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AN ANALYSIS FOR THERMAL-BENDING STRESSES IN AN ANNULAR
SECTOR PLATE BY THE THEORY OF MODERATELY THICK PLATES

By Isamu A, OKUMURA* & Yuya HONDA** and Jin YOSHIMURA***

An analysis for thermal-bending stresses in an annular sector plate with the moderate
thickness is carried out by the theory of moderately thick plates, together with the
thermoelastic displacement potential. The temperature field in the plate is considered a
steady-state prescribed to surface temperatures on the top and bottom faces and on all the
edges, of the plate. Mechanical boundary conditions on the top and bottom faces and on the
edges are considered stress-free and simple support. A three-dimensional elasticity
solution as a particular solution and a plane and generalized plane stress solutions as a
homogeneous solution are used. Numerical results for thermal-bending stresses and
displacements in the plate are presented. The influence of the thickness-width ratio on the
stresses is examined.
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1. INTRODUCTION

A number of studies on bending of plates with the comparatively large thicknesses called thick plates
have been done by many researchers on the basis of the theory of elasticity or what is called the theory of
moderately thick plates, The study based upon the theory of moderately thick plates appears to have been
done first by Woinowsky-Krieger?. After that, as to representative researchers, Love? Reissner?,
Mindlin® and Lo et al. ® have proposed the analytical theories which are simple and highly precise. Though
the studies on bending of thick plates have been offensive in the long run, they have been few lately and
seems to have passed the peak concerning isotropic, thick plates,

Though the bending problems of thick plates have been mainly dealt with prescribed surface loads,
bending of thick plates with the temperature change in the plates is also important. Bending of thin plates
by heat seems to have been already systematized and are stated in Nowinski’s book® too. Furthermore, the
studies on analyses for thermal stresses in two-dimensional or three-dimensional discs are somewhat
found. Tauchert and Akéz?, and Ishikawa et al.® have analyzed steady-state thermal stresses in an
orthotropic, infinite band slab in a state of plane strain. Noda et al.® have analyzed axi-symmetric,
transient thermal stresses in a circular thick disc, and Sugano and Kimoto'® have analyzed axially
asymmetric, transient thermal stresses in an annular disc with the variable thickness. Furthermore, a few
studies on thermal stress analyses for transversely isotropic, thick discs have been lately found with the
latest development of anisotropic materials. Noda and Takeuti'” have analyzed axi-symmetric, transient
thermal stresses in a transversely isotropic circular thick disc, and Sugano™ has analyzed axi-symmetric,
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transient thermal stresses in a transversely isotropic infinite thick disc with a cylindrical hole. However,
the studies on bending of thick plates by heat, without distinction of coordinate systems, are hardly found
at the present time. Though a three-dimensional analysis for thermal stresses even in thick plates is the
theoretically most exact method of analysis, numerical calculations become increasingly difficult as the
thicknesses of plates decrease. When attention is paid to this point, the simple theory of thick plates to
analyze bending of plates with the moderate thicknesses by heat is very important. Furthermore, the data
on thermal-bending stresses in annular sector thick plates as seen in the slabs of curved bridges are very
few at the present time and so are highly significant for engineering.

From the above point of view, this paper is concerned with an analysis for thermal-bending stresses in an
annular sector plate with the moderate thickness by the theory of moderately thick plates proposed by the
authors in a previous paper™, together with the thermoelastic displacement potential. The temperature
field in the annular sector plate is considered a steady-state prescribed to surface temperatures on the top
and bottom faces and on all the edges, of the plate. Mechanical boundary conditions on the top and bottom
faces and on the edges are considered stress-free and simple support, respectively, A three-dimensional
elasticity solution as a particular solution and a plane and generalized plane stress solutions as a
homogeneous solution are used, because the boundary conditions on the top and bottom faces and on the
edges can not be satisfied by the thermoelastic displacement potential alone. The method of analysis
presented in this paper is applicable to bending of circular and annular thick plates by heat and is
considerably extensive in its application, Furthermore, the method is applicable to bending of rectangular
thick plates by heat, if a particular and homogeneous solutions in Cartesian coordinates are used.

