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A NEW FORMULA TO PREDICT THE ULTIMATE SHEAR
STRENGTH OF A PLATE GIRDER

By Shigeru KURANISHI*, Masatoshi NAKAZAWA** and Tetsuo IWAKUMA***

In this paper, a new formula to predict the ultimate shear strength of a plate girder is
proposed on the basis of the numerical analysis. The analysis of an end panel isolated from
the whole structure can describe the stress distribution in the shear panel sufficiently. A
stress distribution model in the ultimate state is constructed by generalization of the
numerical results. In order to show its validity, the predicted strength by the proposed
formula is compared with those by Basler and Rockey et al., and also with the available
experimental data.
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1. INTRODUCTION

On the ultimate shear strength of a plate girder, many researchers have been studying the formation of
the tension field and the post-buckling strength by the experimental or theoretical approaches?¥, These
studies have shown that the strength of a shear panel is generally affected by the shear elastic buckling
strength, the post-buckling strength due to the formation of the tension field, and the stiffness
contribution by the flange plates and stiffeners surrounding the web plate.

Basler” did not include the anchor action by the flanges, and assumed the constant tensile stress in a
band in addition to the uniform shearing stress at the buckling load. This band is formed obliquely in the
web plate between the transverse stiffeners. The ultimate state is reached when the yield condition is
satisfied by the uniform shearing stress and tensile stress in this band. It was pointed out firstly by
Gaylord? and later by Fujii® that the original model of Basler does not satisfy the equilibrium condition of
forces. The modified Basler’s equation corrected is also presented but yields the inferior accuracy.
Hasegawa, Nishino and Okumura® introduced the flange force in order to satisfy the equilibrium condition
of a whole system, and pointed out that the final expression itself is not necessary to be modified. On the
other hand, Rockey and Skaloud® and Porter, Rockey and Evans® assumed the stress distribution taking
account of the anchor action by the flanges which had been observed in their experiments. In Ref.7) by
Rockey, Evans and Porter, the inclination of the tension field band is approximately two thirds of that of
the diagonal of the web plate, and its width depends on the location of a plastic hinge in the flange. In these
proposed collapse models, the stress field assumed is discontinuous across the sides of the tension field

* Member of JSCE, Dr. Eng., Professor, Department of Civil Engineering, Tohoku University (Aoba Sendai 980 JAPAN).
** Member of JSCE, M. Eng., Research Associate, Department of Civil Engineering, Tohoku University.
*¥% Member of JSCE, Ph. D., Associate Professor, Department of Civil Engineering, Tohoku University.

239s



70 S, KuranisHi, M, NaKAzZAawA and T, IwaRUMA

band, and the inclination of the tensile principal direction is constant in the tension field. Moreover, the
total shear force varies with the location of the cross section on which it is calculated in the model of
Ref.7), which will be henceforth called Rockey et al.’s model.

Recently Marsh'® proposed a new simple formula in terms of the pure shear elastic buckling stress on the
basis of his stress distribution model for a web plate subjected to pure shear forces. However, in the
similar manner as Rockey et al. have done, the plastic hinges in the flanges are also assumed to finally
cause the panel to fail. Thus the ultimate shear strength is calculated as the total resisting capacities of the
web and flanges.

Although there are proposed many ideas with respect to the configuration of the tension field and/or the
collapse model, no widely accepted shear strength formula is established yet. A few studies® have been
made by the numerical approach, but their purposes are not directly related to the proposal of the design
formula.

In this paper, the stress distribution of the panel in the ultimate state is investigated by the
elastic-plastic finite element analysis®, A stress distribution model is derived from examination of the
stress state in the ultimate state, and a new formula to predict the shear strength is proposed. Then, the
ultimate strength given by this formula is compared with that by the numerical analysis. Finally, the
correlation analysis is carried out between the predicted ultimate strength, those by Basler or Rockey et
al. and the experiments,

