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NONLINEAR WAVES AND DYNAMIC PRESSURES
IN RECTANGULAR TUNED LIQUID DAMPER (TLD)
—— SIMULATION AND EXPERIMENTAL VERIFICATION ——

By Li Min SUN*  Yozo FUJINO** Benito M. PACHECO*** and Masahiko ISOBE***

9

Tuned Liquid Damper (TLD) utilizing the motion of shallow liquid for absorbing and
dissipating the vibrational energy is studied with emphasis on liquid motion. A
mathematical model based on the nonlinear shallow water wave theory is presented to
describe the liquid motion in a rectangular tank. Liquid damping is evaluated semi-
analytically and is included in the formulation, Mechanical properties of TLD are also
experimentally investigated using the shaking table, It is found that the liquid motion in
TLD is strongly nonlinear and reveals a hardening-spring property even under small
excitation, Good agreements between the simulation and the experimental results are
shown when no breaking wave occurs, The model presented in this study is expected to
serve as a tool for TLD design.

Keywords * tuned liquid damper, rectangular tank, horizontal motion, shallow wave

theory, nonlinear waves, liquid damping, experiment, base shear force

1. INTRODUCTION

A new type of passive mechanical damper, named Tuned Liquid Damper (TLD)", is a'tank of a certain
geometry partially filled with shallow liquid and relies on the motion of liquid to dampen structural
vibration (Fig.1).

Dampers with liquid motion have been used in space satellites? and marine vessels?. Modi and Welt?-9
carried out extensive parametric study on the nutation damper (annular tank) which is conceptually the
same as TLD, and showed that it is very effective as a damper for civil engineering structures. They also
investigated the energy dissipation mechanism using a nonlinear potential flow model in conjunction with
boundary layer correction, Recently, Fujino, et al.® experimentally studied the Tuned Liquid Damper
using circular tanks, in which study it was found that shallow liquid motion in a rigid tank contributed
significant damping to structure with long period of oscillation. Sato” also studied circular TLD. Actual
installations of circular TLD to tower structures in Japan are reported?; the performance of TLD was
found satisfactory. Studies on rectangular TLD are also available” ' but an adequate mathematical model
for rectangular TLD is still lacking.

A rectangular tank partially filled with water is employed as Tuned Liquid Damper in this study, To
simulate the liquid motion in the tank, a mathematical model based on the nonlinear shallow water wave
theory is developed. The analytical procedure is similar to the one proposed by Shimizu and Hayama'”.
They predicted the nonlinear sloshing of shallow liquid in rectangular storage tanks, In their study, the
liquid damping was evaluated empirically from the free-oscillation experiment, whereas, the present study
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Fig.1 Tuned Liquid Damper (TLD) installation on a Fig.2 Definition sketch for liquid motion
building and a tower. Figures are not to scale. in rectangular tank.

treats semi-analytically the liquid damping due to the friction at the solid boundary and the contamination at
the liquid free surface. Liquid damping has a significant effect on the liquid motion near resonance.

The model thus developed can predict the liquid free surface elevation and the total horizontal pressure
force due to liquid motion in the tank subjected to horizontal excitation, This model shall treat transient
motion as well, Detailed experiment of TLD using the shaking table is also conducted and is used to assess
the validity of the model.

2. THEORETICAL ANALYSIS OF NONLINEAR WAVE MOTION IN RECTANGULAR
TANK

The rigid rectangular tank has a length 2 ¢ and the mean liquid depth is 4. The origin of the Cartesian
coordinate system (o-x-z) which is attached to the tank, is at the center of the mean liquid surface
(Fig.2). A translational motion %, (acceleration) is imposed on the tank in the x-direction. The following
treatment is restricted to long-period oscillation and continuous surface condition (no wave breaking) . The
liquid particle motion is assumed to develop only in x-z plane. It is also assumed that liquid is
incompressible and irrotational, and that the pressure p, at the liquid free surface is constant.

