0 | Fixed 0 0.672 0.414 0.340 0.236 0.207 0.164
1 0.693 0.342 0.326 0.188 0.192 0.127
0 0.754 0.365 0.317 0.188 0.183 0.128
Hinged | 0 0.467 0.428 0.213 0.237 0.125 0.164
0.561 0.513 0.247 0.268 0.142 0.178
10 0.699 0.740 0.286 0.362 0.162 0.240
0.5 | Fixed 0 0.795 0.586 0.459 0.381 0.283 0.283
0.845 0.463 0.435 0.317 0.249 0.219
10 0.918 0.542 0.409 0.295 0.220 0.207
Hinged | 0 0.607 0.618 0.288 0.391 0.159 0.285
0.739 0.648 0.321 0.441 0.173 0.330
10 0.931 0.778 0.369 0.549 0.195 0.424

0.99 | Fixed 0 0.961 0.986 0.944 0.801 0.969 1.486 0.555 0.952 0.660
1 0.930 0.650 0.772 0.743 0.480 0.702
10 0.854 0.709 0.653 0.577 0.333 0.483
Hinged | 0 0.837 1.000 2.730 0.538 1.000 0.684 0.280 1.000 0.304

1 0.915 0.866 0.577 0.754 0.289 0.668
10 0.800 0.717 0.545 0.551 0.293 0.450

Note: R/L = 0.15, E/Fy = 656
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allowable stresses are still widely based on the elastic buckling approach® 'V, Itis, however, obvious from
the table that the elastic buckling approach can not estimate correctly the actual instability of arches, i.e.
the instability phenomenon under the geometric and material nonlinear effects. It can be clearly understood
from the table that the ultimate strength decreases with the increased lack of symmetry of the loading,
Generally, for a certain value of A; the ultimate strength of deck-type fixed arch bridge systems for the
most any case increases with decrease of [;/], while that of hinged one increases with [;/I,. It means that
the capacity of resistance to the failure provided in the deck type arch bridge system by fixing supports of
the arch rib is higher than that by making flexural stiffness of the deck-girder higher,

Fig. 9 shows the variation of the ultimate strengths, qua./¢, as a function of the slenderness ratio of the
deck-type, fixed-end arch bridge systems, 2;, for various values of the flexural stiffness ratios, [,/], and
the load intensity ratios, 7. As is obvious from this figure, the ultimate strength decreases with the
slenderness ratio and it should be one of the important parameters to predict the ultimate strength, In the
case of the quasi-symmetric loading a certain difference between the ultimate strengths for I,/I,=0.1 (a
Lohse-type) and for I;/I,=10 (a Langer-type) arises, while in the case of the asymmetric loading there is
no significant difference between the two. Typical results for the influence of rise-to-span ratio on the
ultimate strengths of the arch bridge systems with a slenderness ratio of the bridge system, A,=200, are
shown in Fig, 10 for various values of the flexural stiffness ratios and the load intensity ratio. It can be
considered from the figure that the ultimate strength, expressed in the nondimensional ultimate load form
with, g,, given by Eq. (3), is not affected very much by the rise-to-span ratio of the arch rib within its
structural parameter ranges adopted herein, Eq. (1). Some selected results on the relationship between
the nondimensional ultimate load intensity, @max/q,, and the yield stress level of material expressed by a
nondimensional form, E/F,, are shown in Fig.11. Similar studies for the arch bridge systems with
different slenderness ratios also shows almost same tendency as the results shown in Fig, 11. Namely, the
data analyzed herein show that the effect of the yield stress level on the nondimensionalized ultimate load
intensity is not significant, regardless of the values A;, I,/I,, R/L and 7.

(4) Local failure behavior

A slender arch rib with long panel-intervals between the posts in deck-type arch bridge system under
high axial loading raises a member failure in a panel possibly, i.e., local member failure before the overall
instability of the bridge system occurs, because of severe response of the beam-column behavior as was
mentioned previously. Fig, 12 shows, after magnification, typically analyzed result on the appearance of
progress in the local member failure mode until the ultimate state is reached. In this figure, the ordinate
indicates an nondimensional form of vertical deflection by dividing it by the span length, #/L, and the
abscissa denotes the nondimensionalized longitudinal coordinate set along the bridge span, X/L. The
fixed-end arch bridge adopted in this calculation is, so-called, a Langer-Type decked system (I,/I,=10).
It has six panels of equal interval along the span under the quasi-symmetric loading and has the structural
properties for E/F,=656, R/L=0.15 and A;=200. It can be seen from the figure that the local member
failure arises originally in the first panel countered out from the springing as well known.
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Table 3 Influence of Panel Number on the Ultimate Strength of Deck-Type Fixed-End
Arch Bridge Systems (for various values of A; and L/L).