2. CHARACTERISTICS OF TENSION FIELD AND STRESS DISTRIBUTION

In general, the stress state of the shear panel is almost uniform and in pure shear before buckling, but
after that, the tensile stresses in the diagonal direction of the web plate becomes significant, and then the
tension field is formed. The numerical study of the Model ] in Ref. 13) deals with a web plate with the
upper and lower flanges connected. The transverse stiffener sides of the panel are simply supported in the
out-of-plane direction and the in-plane longitudinal displacement is fixed along these sides. The results
show that the inclination of the tension field band from the horizontal line becomes a little flatter than that
of the diagonal of the panel, The partial anchor action by the flanges is recognized unlike the assumption of
Basler, and the configuration of the tension field becomes rather similar to the one by Porter, Rockey and
Evans®. The yielded zones develop in a diagonally directed band and eventually lead to the formation of
collapse mechanism, but the plastic hinges do not appear in the flanges. The larger the aspect ratio ¢ of the
web plate becomes, the narrower the width of the tension field becomes, and the flatter the inclination of
the tensile principal direction becomes. When the depth-thickness ratio g is small, the ultimate state is
achieved relatively sooner after buckling by the full yielding, and the stress state is almost the same as that
in the buckled state ; i. e. in pure shear, Hence both the compressive and tensile stresses are large, and the
tension field does not develop so clearly as a band. When the flange rigidity is decreased, the anchor action
by the flanges becomes insignificant and the width of the tension field becomes narrower. In this case, the
inclination of the tensile principal stresses tends to increase to become almost parallel to the diagonal of
the panel,

Fig. 1 shows the stress distributions on the typical surfaces of a panel in the ultimate state when the
depth-thickness ratio #=250 and the aspect ratio ¢==0.75, 1.0 or 1.5, where r, denotes the shear yield
stress, The tensile stress g, on AA” takes relatively higher value in the neighborhood of the diagonal line
BB’, which indicates the formation of the tension field. On the contrary, the compressive stresses g, on
BB’ takes a lower value on the other diagonal line AA’. On the other hand, in the vicinity of the corner
region near the points B and B, both the compressive and tensile stresses become large owing to the gusset
plate action. Then, from Eq. (2-b), the shearing stress 7, on AB’ or A'B’ also becomes large in this
corner region near B’, The stress components ¢, and g, along these lines are smaller than Ty, and
especially the component g, is the smallest on all sides and will be set zero in the construction of a model
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Fig.1 Numerical evaluation of stresses on typical surfaces of the shear panel in the ultimate state.

later on,

The occurrence of plastic hinges in flanges and the apparent contribution of flange rigidity to the shear
strength have not been recognized in our numerical study. Therefore the ultimate shear strength will be
estimated by the resisting capacity of the plate only, and is given in terms of its elastic buckling strength.
However, the effect of the flange rigidity will be taken into account in evaluating the buckling strength.

3. A NEW FORMULA TO PREDICT THE ULTIMATE SHEAR STRENGTH

(1) A collapse model and a design formula :

A collapse model presented here takes into account the following several features referring the results
obtained by the numerical analysis carried out previously®®. The stress of each strip is assumed to be
uniform in the strip but the stress level may vary depending on the rigidity of the surrounding members
anchoring the strips. The ultimate state is achieved when some of the tension strips in the central part of
the panel begin to yield. At this state, the diagonal line BB’ is considered to begin to show significant
elongation but plastic hinges are not yet formed in the flanges. Moreover, considering the difficulty of
modelling of the stress distribution in the extreme state where plastic hinges are formed, it is
straightforward to take the collapse model of web plate separately. Pure shear loading along the four sides
of the web plate is adopted to estimate the genuine shear strength, Therefore, the influence of bending
moment on the panel is not directly included in this collapse model,

The collapse model is composed of two sets of obliquely placed strips being anchored to the surrounding
flexible members as shown in Fig, 2. Each set of strips directed parallel to each diagonal line AA" or BB is
mainly subjected to compression or tension respectively.

In order to express a stress distribution from this collapse model, we begin with the following two basic
assumptions for the stress components; (i ) the tension field forms parallel to the diagonal line BB’, and
the tensile stress ¢, is constant along the line parallel to BB’; i.e.

Gy [ (7= £) s ereerm e en ettt (1-a)
where £ and 7 are the normalized coordinates defined by é=x/q and 7=/ b respectively, while g and b
is the transverse stiffener spacing and the girder depth respectively; (i) the compressive stress g, in the
direction parallel to AA’ is also constant in each thin strip in the same direction ; i.e.

