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SYSTEM MODAL IDENTIFICATION USING FREE
VIBRATION DATA

By N.C. MICKLEBOROUGH* and Yong Lin PI**

System modal identification for structures is a fundamental problem in structural
dynamics. The identified natural frequencies, damping ratios and mode shapes can be used
to better understand the behaviour of structures, modify structures, design control system
for structures, and can also be used in direct analysis of structures. A time domain method
for identification of modal parameters for a test structure using free vibration responses is
presented in this paper. The method in based on the multidimensional autoregressive model
of a vibrating structure. The method is efficient with computing time and has the advantage
of being able to identify very close natural frequencies and highly coupled modes. A
numerical example and a test case are used to illustrate the usefulness and results of the
method.
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1. INTRODUCTION

The identification of modal parameters characterizing the important vibration modes of a structure is a
basic problem in structural dynamics, Time domain modal parameter identification methods include Least
Squares Complex Exponential method?, Poly Reference Time Domain method?, Ibrahim Time Domain
(ITD) method?® and mathematical model method®. Among these methods, the ITD method has been
studied most intensively. The basic concept of ITD method is introduced as follows.

For a structure vibrating freely, the response at any time # can be expressed as

If there are n structural modes to be determined, the free responses will be used to construct the 2 X N
structure response matrices X and X such that

[0 )] -+ vveereeemme e e e (2)
and
K[ ByA GFL)] -+ eeeeemermermee et ettt (3)

N is the number of time data points which should be equal to or greater than 2 7.
From equation (1), the X and X can be written as

D o R ( 4 )
and

D Gl ) 27 R TR R T ( 5 )
where
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48 N.C. MICKLEBOROUGH and Y.L. P1

AN
A= P B ( 6 )
AN
and
AN
P= L P (7)
AN

are 21 XN and 2 nX2 n matrices,
By eliminating A from equations (4) and (5), an eigenvalue problem is obtained.

U = P, oot e ( 8 )
The matrix H must satisfy the equation
120 D G R R TR PP ( 9 )

Estimate of matrix H can be obtained by least square method using equation (9 ). The eigenvectors of the
matrix H are the eigenvectors of the structure and eigenvalues of the matrix H are related to the

eigenvalues of the structure by the equation
Ai0t

DT @ Tt (10)
In this paper an autoregressive (AR) model for a free vibrating structure is derived. At the same time, it

is proved that the matrix H has the form
0 I --0

H= 0 0 | (11)
Hs H_g_l > Hl

Therefore, only the lower parts of matrix H are required to be calculated. The derived AR model is used
to estimate the lower submatrix H,, H,-- and H, from which the modal parameters of the original
vibrating structure are identified.

2. BACKGROUND

Free vibration of a linear structural dynamic system of 7 degrees of freedom is described by the matrix
differential equation of motion

Mf(t)+ Cf(t)-FKé'(i):O ............................................................................................ (12)
where M, C and K are n)Xn mass, damping and stiffness matrices, respectively, £(2), &(i) and f(t) are
nX1 vectors of response displacement, velocity and acceleration, respectively.
The eigenvalue problem associated with equation (12) is given by

(M A NCHE)W,=0, =1, 2,0v, fleeeeereomemememmeamaean e e (13)
where ), and ¥; are the eigenvalues and eigenvectors. The eigenvalues and vectors can be real or complex,
and when complex they occur in pairs of conjugates. The eigenvalues can be expressed as

/\iz—%wiijwim .............................................................................................. (14)
where j?=—1 and 7, and @, are the damping ratio and the frequency of damped oscillation associated with
the i-th mode, respectively.

The aim of the analysis is to identify the eigenvalues and eigenvectors of equation (13) using response
measurements such as displacements, velocities or accelerations in time domain.
Equation of motion (12) is not a convenient form for modal identification analysis and a 2 n X1 state vector

x()=["1) ;“T(m ................................................................................................... (15)
is introduced to the form of state equation
T(B)TAT(E) ++vererreeeenmerse e e e sttt (16)
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where

0 I,

A= e (17)
is 2 n X2 n matrix and is called system matrix,

If the exponential function exp(4t) of the matrix A% is defined by the Taylor series
o 12
EXD(A t)_—_g_(.{t_t')_ .................................................................................................... (18)
the solution of equation (16) is obtained as

x(t)z Q(t)x(O) ......................................................................................................... (19)
x(0) is the initial condition of the dynamic structural system and (%) is the 2 n X2 n state transition
matrix of the linear free vibrating structure with

di(t)zexp (Ai‘) ......................................................................................................... (20)
In the practical test, however, the sampling can be performed only at discrete time instants #,, .., **
Once the sampling intervals At are constant, #,,,—t,=At=T, and i, is taken to be zero with x(1,)=
x(kT) and x(%,) represented as x(k).