2. STEADY-STATE TEMPERATURE FIELD

When cylindrical coordinates (7, #, z) are used, the governing equation for steady-state heat
conduction in isotropic solids is as follows :

V ZT:O, ................................................................................................................. ( 1 )
in which T is the temperature change, and

2 2 2
oo T o e
We take the cylindrical coordinates of an annular sector plate as Fig. 1 and consider the temperature T to
be even in §. Then, from Eq. (1), the steady-state temperature T is expressed as

Vi=

T= t}f} i‘, c08 MmO [JnlansT) (N cosh ansz+ RY sinh ansz)+ Yalans7) (NG cosh ansz

1 8=1
+ RE sinh ans2)]+ 2] 3] €0S M0 COS Baz [ St IalBar)+ SH KnlBar )], wooveeeesssssssonn (2)

in which N§), .-

stants to be determined from boundary con-

, S% are arbitrary con-
ditions,  Furthermore,  J(ans7) and
Ynlansr) denote Bessel functions of the
first and second kinds, of order m, re-
spectively, L(8,r) and Kn(8,r) denote the
modified Bessel functions of the first and
second kinds, of order m, respectively,
and

tr
== =1,3,);
m== (1 )

MS

ams:"a_ (821,2, “') 5

Fig.1 Coordinate system of annular sector plate.
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En=T (nzl’Z,...). ...................................................................................... (3-a~c)
We consider the following boundary conditions for the temperature field in the annular sector plate :
on Z=h/2, T=g(r,0), ...................................................................................... (4.3)
on Z=—h/2, T==0, .......................................................................................... (4.b)
on 7=@ and gz, TIE(), cereeeerereeteereeeriaetes i (4-c)
on B:iy/z’ TIm=(), vveveeeneee ettt (4.(1)

in which g(7, ) denote the prescribed surface temperature on the top face. The boundary condition of
Eq. (4-d) is self-evidently satisfied in Eq. (2) with the aid of Eq. (3-a). Here, we put the arbitrary
constants in Eq. (2) in the form

N = — £msN(tls), RP=— Emths, SP=8% IE(), ceeereeeeereseenenesiit (5. a~c)
in which
_ Jm(a’msa) _ Jm(/\ms)
s ) Y (6)
By making use of Egs. (5-a~c), T is expressed as
T= 2 Z cos mé Cm(ams’l') (N(l) cosh amsz+R sinh amsz) ......................................... (7)

=1 8=1
in which Cp(ams7) denotes a cylinder function of order m as defined in the form
Conl@me )= Il @ms ) — Ems Vm{@ms 7). ++e-reeereemesmeme et (8)
The boundary condition of Eq. (4-c) on r=g is already satisfied by Eq. (8). From the boundary
condition on =75, we have the following transcendental equation from which the root A, is determined :
Jnl1hms) Yl Ams)— Tl Ams) Y(iAms) =0,  a==0/ @, +rerererrmrrmrmrinisinei e (9-a,b)
In order to satisfy the boundary condition of Eq. (4-a), we expand the prescribed surface temperature
g{(r, §) into the following Fourier-Bessel series :

g(fr, 9):2; fts cos méb Cm(am.gr), ........................................................................... (10)
in which
/2
f f glr, 0)rCulansT)COS mb drdf
fts B R E LR R L LR LR R ) (11)

L/ cos’ mé daf 7 Chlams7)d T

From Eq. (10) and the boundary conditions of Egs. (4-a, b), fhe arbitrary constants are determined in the
form

fts fts amsh
o w_—__  Jts
Ne=5cosh &’ B~ 2simh G’ ™™ 2 -

By substituting the values of Egs. (12-a~c) into Eq, (7), the temperature T is exactly determined in the

form

by

18=1

3. DISPLACEMENT AND STRESS FIELD

fis
2

cosh apsz  Sinh apsz )

cos mé Cm(ams”< cosh fns ' sinh &ns

TMg

A particular and homogeneous solutions are needed to satisfy mechanical boundafy conditions of
stress-free on the top and bottom faces and of simple support on all the edges,

(1) Particular solution

As a particular solution, we shall use a three-dimensional elasticity solution'¥ proposed by one of the
authors. Let u,, u, and 1y, be components of displacement, the solution is expressed as

b 9% 29% 0N i,
e L B (14-2)