(1) Derivation of basic equations ‘

The full equations governing the problem are the continuity equation

and the equations of motion (the two-dimensional Navier Stokes equations), in which y and w are velocity
components of liquid in the x and z-direction, respectively. For liquid having relatively small viscosity,
the effect of internal friction in the fluid is appreciable only in the boundary layer near the solid boundary
(Fig. 3) . From this hypothesis, the liquid flow outside the boundary layer can be treated as potential flow,
and the equations of motion reduce to

Su au 8u _lop . (B B ) 5 7] eeeen e e
Situg twgs= o o e (—(h—hy)=2<7) (2)
ow 8w ow__19p B Y 5 Yoot
ot Tl W = 5 9 (—(h—h)=z=7) (3)

where g denotes the gravitational acceleration, p the fluid mass density, p the pressure, and y the surface
elevation, The equations of motion for the boundary layer are described by

@_u_ 8u au___l_@g 'u .
T T T v T o (

“héZé“(h“hb)) ................................. (4)
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where £, is the thickness of the boundary layer and is less than several percent of the representative length
o in this study”, p denotes the kinematic viscosity of liquid.
The corresponding boundary conditions are

u=0, on the wall (x:ia) ............................................................ (6)
w:O, at the bottom (z: — h) ........................................................ ( 7 )
Dn_on,  on ) e e
Di= ot +u o at the free surface (z=7) (8)
p=py=const. at the free surface (z= ) e ( 9)

The velocity potential function, @, can be defined for the irrotational part of the fluid. As an analogy to
the linear wave theory, @ is assumed as'

B=TF (1, £) COSNUE(AA Z)).-vvreremreermreemmmeeeie ettt (10)

The vertical velocity component w and its differentials can be expressed in terms of the horizontal
velocity ¢ with the aid of Eq. (10). Governing equations are integrated (Fig. 4)'? with respect to z from
the bottom to the free surface and the basic equations are derived as follows :

O 4 g B ()
S +he S5 TE=0, (11)

) g2 dnog__ v [TMSwW o
é—?u(ﬁ)‘F(l'—Tﬁ) u(’])a u(n)+ 8r+gh op 5 o’ ox  (+h) [h Y dz—%s, (12)

where g=tanh(kh)/(kh), ¢=tanh(k (h-+n)) /tanh(kh), Ty=tanh(k(h-+7)). u(y) is the horizontal
velocity component at the free surface and % is the wave number. Eq. (11) is the integral of the continuity
equation, and Eq. (12) has been derived from the equations of motion by eliminating the pressure D.

These basic equations (Eqgs. (11) and (12)) are nonlinear primarily due to the free surface boundary
condition (Eq. (8)). The first term of right hand side in Eq. (12) comes from the bottom boundary layer,
which is the integral of second term of right hand side of the equation of motion (Eq. (4)) inside the
boundary layer and is interpreted as the dissipation term.

(2) Damping of liquid motion

In this formulation, it is assumed that the shear stress outside the boundary layer is negligibly small,
and the dissipation term in Eq. (12) is therefore expressed as

v O U e
(7+h) [h o2 BT 0 ™ o 13)
where z,= py(?ﬁ) o is the bottom shear stress,

From the linear and laminar boundary layer theory" and considering sinusoidal excitation, z,is /4 out
of phase with the horizontal velocity component of liquid just outside the boundary layer, 1,. Using the
concept of equivalence of energy loss per cycle, the 7, can be expressed as
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1
D=0
in which 1/4/2 is an equivalence factor due to the phase lag /4, and w is the angular frequency of the
liquid motion. In the present study, since the liquid depth is shallow and the liquid motion is shallow wave,
Eq. (10) gives nearly w,=u(5). Thus,

tb:"?l_z“/w—” Q). <o ee e (15)

However, the wave motion is nonlinear around the resonance, even for small amplitude excitation as will be
shown later, Because of the nonlinear property, the effective phase lag between 4, and 7, is expected to be
smaller than /4, and Eq. (15) underestimates the liquid damping even when the boundary layer is
laminar, Also, when the excitation amplitude increases and the boundary layer becomes turbulent, Eq.
(15) is not anymore rigorous. An attempt is made here to develop an alternate expression.