It follows from equation (19) that

(F 1) Lap(Jg)+vveeemeereee e et e (21)
with @= @(T)=const.

Practically, not all the state variables can be measured. Thus the measurement equation describing the
relationship between measurement responses and state variables is introduced. It can be assumed that only
the first 7 displacements of the structure are measured and that the measurement (k) is subjected to
measurement noise §(k) such that

QUE)== Car ()4 G )+ eereereeemeememe ettt (22)
then g(k)= 7 X1 measured displacement (column) vector at time t=(kT); and §(k)=r X1 measurement

noise, independent of g(k), with zero mean and finite covariance matrix Vi,

and

o A | PGS ST (23)
is X2 n matrix with J being an 7 X 7 unit matrix and 0 being an 7 X(2 n— 7) null matrix,

A further assumption made is that the vibrating structure is completely observable. The observability
condition is

Cc

C¢(s—1)
is nonsingular with an integer s=2n/r.
The proposed method is derived assuming the measurement is noise free and the system is observable
with an index of two.

3. AUTOREGRESSIVE MODEL OF FREE VIBRATING STRUCTURE

An autoregressive (AR) model of a linear free vibrating structure is derived as follows. Considering
equations (21) and (22) yields that

QUEF £)= OB () +eeerrreresesere ettt (25)
where g(k+ i) is an n X1 vector and C is an nX2 n matrix when the observation index of the system is
assumed to be two.
Hence,
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'q(ls+1)':[ c
L g(k+2) ]
and

-q(k+2).— c L R L o PR
.q(k+3)__[c¢}¢ (k) 27)

Simultaneously solving the two equations (26) and (27) to eliminate the x(k) yields
'q(k+2)'_H[ q(kH)}
L g(k+3)] a(k+2)

where

Hz:CC;D}¢[ C(;]ﬂ ................................................................................................... (29)

Equation (29) can be proved to have the form (refer to APPENDIX A)
A

LA, Hl}

When the observation index is s,

re I, -- 0

H=| o o .. [ (30+b)
.H,s Hs—-l . Hl
Hence, equation (28) becomes

kv L Gk

where H, and H, are n)X7n matrices.

By expanding equation (31) and considering the last row of the equation, the autoregressive model of the
linear free vibrating structure in equation (12) is obtained such as

a(k+3)=Hq(k+1)+H qlk+2)+ w(k+3), (=0, 1, N)erreeereremmmmimnii.. (32-2)
where w(k+3) is an nX1 error vector, representing the response measuring noise,
Similarly, when the observation index of the system is s, the corresponding autoregressive model will
be
q(k+s+1)=Heq(k+1)+ Hs q(k+2)++ Hqlk+s)+wlk+s+1)
for (k=0, T, meey IN) e (32.5)

4. MODAL IDENTIFICATION

The relationships between eigenvalues and eigenvectors of the system matrix 4 and the state transition
matrix @ are derived and they are related to the eigenvalues and eigenvectors of matrix H and those in
equation (13). Once these relationships are established, the eigenvalues and eigenvectors of the linear
free vibrating structure can be identified by solving eigenvalue problem of the matrix H.

Let Z and A be eigenvector matrix and eigenvalue matrix of the system matrix A, that is,

AT oA o oevee et (33)
where
AN
A=| A ANA Z=[2) 2y Zan] +r e re e (34)
N .

with A; and z, being the jth eigenvalue and eigenvectors of 4.
It can be shown that the eigenvalue matrix A and eigenvector matrix Z are related to the eigenvalues 2,
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and eigenvectors ¥, of the dynamic structure described by equation (13) as

Z———{ :A] ............................................................................................................... (35)

¥ is a matrix with eigenvectors ¥, being its column vectors,
A transformation of variables is introduced as

x(t)=Zy(t) ............................................................................................................. (36)
and is substituted into equation (16) to obtain

Zi/(t)zAZy(t) ........................................... e e e e a e e et e e e e et e e et e enas (37)
and

ﬂ(t);Z“’AZy(i) ...................................................................................................... (38)
Similar to the solution of equation (16), the solution of equation (38) can be written as

YV EXD (Z 7 AZE) (D) veemrermree oottt (39)
From equation (33)