2 Gur~ {¢o+ T
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1 o 9 _ 982 L OX .
2 Guo=t [ dot 7 ot 2 =4 (1= V) |~ 2 5+ OK eees (14+b)
a¢1 9%, O
2 Gu= ¥ { ot _|_ 5 4(1 y)¢3}+ 7 (14-¢)
in which G and p denote the shear modulus and Poisson’s ratio, respectively, and
VZ¢0:__O’ V2¢1:O, V2¢3:0, V2192:O, V?X::laE T' ................................. (15.a~e)

-y
The function y in Eq. (15-e) is called the thermoelastic displacement potential, and ¢ and E denote the
coefficient of linear thermal expansion and Young's modulus, respectively. If the potential function ¢, is
excluded on account of inutility for the particular solution, from Egs. (15-a, ¢, d) the potential functions

are expressed as

¢o:i i c0S MmO [JnlansT) (AL cosh ansz+ LY sinh ansz)+ Yalans7) (AZ cosh ansz

+L sinh amsZ)} .......................................................................................... (16.3)
¢3=Z Z c0S MmO [JulansT) (CH cosh ansz+ MY sinh ansz)+ Yulansr) (CE cosh apsz
+M sinh amsz)} ......................................................................................... (16'b)
:t}___]l Z sin mé [Jnlans7) (Bl COSh ansz+ G SINN ansz)+ Yalans) (BE cOSh ansz
+G‘§;sinh amsz)]Jrsin Bz g‘_’; sin mé [E‘;’Im(ﬂr)+E?)Km(/5’r)], ................................ (16"1)
in which A%, -+, EP? are arbitrary constants to be determined from boundary conditions on the top and

bottom faces and on the edges, and 8=7/h. If the complementary function of ¥ in Eq. (15-€) is excluded
on account of dependence on @, by substituting T of Eq. (13) into the right-hand side of Eq. (15-¢), the
particular integral of y is expressed as

<sinh amsZ cosh amSZ)
cosh & sinh &us

In order to express components of displacement and stress in the cylinder function defined in Eq. (8), we

xX= 4(1_V) 2‘_. Zj_‘. Jis c0s MmO Culans7) (ans2)

’”LS

put the arbitrary constants in Egs. (16-a~c¢) in the form

A(t@: - €msA(t15)‘y (tz;— - 5msLts, C(tzs)‘: - Emng;, M(az;: - EmsM sy Bm_ - SmsB(tlé 5
. P (18-a~f)
Hooke’s law taking account of heat is as follows .
y oET v oET
UM:ZG(EMJFI_ZU e) 12, 096:2G<568+1_2y €> 1"‘211;
v oET
=2 G <Ezz 1—2p e> 1=, 00:=2 Geozy 02r=2 Gezr, 0re=2 Gero, srerreeeeer (19'a~f)
in which ¢,,, -+, 0, are components of stress, ¢,,, -+, £, are components of strain, and e is the cubical

dilatation, By making use of Egs. (18-a~f) and substituting Egs. (16-a~c) and (17) into Eqs. (14-a~
¢), we obtain expressions for the components of displacement. If we obtain expressions for the components
of strain from the expressions for the components of displacement, we obtain expressions for the
components of stress from Egs, (19-a~f). As examples of the expressions for the components of stress,
the expressions for o,, 0, and ¢,, with the superscript (p) are

68=37 3" akhe cOS M8 Calans) [AL—2 (1—»)CE] cOSh amez

I=1 =1
+[LYU—2(1—v)MY] sinh ansz+ ansz(CH sinh apsz+ MY cosh ansz)

aoF (sinh ans2  CcOoSh ansz )
4(1—v) cosh &ns  sinh &

3% fro€OS MmO ColtmsT) (@ns2)

1 §=1

Ma

+

&
it
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2

o%=3 33 (—222) sin mOCasslams) AL+ BE—(1—2 »)Ci Sinh anez

+HLB+GR—(1—-2 v)M W cosh ansz + ans2(CH cosh ansz+ME sinh apsz)]