Panel Number
Ar | L1, 6 8 10
parabolic polinomial parabolic | parabolic
imperfection | no imperfection
100 0.1 0.846 0.905 0.914
10 [ 0.672 (L) | 0832 (L) 0.500 0780 (L) [ 0.554
150 0.1 0.783 0.844 0.875
10 | 0.528 (L) | 0.696 (L) 0.728 0.676 (L) | 0.766
200 0.1 0.703 0.748 0.768
10 | 0.402 (L) | 0526 (L) 0536 0.566 (L) | 0.635
300 0.1 0.469 0.497 0.510
10 [0.232 (L) | 0.264 (L) 0.266 0.304 (L) | 0.333

Note: r = 0.99, R/L = 0.15, E/Fy = 656, (L) = localmember failure

Table 3 summarizes the ultimate strengths of the Lohse-Type (I,/I,==0. 1) and the Langer-Type (I,/I,
=10) under the quasi-symmetric loading for various values of panel number and A;. The panel numbers
adopted are 6, 8 and 10, respectively. In the table (L) expresses ultimate strength influenced by local
member failure of arch rib, and the other values show overall instability, i.e., ultimate strength not
influenced by local member failure. From the results in the table, it can be understood that the possibility
of the local member failure becomes high as the number of panels or the slenderness ratio of the bridge
system or both of them decrease. Similar studies on the local member failure are also performed herein for
various values of the load intensity ratio, r, and the flexural stiffness ratio, I,/I, The results show that
the local member failure is apt to arise as the load intensity ratio, 7, is merged to unity and the flexural
stiffness of the arch rib becomes smaller than that of the deck girder.

For 6-panel system, shapes of arch ribs that correspond to a sixth-order polynomial with and without the
initial crookedness, as shown in Fig, 13, are also examined for comparison purpose. Their shapes are
symmetric with respect to the crown. The crookedness is given by a sinusoidal between the panel intervals
shown in Fig. 13. The corners of the sixth-order polynomial locating the posts are found by the coordinates
of a parabolic function as shown in the inset of Fig. 13. Theie examined results are also shown in Table 3.
It can be understood from the results that the ultimate strength of the Langer-Type composed of six panels
having the parabolic arch rib are characterized by the local member failure and those of the Lohse-Type
are characterized by the overall instability in the range of the slenderness ratios of the bridge systems
discussed herein (A;=100~300). The local member failures are also induced for the sixth-order
polinomial arch ribs with the initial crookedness in the Langer-Type system, while without the
crookedness they are not. The ultimate strength of the Langer-Type composed of six panels having the
parabolic arch rib is higher than that having the polynomial arch rib with the crookedness. It seems to
cause this discrepancy between the two that the initial crookedness of the aforementioned beam-column
model in the parabolic arch is a degree of 1./250 at a center of the model, while the crookedness adopted in
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c=L/{n-1) Amax/dp o
- eug, locat
Fx Proposed formula : Gmay,interact * (m) Amax, overall
9 2 — 1.00F
= Proposed formula (8-panels ) LANGER TYPE
//TYo r=0.99, R/L=0.15
Proposed formula (6-panels)
7 0.75 - Iy/1a=10, E/Fy = §56
-
// X
- ' 0.50F
; L IX oy = AR LX) '
Yo = 5557 SN i Yi 2= xi(L-X 0.25f
100! ¢ L ®,@ : Analyzed results for 6- and 8- panel system
Fig.13 Six Panel Model with Porinomial Arch Axis ol i : . L
0 100 150 200 250 300

Configuration,
Fig. 14 Influence of Local Member Failure on the Ultimate
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the polinomial arch rib is L/1 000.

The analytical study of the Langer-Type arch bridge system with various values of panel numbers shows
that the decrease in strength is due primarily to the local member failure of the beam-column model at the
end panel. A simple way of incorporating this effect is to use the strength reduction factor, ¢, that
evaluates interaction of the local and overall instability. The coefficient, ¢, could be evaluated by the
following equation ;

¢= Ocugiocal / OoUgoverall ™ "t T e ( 4 )
where geygiocar=strength of the beam-column model at the end panel of arch rib with the local member
failure and geygoveran=strength of the beam-column model at the end panel of standard arch rib in which the
local member failure does not occur until the ultimate state is reached (i.e., the ultimate strength is
characterized by so-called overall instability). The Langer-Type arch bridge system with 10 panels is
herein adopted as the standard one because only overall instability occurs to this system. The interactive
ultimate strength, Qmaxinieract, can therefore be determined as follows ;

Tmax,interact = PQmax,overall == 7T T e e e e ea et e ae e e aans ( 5 )
where uay overann=the ultimate load intensity of the standard arch bridge system, Provided that, the arch
system established by the ultimate strength of quaxinserac: has all identical structural properties with the
abovementioned standard one, except the slenderness ratio of the beam-column model,