T A A o e (40)
Hence

BLE)T@XP (AF)G(0) -+ovvevmmreemne e e e (41)
Expanding exp [A] in the exponential series,

N Ny N
exp(At)=I+ At + _éT“ B — ENE | (42)
AN TN AN

Considering transformation (36) yields

Z(B)=Z @XD (A)Z 7 20(0) - +veverremrmremmrmtiimi e (43)

Comparison of equation (43) and (19), and considering equation (35), the relationships of the state
transition matrix @ to the eigenvalue matrix A and eigenvector matrix Z of the system matrix and so to
those described by equation (13) are established

_ -1 W w‘ e
&(1)=Z exp(AD)Z —{ wA]exp(A t)[ ZFA} (44)
On the other hand, from equation (29)
C C
| B e e 4
H[CQ] [CQ]QS (45)

Substituting equation (44) into the equation (45) and considering Z~' being nonsingular yield an
eigenvalue problem

O N P )

Equation (46) gives the relationship of matrix I to the eigenvalue matrix and eigenvector matrix of the
system matrix A. The upper halves of the eigenvectors of the matrix H are the eigenvectors of the original
equation (13). The eigenvalues of the matrix H are ¢, from which the eigenvalues or natural
frequencies and damping factors of the dynamic structure described by equation (13) can be calculated. To
this end the eigenvalues %7 are written as

Q= @O I=TIOT L e 4n
Thus
-1 %
T g I(@@) e (48)
and
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—a¥
Tt | G
wVI—7i = ) ¢ az~-a’-" ................................................. (49)
(r—tan | 25 if ot et <0
from which the natural frequencies and damping factors can be obtained as follows.
___~/ sl (/L T )2 e e e e (50)
and
| - inii
= P (51)

Key problem is to find matrix H. Once it is found, the modal identification of a linear dynamic system
can be solved as previously mentioned.

5. ESTIMATE OF MATRIX H

Estimate of matrix H using response measurements can be done in two ways from the auto-regressive
model developing processing. The first algorithm uses the auto-regressive model (32) which is written in
the following form for the convenience of numerical implementation,

q(k)
q(k+2)=[H, H [
[ 2 1] q(k+1
for k=1, 2, ---, N, where N indicates the number of time data points and usually equal to or greater than

)}+w(k+2) ....................................................................... (52.3)

2n. In order to use identical regression vectors for the different output components, a (2 nXn) X1
dimensional column vector § and a (2 nXn)Xn matrix 5 to transform Eqn. (52-a) into

QUEH2)=FTE)G W (h2) - oeeeere et (52-b)
where

=(;s)~[ atk) }@1 and 6=column [#; H]

& (k+1) n column 2 1

where the operator (X indicates the Kronecker product of matrices and the operator column indicates the
column operation on a matrix, (refer to APPENDIX B).

Collecting all the equations (52) for the time instants k=1, 2, -, N,

g= Q  J O U PO PP USSP (53)
where § and fp are of dimension (N X n) X1, Q is of dimension (N Xn) X{2nXn) and gisa (2 nXn) X
1 vector

4=[q'3)g"4)-q"(N+2))", f=column[H, H],

w=[w3)w &) w(N+2)]" and Q=[E(1) E(2)-E(N)"
When the observation index of the system is s, the same equation as Egn. (53) can be formed and

q=[q"(s+1)q"(s+2)--q"(s+N)I", §=column[H; Hs_,-H],

w=[w(s+Dw'(s+2)}wis+N)]" and Q=[5(1)EQ)-EN)"

with
q(k)
sw= TV o rxs=zn
q(k+s—1)
The ordinary least square estimate method is applied to equation (53), the estimate of § in the least square
sense is
Brs=(QTQ) M QTG -+ +++vververeeemreeme e ettt (54)

The second algorithm can be developed from equation (31) similarly. To this end equation (31) can be
rewritten as
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GUEYTETE)O A G0 (F) - vcevmmremmm sttt (55)
where

s @k o [ alk) o [ w(k+1)

"(k)"[q(mz)]’ H(k)_{q(k%-l)}@b" “’(’”“[w(zﬁz)}

and ¢(k) is a 2 n X1 vector, T is a (2 nXn) Xn matrix, §isa (271X2n) X1 vector and w(k)isa2n
vector representing the measurement noise,
Equation (55) can be further simplified into the form

for N measurements and k=1, 2, ---, N, where
§=[4"k) §"(k+1) g k+N)", Q=[E(k) E(k+1)Ek+N),
w=[w" (k)" k+1)- " (k+N)]" and §=column H

with N indicating the number of time data points, which usually is equal to or greater than 2 7.
When the observation index of the system is s, Eqn. (56) can also be used and

q(k+1) q(k) w(k+1)

aw=| | s Y e, ww=| CED
q(k+s) gk+s—1) w(k+s)

If least square parameter estimation method is used to determine the unknown 4,

ZLSZ(QTQ)—léT@ .................................................................................................. e (57)
The second algorithm has the similar formulation as the ITD method.