According to Jonsson’s study', the liquid motion inside the boundary layer depends on the Reynolds
number, Re= (squared amplitude of u,)/(wy). This is approximated here as

wy
where U (7) is the amplitude of 4 (7) at x=0. Re=1.26X10"is a criterion which defines the boundary
layer to be laminar or turbulent. In the turbulent case, the bottom shear stress can be assumed as

,bzg Fol W) (), +oereeveeeememmmemmtee et a7
in which f, is the wave friction factor and is expressed in Ref.14) as
1 1
—=—t2]0 ———\=lo R@)— 155, «rerreermrremeetnsent ettt ettt 18
WA 910<4ﬁ;> g(Re) (18)

In the present problem, the Re is in the range of 3XX10® to 4X10*, where the value of U (5) used is
computed by the numerical simulation described in the following section. For most cases, Re is larger than
1.26X10*, indicating that the liquid motion inside the boundary layer is turbulent. The Reynolds numbers
are not much larger than 1. 26X10%, however. For simplicity, the following equation for laminar boundary
layer is employed here, and is to be used in conjunction with Eq. (17).

fb=2/ﬁ?=21/517/U(7)). ......................................................................................... (19)
The value of f, is 1.16X10* by Eq. (18) and is 1.00X10* by Eq. (19) when Re=4X10* and the
underestimate by Eq. (19) is about 10 %.

U () in Eq. (19) can be eliminated by linearizing Eq. (17). Consider the bottom shear stress r, in the
form

tb=§ o o () eeeemeeerememmemm e e (20)

where the parameter C, is determined by equating the energy loss per cycle by Eq. (17) to that by Eq.
(20). The energy loss per cycle is

where T=2 z/w, is the period of liquid motion, Substituting Eq. (17) and Eq. (20) into Eq. (21) in turn
and equating the results, we obtain

8
Ce—‘_"?—’? U(U)' .......................................................................................................... (22)
Thus,
Tb:p%m Q) +oereeee e @3)

where the factor 8/(3 ) replaces the factor 1/4/2 in Eq. (15). The value of 7, from Eq. (23) is a little '
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larger than that from Eq. (15). In the present study, conéidering the range of Reynolds number Re, Eq.
(23) is employed to estimate the liquid damping. It should be noted that ¢, expressed by Eq. (20) with Eq.
(22) is also applicable to a turbulent boundary layer by using Eq. (18).

In the derivation thus far, only the damping effect at the bottom boundary layer has been considered.
Vandorn® reported, however, that the damping of liquid in a tank observed from experiment was larger
than that computed for the bottom boundary layer. Miles® ™" also studied the damping of surface wave in
closed basin and pointed out that the damping of liquid motion appears to be due to viscous dissipation at the
solid boundary layer, viscous dissipation at the surface in consequence of surface contamination, and
capillary hysteresis associated with the meniscus surrounding the free surface, Mei® stressed that the
meniscus plays a crucial role and postulated a simple physical model to describe the damping due to the
meniscus. This effect may dominate boundary-layer damping for a hydrophobic wall ; but it is small for a
clean, hydrophilic wall such as glass' or acrylic plate like the material of the TLD tank used in the present
study. )

Miles suggested that the dissipation term could be multiplied by (1-!—1 (2 h/b)+8S), where b is the width
of the tank, to account for the dissipation due to side wall friction and liquid surface contamination. Miles
assumed that the friction of side wall boundary layer was the same as that of bottom boundary layer, 2 /b
is an equivalent coefficient of the damping effect per unit width due to the side wall boundary layer'®-1?, §
is a “surface contamination” factor which can vary between () and 2. A value of unity will be used in this
study, which corresponds to the establishment of “the fully contaminated surface”®,

The dissipation term with the correction of the effects of side wall and free surface is replaced by

Y Dt ) e
(U’*‘h) .[h oz* dz= /\u(n), (24)
where
e B o (9 B /) ). v eventeee ettt
S Vov (1+2h/b)+S). (25)

Shimizu and Hayama'” determined the value of A by a free oscillation experiment. For small liquid depth
ratio ¢ (=h/a, the ratio of liquid depth to half-length of the tank) of (0.1, the value of A from their
experiment is (0. 42 s/cm. On the other hand, the value of A computed assuming the first natural sloshing
frequency and neglecting 7 in Eq. (25), is 0.38 s/cm. This indicates that Eq. (25) can predict well the
damping of shallow liquid motion.