Ge=g(a &) erereerrr S P T PRERE (1-b)
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where the stress ¢, is reckoned positive if compressed in the direction of AA’. It should be noted that ¢, and
o are not the principal stresses but the contravariant components in the skew coordinate system. §, is the
angle of the diagonal line BB’ in Fig.2 and is related to the aspect ratio by tan §,=1/¢. Then the
coordinate transformation yields
0y — 0c ot oc
%=T+cos 26, 2sin 26,

For the purpose of constructing a stress distribution model only, we need not to specify other stress

-~ Oy tanﬁad, Toy™ 5 T e senneas ehetisesseieettencateecsonneons (2. a’ b)

components,

Consider that each thinly-sliced strip parallel to AA” is a pinned column subjected to the compression ¢,
and that all these strips are being buckled simultaneously in the ultimate state. The analogy of the Euler
buckling formula implies that g, is inversely proportional to the square of each strip length. Therefore, ¢,
takes its absolute minimum stress (o), along the line AA", and thus Eq. (1-b) can be expressed as

ve=g(n+ &)= (Ochun/(p+€P, for 0<p+é=i (3)

(Uc)min/{(n_1)+(§_1)}23 for 1§77+§<2
The minimum value (g.)mn depends on the aspect ratio o, and is determined from our numerical resulis
explained in the preceding section. The relationship obtained numerically is shown by the open and closed
circles in Fig.3, where r., denotes the shear buckling stress of a panel with its four edges simply
supported. One of the simple models can be obtained by approximating this relation as

(Uc)min_ s 2
- =2sin Hd—1+a2 (4)

The shear panel considered here is subjected to shear force along the vertical sides, where both ¢, and g,
are very small compared with z,, in the ultimate state, as mentioned in the preceding section, Therefore,
along the vertical sides, we set g, and g, zero. Hence follows from Eqs. (2-a) and (1)

O E=0)=0E=0)3 1@, ()= g(R)-eerveereerermomermemmaint e (5)
Therefore, using Eq. (3),
o _ (Uc)mm
o=f(p 5)_(77_5)2 ............. (6)
Substitution of Egs. (3), (4) and (6) into Eq. (2-b) yields
1 1 1
rxyz—z—rcrtangd{m.}_m], f0r0<,7+§§1 ....................................................... (7)
However, the yield condition requires Eq. (7) that
.~ tané,
o E=0)=" - oy et (8)
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Fig.2 Collapse model and stress distributions ¢, and ¢, in Fig.3 Relationship between the minimum compressive stress
the strips. . 0. and aspect ratio a.
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because ¢, and g, are zero along £=(). Hence the normalized distances s/b on the p-axis and s”/q on the
£-axis in which 7, equals 7, in Fig.2 are obtained from Eq. (8) as

Ter

s/b= tanﬁd B R P P P PP PP PP PP PRSP R PRI PP PRPPEEREE PR (9)

The width of the tension field band is thus given by 2 s cos @, or 2 8" siné,. Although the basic concept for
the collapse model is quite different, the gusset plate model has the similar idea for the occurrence of
yielding in the corner zone. In this case, the shape of this gixsset plate is also presented by Eq. (9) after
replacmg tand,;=1.0;1.e. ,is fixed to be /2. Furthermore, substitution of Egs. (5) and (2:b) into
g. (8) yields
:(ifl——z-gd) as.ciizg)éfy; i.e. G't(fz()) and Uc(§=0)§ Ty SIN 28z wrererrrerrrirerrenenees (10)
The final form of a stress distribution model is shown in Fig. 4.
The total shear force S along the vertical side is obtained by integrating Eq. (7) along £€=0 and
considering Eqgs. (8) and (9) as

1 2
S=1yst+bt or tanadfs/b (%) dn="bt{2y/Terzytants — rer tanbs

or can be rewritten in the non-dimensional form as

T S [ Ter Ter ‘ ‘ '
- z-ybt 2 ——T;—taned ._..TY taned .......................................................................... (11)

where  is the thickness of the web plate. Although this result depends on the choice of Eq. (4 ) as well as
the stress field of Eq. (1), the formula has the simple form and is easy to use. In the case of the square
web plate, this formula results in that by Marsh®?;