When the system is observable with an index s higher than two, the eigenvalue problem in equation (46)
is readily extended to

CZ CZ

H CZ exp (Al) _ CZ exp (A1)

CZ exp{(s—1)At) CZexpl(s—1)At)

From relationships (35) and (58) the top sub-matrix CZ of the eigenvector matrix has the columns which
are the vectors with the first r elements of the eigenvectors ¥, of the original vibrating system described
by equation (13). When the number of measurement stations is the same as the order of the dynamic
structure, equation (58) will reduce back to equation (46).

The flow scheme for the modal identification can then be summarized as follows,

(1) Collect the measured response data to form the matrices Q and Q,

(2) Evaluate the estimate of H, and H, according to the equation (54) or the estimate of H according

to equation (57),

(3) Form the matrix H according to the equation (30),

(4) Calculate the eigenvalues and eigenvectors of the matrix H,

(5) Calculate the natural frequencies and damping ratios of the original structure.

6. APPLICATION

(1) Determination of the order of the test structure

Neither the parameters nor the degrees of the structure are known before a test, The first step for
processing the identification of a vibrating structure is therefore to determine the order of the structure,
i.e., the degrees of freedom of the structure.

Form measurement matrix @
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q1) q2) -- q(N)

a= q2) q@) -- q(N.H)

a(s—1) q(s) -+ ¢(N+s—2)
The following three methods can be used with this measurement matrix to determine the degrees of freedom
excited in a test, The first method is to successively calculate the determinant | D,| of the coveriance
matrix D=@Q Q" by starting with assuming k degrees of freedom being equal to 1, 2, --- and ratio =
ID.|/|D:|, 75=|Dy:1|/|Dy|, until the ratio suddenly drops. Assume k=mm at that time, it means that
| Dy.y] is very small and the matrix D,,, becomes singular. Hence degrees of freedom of the structure
excited will be m.

The second method is to perform the singular-value decomposition of the matrix D such as
DTS oo eevnneee e ettt et e e e (60)
where § is a diagonal matrix with the singular values s; in monotonic decreasing order; U/ is an ortho-

gonal matrix,

For a tolerance ¢, if

Sm/812€>8m+:/81 .................................................................................................... (61)
then the rank of the matrix P will be 7. Tolerance should be somewhat larger than the relative precision of
the numbers of the calculation which depends on the computer used for the identification process.

The third method is to perform an orthogonal-triangular decomposition. By permuting the columns of D,
the diagonal elements of R can be rearranged to be monotone decreasing, i.e., there is a permutation
matrix P such that

0 e B A (62)
where U is an orthogonal matrix; R is an upper triangular matrix with diagonal elements 7,,= 7,,=--
= T5p=20.

If D is of rank of m, a sharp break is expected after r,,,

ie. Tan> Tas WWELEIL [ > 70 «v e e er ettt e e (63)
While the first two methods can detect well-defined rank of the matrix I, the third method may be
conservative for determining the rank of the matrix P.

(2) The number of measurement stations

The number of measurement stations depends on the purpose of a test, the degrees of freedom to be
excited and accuracy requirement, From equation (46), if only the frequencies and damping ratios need to
be identified, a single measurement station will be enough for the identification. It can also be seen from
equation (46) that in order to identify the eigenvectors of a test structure, at least two measurement
stations will be required. One measurement station should be fixed in a series of tests as a reference
measuring point, Other measurement stations move each time in the series of tests,

(3) Numerical computing

The matrix é’"é in Eqns. (54) and (57) may be ill-conditioned, in particular when its dimension is high.
There exist methods to find @, that much better numerically behaved. The so called “square-root filtering
algorithms” are recommended to use in the least squares estimation. The details may be referred for
example to Lawson and Hanson (1974).

From Eqns. (54) and (57), it can be seen that only half number of the parameters in Eqn. (54) compared
with that of Eqn. (57) need to be estimated. This is one of the computation advantages of the proposed
method. In addition to this, the matrix for the eigenvalue problem in Eqn. (30) is a Hessenberg matrix, the
eigenvalue problem of which is much easier to be solved than that of ITD method and computation time can
also be saved in the solution of the eigenvalue problem of matrix H.