=+ Cm+1(amsr)[{ Bm_(l —2 V (1)} sinh ansz

+HLE—-GR—( —2 yIM cosh ansz+ ansz (CEcosh ansz+ MY sinh ans2)]}
2 o

—5 cos pz Z_J sin mO EQ [Ln-B7)+ Inii(B7)]— E¥ [ Kns(B7)+ Knin(B7)]f

CulansT) [ 1

w©

+7 (1 ) 23 21 (—=mfis)sin mo anet | COSh Eu (sinh ansz+ ansz cosh ansz)
1 .
+‘Sm (cosh ansz+ ansz sinh amsz)}, """ (20-b)

so=37 3 2ns a’“ €08 MO |Crr(ans ) [|AL+ BE—(1—2 v)Ci) sinh ansz

I=1 §=1

+{LY +G —([1—=2 v)MY cosh ansz+ ansz(CH cosh an.z+ M sinh ansz)]
Cm+1(ams7‘)[{ tl; Bts"’(l"'z V)C%}Sinh am32+}Lts_G¢3"‘(l“‘2 V)M(zg} cosh ansz

2 oo
+ ansz (CH cosh apsz+ MY sinh amsz)]H-% cos Bz ; c0S MO|EP [ In_(87)— In1(87)]

e _ e & & m

E? [Kmal(ﬂ'r) Km+1(,87'):”+ 1 (1"‘)/) g sgl fts cos mé [ams"' Cm(amsr)

- C,,m(amr)] [m (sinh ansz+ ansz cOSh ans2)

+ Sinh &, (cosh ansz+ ansz Sinh amsz)]. ....................................................... (20'6)

The expressions with the single summation notation as seen in Egs. (20-b, ¢) are anti-symmetric solutions
with respect to the middle plane, i.e., z=0.

(2) Homogeneous solution

We shall use a plane and generalized plane stress solutions to thick plates in the cylindrical coordinates
as a homogeneous solution., The form of these solutions has been previously reported by one of the
authors™, The concrete expressions for the components of displacement and stress shall be given here.
For economy of space, the expressions for the components of displacement and four components of stress,
i.e., Orr, 0Ozs 0oy and g, are presented.

a) Plane stress solution : The expressions for those components with the superscript (h, 1) are

2 Gup=—3] cos mé { m(PYr™ = PPr=)= PPr™ | v { o —(m+2)]
4 2y
(4) o —mM~1 2 — 21l .
+—1+ m(m+1)z } PYr [r {H +(m— 2)]+1+V m(m—1)z ” (21-a)
ZGu"””=Z}sin mﬁ(m(P‘”r”‘“—i—P‘”r"’“lHP(”r”"‘[1’2< 4 +m>— 2y m(m—H)zz}
= ' ' : T+v 1+
_ pW—m- 4 2v D b .
Pér 1[r2<1+u m> i1, mim ”22”’ (21-b)
ZGugl»l)z——lZlT-—zzcos m@[m+1)P(37~ _(m 1) —m] ..................................... (21.c)

o= ——;_]1 cos mé [ m(m—1)PPr™" *+m(im+1)PPr " +(m+1)Pyr™? [ r¥{m—2)

_ 2y . z] _ @ —m-z[ 2 2y 2]] ................ .
Iy (m—1)z*|+(m—1)P¥r r{m+2)+ 1Ty m(m+1)z* |}, (22-a)
o= a(hzn_ GUBIZE(),  ereereres et (22-b)
in which P{, .-, P{ are arbitrary constants to be determined from the boundary conditions on the edges,
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b) Generalized plane stress solution ; The expressions for those components with the superseript

(h, 2) are

2Gur=—z Zcos mH{ (@ r™'—QPr ™)+ Q¥ r™! [(m+2)r”——§g:£ m(m-t—l)zz}

QU [(m_z)rz.xrgg:z; m(m——l)zzﬂ, ............................................ (23-a)
2 Gug?=z 5y msinmo | @r i+ @r -t @t [ 1282 (m 1)

Qupm [,,z+§§?::; (m—l)zzn, ......................................................... (23-b)
2Gul®=3 cos ma | Qr™+@Pr =+ Qe [ =2 (m+1) (£ —1et) |

+Q<;)Tvm[ B 2 —(m— 1)(%2_ sz)]}, ................................................... 23-¢)
o(i‘r’z‘=—zg}cos mﬁ{m(m—l)Q‘z”'r"‘"z-Fm( NP r " *+(m+1)QPr™ 2[ (m 2+5 u)

—-ég:i; m(m-l)z’]+(m—1)Q‘f’r‘"’"[7‘2<m+2 1fy> f 38: ; m(m+1)z* ]} (24-2)