(2) Shear buckling strength and flange rigidity

For completion of the construction of a model, the shear buckling strength .. must be given
appropriately. The buckling strength is greatly affected by the boundary conditions, such as the rigidity of
flanges and vertical stiffeners, but the conditions specified by each researcher are quite different. For
instance, Basler” did not expect the contribution of flanges to the buckling strength, and thus all the four
edges were simply supported. Although Rockey and Skaloud® pointed out that the shear buckling strength
depends on the rigidity of the sided members, they employed the simply supported boundary condition for a
conservative estimate, because there had not existed enough experimental results yet. On the other hand,
Herzog® and Niinobe'® assumed that the web plate was clamped along the flange sides and simply supported

Txy(fzo)‘—“

Ty k/k;
tcrtaneld—v 2¢.& 2s.s.
ALY s 1,8

Q\,so

A \
. =T \\\
\.5///\{§§ %
\ .

Fig.5 Effect of flange rigidity on the shear buckling

Fig.4 Stress distributions in a shear collapse model. strength.
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along the vertical sides.

We here consider that the flange rigidity plays a more important role than the transverse stiffeners, and
again investigate the relationship between the shear elastic buckling strength and flange rigidity
numerically, In order to take into account only the stiffening effect by the flanges, the vertical edges are
simply supported. The mainly used two parameters are the same as those in Ref. 13), which are the
reduction ratios of the torsional rigidity ¥, and of the lateral flexural rigidity 7, of the flange, The initial
out-of-plane deflections are introduced by the doubly sinusoidal half wave and the maximum amplitude of it
is set one tenth of the thickness, and the buckling load is determined by the P— §? method®. Fig. 5 shows
the relationship between the flexural or torsional rigidity of flanges and the buckling coefficient k, which
is defined as 7.,=kr’E/{12(1—v*B%, where E and y are Young's modulus and Poisson’s ratio
respectively. In the ordinate, k is normalized by the pure shear buckling coefficient of a plate with four
edges simply supported, k;. The torsional rigidity of the flange seems to affect the shear buckling strength
more. In the case of @=(.75, the buckling coefficient is more or less equal to the one with two edges
simply supported and the others clamped. On the other hand, in the case of ¢=1.0 and 1.5, the buckling
coefficient becomes smaller as the flange rigidity decreases, and approaches to the one in which four edges
are simply supported. The same form by Moriwaki and Fujino® is employed to take into account
conservatively the influence of the aspect ratio ¢ on the buckling strength, and from Fig. 5, the buckling
stress 7, can be approximately given by

= rcna'l/s(().lo a70+0.86) ......................................................................................... (12)
where y, takes the smaller value of either unity or the reduction ratio of the torsional rigidity, and is
expressed as

bty

%=MIN (7, 1), %Em .......................................................................................... 13)

ba={t+V ' +8 pgbll/2, tn=p bt/bna

o=b,t,/bt=0.5, ¢=(b,~1)/2/1,=13.0
where b, and , are the width and thickness of the flange plate, while b, and f, are the corresponding
reference width and thickness in Ref. 13). p is the ratio of cross-sectional area of a flange plate to that of a
web, and ¢ is the width-thickness ratio of the free width of outstanding part of the flange plate. 7., is the
shear buckling stress of a plate with flange-sides clamped and vertical-sides simply supported. Let 7.,
denote the shear buckling stress of a plate all-sides simply supported. Then the corresponding buckling
coefficients %, and k, can be approximated respectively as'®

5.34/a*+4.00, ife<1.0

k1=k4.00/a2+5.34, othormiee T (14-a)
5.34/a’+6.55/a—13.714+14.10 2, ifax1.0
8.98+6.18/0"—2.88/¢a°, otherwise
As is clear from Fig.5, the conservative estimate of the shear buckling stress must not exceed ¢,, and

k=

must not be less than z,,,. Therefore the final form of the buckling strength which also includes the
inelastic effect can be given by
Ter=y/Ta MIIN(T5, 0.8 Tg)eeeresesesesesssesescesmmsche s ettt 15)
TZ:MIN(TI, Tcn), T1:MAX(Z'0, TCTI) ............................................. aeecaneeriettrtatsectasurennann (16)
where MAX ( , ) takes the value of the larger one of two arguments, From Egs. (11) and (12), the
effect of the flange rigidity can be included in the estimate of the ultimate shear strength.