The numerical results obtained from this study make the practical formulation of ¢. The first step is to
establish the formulation of geugoveran. The oeugoveran for the standard arch rib was computed using the
same computer program as used herein, In analyzing the beam-column, it was modified as fixed-hinged
boundary conditions and given the initial crookedness corresponding to the parabolic configulation of the
standard arch rib. Then, the axial load was applied to the initially bent column, By applying regression
analysis on statistics to the computed results, a prediction formula for oiugoveran can be obtained as
follows ;

0cug,?_veran:(1»194_0~218 .iT)FY ..................................................................................... (6)
where A\;=(A;/7)4/Fy/E . It is proposed to use the same geygoveran to evaluate ¢ defined by Eq. (4). The
second step is to establish the formulation of geugiocar. The ocugiocar 15 evaluated by Eqs. (4) and (5) as
follows ;

@max,interact
Oeugiroca ™ Pleugoveran = Tougoveralt ot elBEL L (7)
Jmax,overal
By substituting the analyzed results of gmaxinterac: for the 6- and 8-panel arch systems and of gpaxoveran and
Eq. (6) into Eq. (7), the ocygrocar, in which the interactive effect is included, is given. On the other
hand, since geugioca; 1S the strength of beam-column model at the end panel of arch rib with local member

failure, the ocugiocar may be evaluated by the column-strength-formula as follows;

Ocugtocan = Fy _ ; for 7\30. 2 _
=Fy[1-0—0.5é5(l““0. 2] ; for Q. 2_<)&Sl.0 ..................................................... (8)
=F,/(0.733+ 1) sfor 1.0<A
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7\=(/€ela/7‘a)(1/7f)m ........................................................................................... (9)

where [,==axial length of the beam-column model at the end panel, r,=radius of gyration of the arch rib
cross section. Substituting the value of Eq. (7) and Eq. (9) into Eq. (8), the coefficient k., is obtained.
Eventually the effects of the boundary condition, the initial crookedness and the interaction of overall and
local instability are included in the k.. By applying the regression analysis to the values of f, obtained
herein, a prediction formula for k., can be derived as follows;
Joomm0. Q00 v e e e e eeme et (10)

It is proposed to use the geygioca formulated by Egs. (8), (9) and (10) to evaluate ¢ defined by Eq.
(4). The accuracy of using the strength reduction factor defined by Eqs. (4), (6), (8), (9) and
(10) in evaluating the interactive strengths of deck type fixed end arch bridge systems is illustrated in
Fig.14. The solid curves show the interactive strength evaluated by Eq. (5), in which the 10-panel
system is adopted as the standard arch bridge and it is analyzed by the ultimate strength approach. The
circular marks indicate the @uax/q, for 8- and 6-panel systems that are also calculated by the ultimate
strength analysis. The correlations are considered satisfactory for design purpose. It may be concluded
that the interactive strength concept proposed herein gives results that are sufficiently accurate for
practical applications,

4. CONCLUSIONS

For fixed-end steel arch systems with deck type girder, the function of the deck girder, the fixed-end
restraint behavior of the arch rib and the ultimate strength of the bridge system characterized by the
overall instability and the local member failure have been studied by an accurate nonlinear finite element
approach in the inelastic and the finite deformation ranges, The parametric studies have been performed in
the ranges of the structural parameters that are generally within those found in the arch bridges. Based on
this study the following conclusions can be drawn chiefly :

(1) The deformation behavior until the instability state is reached to the arch bridge system has been
studied by the linear theory, the second order elastic theory and the ultimate strength approach, It is
shown that the instability solutions based on the elastic theories overestimate considerably the true
ultimate load carrying capacity, i.e., ultimate strength. The elastic limit load is not able to evaluate the
ultimate strength, even though by using the 2nd-order analysis.

(2) The type of collapse conditions has been examined with the help of the incremental deflection mode
at several loading states starting from a low level loading state to the ultimate state. The bridge systems
have two kinds of overall collapse conditions; one shows the nonlinear bending deformation-response and
the other the inelastic instability phenomenon. Eventually, the bending deformation mode (antiéymmetric
mode) becomes dominant at the ultimate states of the arch bridge systems.

(3) The parabolic arch ribs show a sort of beam-column model behavior with initial out-of-
straightness from a line connecting with adjacent post-locations over a panel interval, This beam-column
behavior becomes more remarkable, when the quasi-symmetric load is applied because it causes high axial
loading to the model.

(4) The unique interaction between the resultant axial thrust and bending moment causing to the arch
ribs has been examined. It has been revealed that the bending moment producing between two posts adjacent
to each other becomes smaller, showing nonlinear behavior, as the axial thrust increases on the
quasi-symmetric loading process.