GUIER(), e (24-b)
Ug»zm:_’zf_(liéwzmsm MO ADQI ™ —(m—1)QE T 1], wererremrmrmeereeireeeeneeeen. 24-¢)
o= hz(l_y; 32 m cos mOLmANQYT™ H(m—1@QE T, ovrrrsen e 24-d)

inwhich @Y, ---, QY are arbitrary constants to be determined from the boundary conditions on the edges.
The required solutions are expressed in the sums of the particular and homogeneous solutions as
Up= u‘f’+ u(rh’”-i‘ u(;»,z), e Gre= 0.(71%_{.. 0’%’”’1‘“ 0.%2). ............................................................ (25)

4. BOUNDARY CONDITIONS

We consider an annular sector plate whose top and bottom faces are stress-free and whose edges are
simply supported. Though the boundary condition of simple support can be prescribed by two different
ways, we employ the boundary condition of hinged support here. Then, boundary conditions are as
follows :

on Z«‘:ih/Z, UzT:O; Gze:(), Uzz:O, ........ RPN e eeeraea, ( 26-a~c)

ou
c (32) =0 (Wdea=0, M=0, - (27-ac)

in which T, and M, denote a stress-resultant and a stress-couple, respectively and are expressed as

on r=qg and r=b, T, =0, (Ue)so=0

h/2 /2
TTT:[};/Z ondz, MT:[h/zzOTTdZ’ .................................................................. (28-a, b)

OUr
oz )2=°:0, (uz)z,_.():o, MB:O’ .............. (29‘3.""6)

on f=+ ')’/2, Too=0, (ur)z=0:Oy (

in which T,y and M, denote a stress-resultant and a stress-couple, respectively and are expressed as

We impose the boundary conditions of Egs. (26-a~c) on Egs. (20-a~c) from considering that the
homogeneous solution in Eqs. (22-b) and (24-b~d) is not related to the boundary conditions on the top and
bottom faces of the plate. Then, the arbitrary constants are determined in the form

B%: G(zlgzo’ ....................................................................................................... (31 . a)
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oF Sis 20—v)

eE  fis 2(1—v)

) . W G JB LUV .
A= 4{1—v) aks cosh &ns’ Les 4{1—v) abs sinh &’ (31-b, ¢)

(1) — aE fts 1 0 — oF ..__f‘s . L .
Ce="1{—.) %, cosh G’ Mes="T0—}) 02, Sinh G (31-d, e)

Thus, the six arbitrary constants except E{ and EY? contained in the particular solution were exactly
determined. By substituting the values of Eqgs, (31-a~e) into the particular solution, the components of
displacement and the component of stress ¢%. are expressed as

2 Gup=—L 5 52 Je

t=1s=1 Aps’

m
Ccos m&[
UmsT

(@msT)— CrsrlamsT )] (cosh ansz  Sinh apsz >

cosh &ns sinh &us

+28 sin Bz g m COoS m&%[Eg’[m(ﬂT)‘f'E(f)Km(ﬂ?‘)], ................................... (32-a)
wo_oE & & fis . cosh ansz | sinh ansz
2Gus'= 2 {;{s‘g Ums sin m¢ OmsT C”‘(a"‘sr)< cosh &s | sinh & )
—2f sin Bz Z} sin mﬁ{ EY? {_ LB7)+ L (B7) ]
+E® [/5’7 Km(ﬂ’l’) Kmﬂ(ﬂr ” .................................................................. (32-b)
2 GuP="2 i i Jrs 8 Cnl )(Sinh ansz | cosh amZ) ............................ (32-¢)
u 2 & & g, COS MO UmlansT) "Cosh Lns | sinh &
w_ _ oE & & 1 I'mim—1) cosh ansz | sinh ansz
0'7?1"’ 2 ééftscos mé UmaT [ P Cm(amsr)+cm+1(ams7'>]< cosh §ms T sinh gms )
+2 8% sin Bz Z m cos meﬁ,L {E(” {*Ié-;—l— L(Br)+ Im—H(,B'r):]
[ LA ‘Y 7 Yo Y oy Jo T I S
+E¢ [ ar Km(ﬁr) Kna(BT) H (33)