(3) Numerical simulation method

The basic equations (Eqgs. (11) and (12)) are discretized with respect to x into difference equations
with staggered mesh and are solved numerically. The free surface waves originally possess a dispersion
character, which is replaced by the dispersion relation produced by the discretization of the basic
equations choosing a suitable division number 7. The nondimensionalized wave number k is taken as /2,
since the frequency around the first natural frequency is of concern. In this paper, 7 is calculated using'’

n=rx/(2 arccos (//(tanh (ze))/2 tanh (7e/2)))). (e=h/@) =+ rerreeeemeermmni. (26)
After determining the division number 7 and with the corresponding boundary condition
u(ﬂ)_-—_o’ (x:ia) .................................................................................................. (27)

the difference basic equations are solved by Runge-Kutta-Gill method, and u(7) and 7 can be computed,
(4) Base shear force of the tank due to liquid motion
Considering hydrostatic pressure and vertical acceleration effect, the pressure p can be expressed as
1 = g(r— z)— L (2'uln) _ 2'u
o PmPI)=9(n=2)— < oxdt  oxot >
If 7 is designated, the integration of Eq. (25) with respect to z yields the horizontal total pressure P.

Neglecting the frictions of side wall and bottom, the base shear force of the tank due to liquid motion is
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F=pP,— Po, ............................................................................................................. (29)
where P, and P, are the horizontal total pressures acting on the end walls of the tank due to liquid motion
and are functions of liquid free surface elevation at the end wall (Fig.5).

3. EXPERIMENT AND COMPARISON WITH NUMERICAL SIMULATION

(1) Experimental apparatus and procedure

In order to observe the liquid motion in TLD and to assess the validity of the model, a forced excitation
experiment was carried out. A TLD tank was excited horizontally by a shaking table (Fig.6).
capacitance wave gage was used to measure liquid surface elevation near the end wall of the tank, For
measuring base shear force of the TLD tank, two loadcells 1.1 and L.2 were used to cancel the inertia force
due to the TLD tank itself. Note that }, in Fig. 6 is a mass equivalent to the mass of the tank. Output
L1-L2 is the base shear force of TLD purely due to liquid motion,

A rectangular tank with 2 ¢=59. 0 cm in length (excitation direction) and 5=33.5 cm in width, being
made of (). 5 cm thick acrylic platesowas used (Fig.7). The TLD tank is partially filled with plain water of
h=3.0 cm depth, for which the liquid depth ratio is e=h/a=0. 1. From the linear wave theory, the first
mode frequency of liquid sloshing motion, fy,

fo= Zl;z' ( g tanh ( mh >> S ABG HZ, v rvevrrrrerreeenr e (30)
The natural period is T,=2. 18 sec, and is regarded as a typical value in tall towers, The mass of water
My is 5.93 kg.

In the experiment, the TLD tank was initially quiescent and was excited sinusoidally with constant
amplitude, For six amplitudes of displacement of shaking table, A=0.1cm, 0.25cm, 0.5¢cm, 1.0 cm,
2.0cm and 4.0 cm, the excitation frequency f was varied in the range of 0.8<[f/fw<1.5. The
experimental cases are shown in Table 1.

The quantities measured in the experiment are ; 1) displacement of shaking table, x.;2) liquid free
surface elevation near the end wall, 7,;and 3) base shear force of TLD model due to liquid motion, F.
The analog signals are converted to digital ones, and they are processed by a micro-computer,

(2) Experimental results

Fig. 8 shows sample steady-state time histories of displacement of shaking table, x;liquid free surface
elevation, 7,; and base shear force, F'. The wave forms of these time histories vary as either the
excitation frequency or the base amplitude varies. When the wave amplitude is small (Fig.8(a)), the time
histories of 7, and F are in the sinusoidal form. For large wave amplitude, however, the time histories
become nonsinusoidal (Fig.8(b), (¢), and (d)). At a certain excitation frequency, higher frequency