(5) The results on the spread of yielding zones clearly show how the flexural stiffness is reduced by
the asymmetric or quasi-symmetric loading. The spread of yielding zones corresponds to the incremental
deflection mode. The restraining bending moment-components brought by the intermediate post-supports
cause partially unique yielding zones at the post locations in the arch rib under the quasi-symmetric
loading.
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(6) The ultimate strength decreases with increased lack of symmetry of the loading or increase of the
slenderness ratio of the bridge system A; or both of them. The ultimate strength, expressed in the
nondimensional load form with, ¢,, given by Eq. (3), is not affected very much by the rise-to-span ratio
of the arch rib in the practical cases. The effect of the yield stress level on the nondimensionalized ultimate
load intensity is not significant, regardless of the values of A, I,/I, R/L and 7. These fundamental
qualitative characteristics of the ultimate strengths are the same as those of two-hinged steel arch bridge
systems,

(7) Generally, for a certain value of A, the ultimate strength of the fixed arch bridge system for the
most any case investigated herein increases with decrease of I,/I, while that of the hinged one increases
with I/ I,. For the deck-type systems having arch ribs with certain, flexural and contractive stiffnesses,
fixing the end-supports of the arch ribs is, speaking from view point of their ultimate strengths, more
effective than making flexural stiffness of the deck girders in the two-hinged system higher,

(8) The possibility of the local member failure becomes high as the number of panel decreases and the
load intensity ratio, r, is merged to unity. In addition, the local member failure is apt to arise as the
flexural stiffness of the arch rib becomes smaller than that of the deck girder and the slenderness ratio of
the bridge system decreases.

(9) The local member failure is induced for the sixth-order polinomial arch rib with an initial
crookedness (sinusoidal crookedness with 1./1 000 peak) in a Langer-Type (I,/I,=10). However, the
Langer-Type having the polinomial rib without the initial crookedness does not occur the local member
failure in the range of the slenderness ratio of the bridge system, A,=100~300.

(10) The ultimate strength of the Langer-Type composed of six panels having the parabolic arch rib is
lower than that having the polinomial rib with the initial crookedness. The cause for the discrepancy
between the two seems to be that the initial crookedness of the beam-column model over a panel interval in
the parabolic arch rib is a degree of 1,/250 at the center of the model length, while the crookedness adopted
in the polinomial arch is /1 000.

(11) It can be proposed to use the strength reduction factor ¢ formulated by Eqs. (4), (6), (8),
(9) and (10) to evaluate the interaction of the local member failure and the overall instability of deck type
fixed end arch bridge with parabolic axial configuration., The practical formula for evaluating the
interactive strength, Q@maxinteraci, can therefore be defined by @uaxinteracr= PGmaxoveran.

From these results it can be seen that implementation of a design method for the deck-type arch bridge
systems based on the abovementioned ultimate strength characteristics is desirable. Work on development
of such ultimate strength design approach for the arch bridge system is in progress by the writers.
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NOTATION
The following symbols are used in this paper;
Aq =cross-sectional area of arch rib;
Anr, Ao =cross-sectional area of plate composing cross section;
c =length of panel;
E,Fy =Young’s modulus and yield stress level of material ;
I, I =second moment of area;
My, Ny =yield moment and squash thrust;
L,R =span and rise of arch rib

385s



216

T. YABUKI and S, KURANISHI

X =longitudinal coordinate set along span;

be, ba =width of cross section;

ha ha =depth of cross section;

i,n =order of panel point and number of panel points;

o =—axial length of arch rib in end panel;

q =a concentrated load applied at a panel point of deck girder;

q» =full plastic load;

Gyast OF Jvzna =elastic limit load calculated by 1st or 2nd order elastic analysis;

Qmax =maximum load carrying capacity (ultimate strength);

Qmax.erastic =maximum load obtained by elastic instability analysis;

Qbuckie =linear bifurcation buckling load determined by the Japanese Highway Bridge
Specifications ; “

Qmax,interact =interactive strength of local failure and overall instability;

Qmax,overall =ultimate load intensity of the standard arch bridge system;

r =load intensity ratio;

Ta =radius of gyration;

tars taws tar Law =thickness of a plate composing cross section;

v =vertical displacement ;

) =strength reduction factor evaluating effect of local member failure;

Ocug,ocal ==strength of beam-column model at the end panel of arch rib with the local member
failure ;

_ Ocugoverail =strength of beam-column model at the end panel of arch rib in the standard arch
bridge system ;

Ar, /\a,—)-\ =slenderness ratio of arch bridge system, slenderness ratio of arch rib and

slenderness ratio parameter of beam-column model ;

Subsecript a, d, f or w =structural property of arch rib, deck girder, flange or web.
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