The boundary conditions of Egs. (29-a~e) are self-evidently satisfied by the cosine function with the
argument m. If we substitute Egs. (22-a) and (33) into Eq. (28-a), we obtain the stress-resultant T,,.
By making use of T,,, Egs. (21:b) and (32-b), the two boundary conditions of Egs. (27-a,b) yield a
system of linear algebraic equations with four unknowns, i.e., P, -, P¥. If we substitute Eqs. (24-a)
and (33) into Eq. (28-b), we obtain the stress-couple M,. By makmg use of M, Egs. (23-b,c¢) and
(32-b, c), the three boundary conditions of Eqs. (27-c~e) yield a system of linear algebraic equations
with six unknowns, i.e., QY, ---, E¥Y. The arbitrary constants PY¥ .- PY¥ and QP ---, E? are
determined from their systems of linear algebraic equations which are omitted on account of limited space,

In order to express the components of displacement and stress and the systems of linear algebraic
equations in the nondimensional form, it is convenient to replace the arbitrary constants and the Fourier
coefficient used in the above with the following ones :

- 3 - @, m—
PPam™? =PV, PPa ™ 2:’1'5@ PPa™ — e PYa mz’ﬁm QYa™! —7n.
" aET, eET, P oET, ' oET, tr aET, £

QPa" """ =02 Q¥a™! =% Qla ™ Qw Eg)lm(ﬂb) =E¥;
aET, v aET, B aET, " a%ET,

E?Kn(8a) @ fts =
b Aml e B S S PO ca~k
a’aET, =EY =i (34-a~k)

in which T, is the constant temperature,

5. NUMERICAL RESULTS AND DISCUSSION

Before carrying out numerical calculations, the prescribed surface temperature g(r, 6) is to be
concretely given, As an example, we consider the following temperature which is partially constant in the
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r~direction and which follows a quadratic parabola in the g-direction :

Q(T, 0)_: To <%>ZI:<%>Z—62:I for a+§_ < <a+b+c and _%ges_g- ............. (35)

0 fOI‘ (ZS’I'<GI—*—TI)—C or lt_l_)j__g.<,r<b and _i<0<g

By substituting the above function inte Eq. (11), the Fourier coefficient f;, is expressed as

16 T, (—D(t_n/z 1 Ans

et e e G P[00 (5 )00

o (5 )5 (35 ) a5 ) (350

Ams Ans Ans Ans
= o (252 00) S0 (22 )= Ca (222 ) S (252 )]} 3)
in which
b b
w1=1+5+%, wz_l'*‘g_% ......................................................................... (37.3’ b)
and S,(x) and S,..(x) are Schlifli polynomials expressed as
Sfx)=r 2 [J,(x) S JE) Y], ceeeremer e (37-¢)

Numerlcal calculatlons were carried out for an annular sector plate with the central angle y= 7/ 2, outer
radius to inner radius, of the circular edge, ratio b/a==6.0, ¢/a=2.0 and Poisson’s ratio y==(.25. In
this case, thickness to length of the straight edge ratio, i.e., the thickness-width ratio e=#/( is taken