WAVE GAGE
[ 2 Troaocert] 11|
" DISPL. METER s " St -
o ! _ : ‘
Pn SHAKING TABLE
Po J
g
F=P,~P, !
> L1-L2
Fig.5 Base shear force of tank due to Xg VF o
liquid motion. Fig.6 The experimental apparatus,
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SIDE WALL , Table 1 The Experimental Cases.
END WALL
CASE INPUT RANGE OF
LABEL AMPLITUDE . FREQ. RATIO
Case AO1 A=0.lcm 0.90—1.33
Case A025 A=0.25cm 0.80—1.30
. Case A0S A=0.5cm 0.80~—1.56
N e3.0cn Case A10 A=1.0cn 0.80—1.52
- Case A20 A=2.0cnm 0.80—1.52
" 22=59.0
b=33.5cm i . % Case A40 A=4. Ocn 0.80—1.53
VIBRATION DIRECTION
B
Fig.7 TLD tank,
6.0 4.0 £(s) 0.0 4.0 t(s) 0.0 4.0 t(s) 0.0 4.0 t(s) 0.0 4.0 t(s)
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CASE AO1 £/fw=0.90 CASE A0l f/fw=1.06 CASE A0S £/fw=1.06
(a) (b) (e) (d) (e)

O O

Fig.8 Sample time histories of displacement of shaking table, x,, liquid surface elevation near the end wall, 7,,
and base shear force, F.

response are observed (for example, Fig.8(c)). This can be attributed to nonlinearity of the liguid
motion, namely internal resonance®, For alarger excitation, wave form is distorted apparently because of
wave breaking (Fig.8(e)).

Several nondimensionalized parameters are defined as follows for the presentation of results:

During one cycle of liquid motion, liquid free surface elevation, 7,, has a maximum value 7,, (wave
crest) and a minimum value 7,,, (wave trough) (Fig. 8). The nondimensionalized parameters 7.y and 7min
are defined as

Toax=Tmax/ P ; AT O 31)
where p is the liquid depth.

Under the sinusoidal excitation, base shear force F () has the same amplitude F,, in either positive or
negative direction (Fig.8). The maximum inertia force of liquid as a solid mass under the sinusoidal
excitation is used to nondimensionalize F,, :

T == Fon/ (Mg @A) e veeeeeessemmenttete ettt et (32)

The shaking table inputs energy into the TLD system and the TLD itself dissipates energy due to liquid
damping. When the TLD is at steady state, it means that in each cycle the energy input into the TLD
system equals the energy dissipation inside the TLD. The energy input into the TLD can be calculated
from the base shear force F and the displacement of shaking table x,, which are both functions of time.
Thus the energy dissipation per cycle, AE, can be calculated by

AE:/:”F(t) dl‘s(t), ............................................................................................. ‘ (33)

where T is the period of excitation,

Fig. 9 shows examples of the force-displacement diagrams in one cycle, The maximum base shear force
does not increase in proportion with the base amplitude 4. The energy dissipation per cycle can be
expressed by the area of F-x, loop presented in Fig, 9. The F-x, diagram is not ellipsoid (A=0.5 c¢m in
Fig. 9) because F is not sinusoidal (Fig. 8(c)). When the amplitude 4 is 2. 0 cm, the F-x, loop is close to
a rectangular shape, indicating that the system is of a friction-controlled type apparently due to the
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occurrence of wave breaking. 0.6 T T T T . :
. . . . e #f) ~omemh=2, Ocm
AE is nondimensionalized as follows : S S 4=0. Sen 1
, 1 —=4=0. len
AE =AE/<—2— Mw(wA)2>. ....................... (34) - 1
S s (em)
It should be noted that 1/2 Mw(wA)® is not the energy \
of liquid motion but just a reference value. 3
(3) Comparison and discussion ~—— 7
For numerical simulation, the motion of TLD is -0 . ! . L . .

. o -0 -5 -L0 0.5 0 05 L0 L5 20
assumed to be quiescent at ¢=(. The time increment

was 1/60 of the excitation period of shaking table.
The computation was carried on until 80 periods,

Fig.9 Diagrams between base shear force F and displace-
ment of shaking table xs (f/fs=1.06).

where liquid motion was regarded to be already at
steady state,

The nondimensionalized quantities, 7jax, 7min (Surface elevation), F7, (maximum base shear force) and
AE’ (energy loss in TLD per cycle) are plotted in Fig. 10 for the frequency range of 0. 8< f/ fy<1.3. In
the experiment, when the input amplitude was larger than 0.5 cm (Cases A 10, A 20 and A 40), splash
near the end wall and turbulent wave on the free surface were observed, indicating that breaking wave
already occurred. Hence, the computations were made only for Cases AQ1, A(025, AQ05 and A 10.