4. DISCUSSION

(1) Variation of the present formula
In constructing a stress distribution model, we use an approximated relation Eq. (4 ) between ¢ and
(0c)min in Fig. 3. The left-hand side of this Eq. (4 ) must be 1. 0 when a=1. 0, because (g,) must be equal
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to 1y, when £—7 coordinates forms an orthogonal system. As is clear from the figure, it is possible to
draw any other such curves to fit those data to some extent, and the different forms of the formula may be
obtained. However Eq. (4) among those makes the final form of formula the simplest, which is very
important from the practical point of view. As an illustration, the discrepancy is shown here when a
straight line is chosen instead of Eq. (4). A linear relation based on the least square method is given by

(Uc)min —

cTr

The final formulae of the ultimate shear strength resulting from those two relations can be given by the
same expression as

—0.9832 (a—l)-l—l”—“"—].() (a—1)+1 ................................................................... (17)

Tuit Ter Ter
=2 Xx——x
Ty Ty Ty _
1/e=tan@,; when Eq.(4) is employed
= (a2+1)(2~—a) ............................................................ (18’3, b)

P , when Eq.(17) is employed

The difference between these two formulae is less than 8% in the range of the aspect ratio, (. 6<e<1.5,
as shown in Fig. 6. In the same range of o, the effect of the slope change in the linear relation Eq. (17) is
also examined, At most 10% change of the slope leads to the change of the value of ,;,/ 7, merely within
3.9%. Therefore, the total difference due to the change of functions may be at most about 12%. Although
Eq. (17) leads more conservative ultimate strength than the one by employing Eq. (4), it leads wider
scattering in the correlation test of later section 4, ( 5 ), and can not be applied in the range of ¢ >2.0.
Several formulations in the hyperbola type are also adopted, but the difference is more or less similar to
the one employing Eq. (4). Moreover, the replacement of z.,(4s.s.) by z., which includes the effect of
flange rigidity and inelastic buckling is also not affected significantly to the ultimate shear strength
obtained finally. Since the final results are not sensitive to the choice of the function, Eq. (4 ) is proposed
because of its simple form,

(2) Location-dependency of the definition of z,;

The final formula, Eq. (11), is defined by the total shear stresses integrated along the left- or
right-most vertical cross-section of the web plate, As seenin Eq. (7), the shear strength is a function of
the longitudinal coordinate ¢ of the panel. Consequently, the shear strength may vary according to the
cross-section on which it is calculated. Fig. 7 shows the configurations of the yielded band for the typical
case of §==250. The width of the yielded band is determined by the stress distributions of ¢, and z,, along
the line of given ¢ by using the von Mises’s yield condition. The shear stress distribution inside the yielded
band is interpolated linearly in the 7 directions along the line of certain £. Fig, 8 shows the variation of
total shear force in the direction of £, and the difference becomes largest at the mid-section of the panel (£
=().5). In some cases, smaller shear force is given but the difference is not so large, The relation between
the maximum difference of shear force calculated at the mid-section of the panel and the aspect ratio ¢ is
shown in Fig.9 for the typical values of the depth-thickness ratio 8. This figure indicates that the
difference is nearly constant for the larger value of o, and the largest difference becomes up to about 30%.
Compared with the numerical results, the model presented here is overestimating the shear stress level in
the yielded band at the mid-section of a panel.

One of the reasons for this overestimation should come from the presence of the vertical compressive
stress g, induced by the in-plane deformation as shown in Fig. 4 of Ref. 13) or Ref. 16). When this stress o,
is introduced, the width of the yielded band is expected to become wider and the shear stress level is
decreased, and it can explain the numerical results well. Therefore, in order to construct more suitable
stress distributions in the panel, it is necessary to introduce this stress component g, into the
formulations, However, these expressions will become more complex, and it is less meaningful for the
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practical calculation of the ultimate shear strength.