0.5 .
9rg =0 5h
*Eh 0.4 ->,=0.J3h
0.4 I 0.3 z=:0‘1h
Gpp  7° Ya=0.5h ) !
) i=-0. 1h
WL, g L i
: 50 3h T~ 0-2
. %\ y\'\ z=-(l‘. 3h
0.2 cho.zh 0.1 N —
mmrEm =
o1 S 0.3k T 0 —
z=w0. et et
A Sw = ol T —
P : I —
RN 2.0 23IZ.5;§ 4.0 5.0 6.0 0.2 N —
, I~
) e -0.3
Fig.2 Stress distribution of o,, (=0, e=h/d=1/4). 1.0 2.0 3.0 4.0 5.0 6.0
——> r/a
g 0.8 T Fig.4 Stress distribution of o,, (§=1r/8, e=h/d=1/4).
wn 0. 5h
.
0.5 0.5 0.5
. .
7=0. 3h W A £
0.5 L ]; 0.4 // hoo /
0.3 - I
0.4 7=0. 1k // =1/4 0.
/ ;”_ \ 0.2 e=1/4
0.2 [ ~e=712 0.2 f
/ 2=-0.1h \ o1 /4 /< /10
0.1 :
i —-0.3h 2 // } ]
o1 N 1 0.2 0.3 0.4 0 }
X & /‘3:10‘5 \'\ Lo _71 ey e, ., 0.1 0 2/ 0.4 0.5 ois 0.7
0 ) J ¥
— e 0.2 —> {000/0ET>
-0.1 4 - s // 0.2 /
—_—
-0.2 v Lo.g 03
0.4
-0.3 0.
y Fig.5 Stress distribution of e
1.0 2.0 3.0 4.0 5.0 6.0
s/ orr (6=0, 7/0=3.5, Fig.6 Stress distribution of g4y
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as 1/4 to 1/12. Numerical results were obtained by taking the first 14 terms for ¢ in an odd number and 68
terms for g in the series. Fig. 2 shows the distribution of normal stress ¢,, along the r-direction on §=0,
in the case of e=1/4. The value on the top face of the plate, i.e., z=0.5 h shows slight discontinuity at
the boundaries of the prescribed surface temperature, i.e., r/a=2.5 and r/a=4.5. The very small
values are caused on the inner and outer edges, i.e., r/a=1.0 and 7/a=6.0, because the boundary
condition is prescribed by the stress-resultant and the stress-couple instead of the component of stress
orr. The value on the bottom face of the plate, i.e., z=—0.5h is comparatively small in positive,
Fig. 3 shows the distribution of normal stress g, along the r-direction on §==0, in the case of e=1/4. The
value on z=0.5 h shows remarkable discontinuity at r/a=2.5 and r/a=4.5. The value of gy, is about
two times as large as compared to that of g,,. Furthermore, all the values on r/a=6.0 are positive, and
the value on 2=—0(.5  is very small in positive or negative. Fig. 4 shows the distribution of shearing
stress g, along the r-direction on §=7/8, in the case of e=1/4. The valuesnear z=0.5h on r/a=1.0
are very large in positive, and the value on z==—0(.5 A is comparatively small in negative, Fig.5 shows the
distribution of ¢,, along the z-direction at §=0 and r/q@=23.5. The difference of the values between e=
1/4 and ¢=1/12 on the middle plane, i.e., at z=0 is 14.8 %. Though the difference of the
thickness-width ratios is very large, that of the values of 4,, is small. The result demonstrates that the
influence of the thickness-width ratio on ¢,, is very little. Fig. 6 shows the distribution of s, along the
z-direction at §=( and r/g=3.5. The difference of the values between e=1/4 and e=1/12 at z=( is
14.5 %, and the influence of the thickness-width ratio on gy, is similar to g,,. Fig. 7 shows the distribution
of shearing stress ¢,, along the z-direction at §=( and 7 /g=1. 0. The difference of the values between e
=1/4 and e=1/12 at z=0is 29.7 %. The result demonstrates that the influence of the thickness-width
ratio on o, is more than those on g, and gge. Fig. 8 shows the shape of deformation on §=0, in the case of
e=1/4. The value of displacement y, becomes the largest one at z/h=0.5 and r/a=3.5. The value of
displacement 1, becomes the largest one at z/h=0.5 and 7/a=6.0. The warp of the cross section
becomes the smallest value near r/g=3.5 and grows as r /g approaches 6.0.

6. CONCLUSIONS

An analysis for thermal-bending stresses in an annular sector plate prescribed to surface temperatures
on the top and bottom faces and on the simply supported edges was carried out by the theory of moderately
thick plates. From the results of the numerical calculations for the plate, the following conclusions may be
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drawn :

(1
surfa
(2
surfa

(3

) The value of normal stress o¢,, shows slight discontinuity at the boundaries of the prescribed
ce temperature on the top face.

) The value of normal stress gy, shows remarkable discontinuity at the boundaries of the prescribed
ce temperature on the top face and is about two times as large as compared to that of ¢,,.

}  The value of shearing stress g,, becomes very large in positive near the top of the inner edge and

becomes comparatively small in negative on the bottom face.

(4
(5
(6

) The influence of the thickness-width ratio on g, and g, are very little,
) The influence of the thickness-width ratio on shearing stress o, is more than those on ¢,, and gy,
) The value of displacement y, becomes the largest one on the top face, and the value of

displacement 7, becomes the largest one on the outer edge.
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