The comparisons of nonlinear simulations using Eq. (15) (broken line ------ ) and Eq. (23) (solid line
——)are shown in Figs, 10(a)-(c). It is found that the difference is small. For very small Re where the
wave motion is linear, Eq. (15) should be more suitable and more reasonable. However, for the discussion
of the present cases, we use Eq. (23). For other cases where Re is much larger than 1.26X10* the
damping may be underestimated even by Eq. (23).

For the relatively small amplitude excitation (Cases A 01, A (025 and A 05), the simulation can predict
well the experimental results (9jax, 7min, Fn and AE’). For Case A10 (Fig.10(d)), however, the
simulation results do not agree with the experimental ones anymore. The results indicate that the model
used here is valid as far as the continuous free surface condition is satisfied, i.e., no wave breaking.

The experiments and the simulations indicate that the liquid motion possesses hardening-type
nonlinearity??, For example, 7/ax jumps suddenly at a certain frequency ratio. This jump frequency ratio
is larger than 1. 00, confirming that the nonlinearity of liquid motion is hardening-spring type. As the input
amplitude increases, the jump frequency ratio becomes higher, indicating that the nonlinearity becomes
stronger. The jump frequency ratio for Case A 01 (4=1.0 cm) is about 1.1 and increases to about 1. 4 for
Case A 20 (A=2.0 cm). When input amplitude is 4.0 cm (Case A 40) (Fig.10(f)), 7max does not jump
before f/fy,=1.5. Local peaks of pmax (or of F';, or AE) correspond to appearance of higher modes as
seen for example in Fig.8(c) for Case A (5.

Fig. 11 presents sample time histories of surface elevation, 7, and base shear force, F, for Case
A 025. The response forms vary as the excitation frequency changes, due to nonlinearity of the liquid
motions as discussed above. For example, there are two waves in one cycle at f/ f,=1.001, and three
waves can be observed at f/f,=0.951. Numerical simulations corresponding to Case A (25 are also
shown in Fig. 11 for comparison. Good agreement can be seen even in the transient interval. The theory
used here is satisfactory in accounting for even the nonlinearity which induces higher modes of liquid
motion,

Fig. 12 shows examples of force-displacement diagrams, also for Case A (25. One can find that the
simulation results agree well with the experiment. The model can predict the phase lag between the
excitation displacement and the base shear force.

For large excitation amplitude (Fig. 10 (f), Case A 40), F, and AE’ are almost flat over a wide range of
frequency, implying that TLD becomes a highly-damped system. The efficiency of TLD as a damper may
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Fig.10 Frequency responses of 7may and nmn (Eq. 31), Fn(Eq.32), and AE’(Eq. 34)
(—— Theory using Eq. (23);------ Theory using Eq. (15))

be decreased when the vibration amplitude of the structure with TLD is so large that wave breaking
occurs. Similarly, a linear tuned mass damper loses its efficiency when the damping in TMD is too high.
On the other hand, it should be understood from the flatness of the frequency-response curve that the’
tuning of TLD to the natural frequency of the structure is not so important for large amplitude excitation,
These trends at large amplitude are consistent with the findings obtained in the free-oscillation
experiment? .

4. CONCLUDING REMARKS

The liquid motion in the TLD tank has been investigated both by experiment and by theoretical analysis.
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Fig.11 The time histories of 7, and F (Case A (25).

The mathematical model developed in this study has been found satisfactory when the oscillation amplitude
of TLD is not too large and no breaking wave occurs yet. In the range of the present study, for which liquid
depth is rather shallow, the liquid motion possesses a strong nonlinearity of hardening-spring type. The
nonlinearity of liquid motion also induces the higher modes through internal resonance. These higher
modes also can be simulated by the present model,

Mild turbulence in the boundary layer has been considered in theoretically estimating the liquid damping.
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Incorporating this damping term, the model has proved to be capable of simulating even the transient
motion, Although there still is limitation to the applicability, the model can be conveniently used to study
interaction of TLD and structure® for the purpose of optimizing the TLD design.

The liquid motion is more complicated when breaking wave occurs. The present model does not account
for this, and development of a model which includes the breaking wave effect remains for future study. An
engineering approach is given in Ref. 23).
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