(3) Inclination of the tensile principal direction
Although the tension field is simply assumed to form parallel to the diagonal line BB’ in Fig. 2, the

tensile principal direction ¢ varies with the location inside the panel unlike other tension field models.

Basler? and Rockey et al.” assumed ¢ respectively as

s=tan"'Wa’+1—a), ¢:%gd=% tan—l(%{.) ........................................................... (19-a,b)

As is observed in the numerical simulation, this inclination becomes smaller than that of the diagonal at the
center of the panel, but it becomes nearly 45 degrees in the corner region owing to the gusset plate action,
Fig. 10 shows the angle of the tensile principal directions along the diagonal of a panel by the numerical
analysis, Basler’s model, Rockey et al.’s and the present model. In our model, the angle becomes the
smallest at the center of the panel, and the tensile principal direction is given in terms of the normalized

distance ¢ from the corner by

Ter 1
a 2
gtant— 2 for f=r<0-4)
p= a— o {2 ...................................................... (20)

%, for 08<t, 1—&)<E]

where
e ) x n
A Pohe /s - s
(°/6) M K=
15 (2) x, = (a?+1)(2-0)
2 20
s e
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/ / presented stress distributions,
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Fig.6 Difference between Eq. (18-a) and (18-b).
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St Fig.9 Difference of total shear force between the left or
Fig.8 Variation of total shear force in the right-most vertical surface and the mid-section of
longitudinal direction, the panel.
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&= /Z% :f: =%(s/b) ................................................................. @1

Other models in Eq. (19) yield slightly different angles, but they are smaller than the numerical one, Only
our model takes the effect of the depth-thickness ratio 8 and the flange rigidity into account through the
computation of 7., and reflects the numerical results fairly well. Since ¢ becomes smaller for the large
value of ¢ and 8 and for the small value of y,, Eq. (20) represents well the characteristics of ¢ as described
in the section 2.

(4) Effect of the bending moment

In our formula for a shear panel, the global stress state is assumed to be in pure shear. However, the
end panel of the actual plate girders is also subjected to the applied bending moment,

In order to examine the effect of the bending moment on the shear buckling strength, consider one end
panel subjected to both the shear and bending. The interaction formula for the combined buckling stress of
bending and shear is given by"?

(Iﬁ)z_F(i;i)z:l.o .................................................................................................. (22)

Ter Ocr

where 7., and g., are the buckling stresses under pure shear and pure bending respectively, while z¢, and
o are the corresponding reduced buckling stresses due to coupling. If the shear panel considered is the
end panel of a simply supported girder, the bending moment on one side M==aS, while it vanishes on the
other side. Let Z denote the section modulus of the girder, and M=2Z o7, at buckling. Since S=7<¢, b,
the stress state of a buckled panel can be approximated as

%T:%(T'CT BE) weeveeseseeneane e et (23)
Substituting Eq. (23) into Eq. (22) and solving for 7}, we obtain the reduced shear buckling stress with
the effect of the bending moment distribution as

%2{(2924.(%; ;’;)21"’/2 .................................................................................. (24)

where the tensile yield stress g,=+/3 1y is introduced. Therefore, after substitution of Eq. (15) into the
first term of the right-hand side of Eq. (24), the ultimate shear strength 7,;, can be obtained by replacing
.- in Eq. (11) by 7%, of Eq. (24). The buckling stress in pure bending o, of a plate with four edges simply
supported is given by'®

50° 50°
sors T8 BEI8A R D R w0r?  eNgeYETe e B 2

° hd 354° ° 2715
30° . _ 00y e
20° 26.6 20 . >
10° g=075 1 10° d=1.0
0° 0°

0.0 0.5 C 1.0 00 0.5 q 1.0
¢ o (E a=db
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LOO 9 . \\\ ,/,// : Q numerical
R = I
A AR Sy L by £q.20
10° 16.6°
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0000 05 1 0 et e @stimated by Rockey et al.(Eg.19.b)
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Fig.10 Tensile principal directions in the tension field.
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the numerical results are also shown. Two formulae differ in the ' ' ’
Fig.11 Comparison between the numerical

range of low buckling strength. This discrepancy stems from the results and formulae for shear

fact that Basler's formula does not include the effect of the resisting capacity.
depth-thickness ratio, and it tends to give higher strength for the
smaller value of t,/7y; i.e. for the larger value of £. As long as ¢ is less than 1.0, our formula gives
predictions closer to the numerical results. In the case of ¢ being 1.5, this-formula gives a little lower
strength than the numerical ones, but it is conservative estimation.

Fig. 12 shows the correlation of the strength formulae with the available experimental results® . In these

figures, n, mean, SD and CV denotes the number of samples, the mean value of the ratios of estimated
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Fig.12 Correlation of estimated ultimate shear strength by several formulae proposed with

the available experimental results.
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strength to the experimental one, the standard deviation and the coefficient of variation, respectively.
Basler’s formula represented in Fig. 12(a) gives the most correlative average value with the experimental
ones, Although the formula of Rockey et al. in Fig. 12(b) gives lower strength than the experimental ones
on an average, it shows the narrow variation. ‘

The original formula presented here in Fig, 12 (c) tends to estimate a little higher strength, especially in
the range of the high ultimate strength, The reason for this is that these experiments have been carried out
on the specimens which consist of several panels, and that the influence of the bending moment on the shear
strength can not neglected. Therefore, when the modification in the previous article to take the bending
moment into account is employed, the reduced shear buckling strength leads to the results in Fig. 12(d),
where mean=1.053, SD=0.185, CV=(.176, and can give the closer correlative strength and the
narrower variation. Note that the reduction of the buckling strength is not applied to the experimental
cases'” denoted by “G6” and “G7” Series by Basler, because these were carried out in primary shear,
Since this is rather a rough modification to include the effect of the bending moment in the underestimated
side, it is expected to consider the coupled strength more accurately,

5. CONCLUSION

The numerical simulation of the stress state in the tension field of a shear panel of plate girders is
utilized to construct a stress distribution model in the ultimate state., On the basis of very simple
assumptions of the stress field, a formula is proposed to predict the ultimate strength of a shear panel.
This formula is compared with Basler’s, and the correlation analysis of the proposed formulae including
the present formula with available experimental results is carried out. The conclusions obtained are
summarized as follows :

(1) The stress distribution is assumed in a simple form to express the ultimate strength in terms of
only the shear buckling stress. Although our stress distribution model becomes the same as that by Marsh
in the square web plate, the formula can apply in the wide range of mechanical parameters such as aspect
ratio and depth-thickness ratio, because the estimation of the shear buckling strength is improved to take
account of the contribution of the flange rigidity.

(2) Two types of relations between (o )nn and o using linear and trigonometric functions are
compared as an illustration to show that the choice of such a relation yields very small difference in the
range of (.6<a<1.5. The latter gives the simpler expression for the ultimate shear strength, and is
proposed here as a better formula from the practical point of view. The formula also depends on the
location where the total shear force is defined, and the largest difference occurs between the left- or
right-most vertical surface and the mid-section of the panel. The present formula gives always
conservative estimation than the one at the mid-section. Although the maximum difference becomes up to
about 30%, this is caused by the fact that this model overestimates the shear stress level than those
derived from the numerical analysis.

(3) Basler’s model yields the smaller inclination of the tensile principal direction at the center of a
panel than the one by the numerical analysis, which is smaller than that of the diagonal of a panel and
becomes the smallest at the center of the panel. The angle ¢ presented here can explicitly include the effect
of not only aspect ratio ¢ and depth-thickness ratio g but also flange rigidity, and can reflect the numerical
results fairly well.

(4) The estimated shear strength by our formula correlates closer with the numerical results, This
formula tends to yield higher strength than the experiments and other formulae, because the reduction of
the shear buckling strength due to the bending moment is not avoidable in the experiments. Therefore, the
simple calculation to take into account the effect of the bending moment improves this tendency to give the
closer correlative strength and the narrower variation, However, such an improvement simply may give an
underestimated approximation of the actual interactive strength between shear and bending moment in the
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case of the intermediate shear panels. Concerning to this coupled strength, the further investigation must
be required.
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