(4) Sampling rate

Through simple manipunations of trigonometric formulas, the sampling rate f, should satisfy the
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following relationship

fs><%>fmax" .................................................................................... (64)

where fu,, is the maximum frequency can be identified by the sampling rate fs and k is determined
according to the interested range of frequencies. For the range of ( to Jmax, £=0. For the range of f,;, >

Smin

0 to fumax, £=0, 1, -+, p and p<T—Tfi—. A frequency fy=f./2 is called Nyquist frequency. The
max min

information about frequencies higher than the Nyquist frequency will be lost.

Hence when fi,, is excessively high, the whole range of (0— Jmax) requires extremely high sampling rate
which may present practical difficulties. In this case, there are two methods recommended to solve the
problem. The first method is to divide the whole range of frequencies into some sub-range band, This
approach allows smaller sampling rates to be used for each frequency band. Each frequency band must be
studied using response information which contains only frequency components in the range of interest
(through filtering or other means). The second solution is to use high recording speed.tape recorder to
record the signals and then play them back at a lower speed during the digitization process. The ratio of
two speeds is used later as a correction factor to obtain the actual structural frequencies,

7. NUMERICAL EXAMPLES

Two examples are presented in this section to illustrate the results of the application of the proposed
method.

The first example is a simulated experiment. In the simulated experiment, a mathematical model of a
structure is given and free dynamic responses of the structure in the time domain are calculated under some
initial conditions. Eigenvectors, natural frequencies and damping ratios are calculated from the original
mathematical model. From the free responses by the proposed method, the eigenvectors, natural
frequencies and damping ratios are identified. The identified modal parameters are then compared to those
calculated to illustrate the effectiveness of the proposed method.

The example is a marine riser with five clamps as shown in Fig, 1. Thirty two normal modes were
calculated by finite element method. The first eight modes were used to generate a set of free decay
response data. In order to illustrate the capability of identification of closely spaced frequencies, the
frequencies calculated by finite element method are not used. Instead, the frequencies are arbitrarily
assigned as 12, 12.5, 40, 48, 56, 76, 100 and 114 Hz with damping factor (. 02 for all modes. Since the
calculated modes are normal instead of complex, the following formula is used to compute the free decay
response data.

a(b)=2} (e~ cos(a VI £,)

In practical observation, the noise is inevitable, a set of random white noise of 25% of the noise to signal
ratio was added to simulate an actual situation. The free decay responses without noise and with noise are
shown in Figs.2 and 3.

Twenty four simulated measurement stations were arranged along the riser equally spaced. Sampling
frequency was taken as 160 Hz and 480 samples were recorded, which corresponds to a recording of 3
seconds. The corresponding Nyquist frequency is 160/2=80 Hz and the information about frequencies
higher than 80 Hz is thus lost by sampling. When analyzing the free decay response data it will be assumed
that the modal parameters which generate the data are not known. The measurement data matrix Q was
formed according to Eqn. (59). The rank of the matrix I} was found to be six and six modes were
identified. The identified modal parameters are given in Table]1. So called “Mode Shape Correlation
Constant” (MSCC) ™ was used to assess the accuracy of identified mode shapes. The following equation
is used to compute the MSCC
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10.6m
13.2m ! I : ;
0.00 0.75 1.50 2.25 3.0
R, S—— % Time (sec)
Fig.2 Free Decay Responses Without Noise.
25m @
cross section
25.5m
i T I I
0.00 0.75 1.50 225 3.0
T Time (sec)
Fig.1 Marine Riser. Fig.3 Free Decay Responses With Noise.
| 65X 80|
MSCC= X100
(85X gal X[ 6% X 85

where

¢, is the assumed input mode ; ¢, is the identified mode;

*means the conjugate transpose of a vector; | |indicates the amplitude of a mode.

The accuracy of identified frequencies and damping factors were qualified by direct comparison, It is
observed that the natural frequencies, damping ratios and eigenvectors were identified with reasonable
accuracy even though the frequencies are very closely spaced.

The second example is steel cantilever which was tested in the laboratory of structural engineering at the
UNSW. The geometry of the cantilever is shown in Fig. 4.

The free decay responses were generated after sudden termination of excitation of the cantilever by a
pseudo random noise signal. The exciter was located at 1) mm from the free end of the cantilever, To limit
the range of interested frequencies, the accelerometer outputs were filtered to eliminate frequency
components higher than 800 Hz. The sampling rate was 1 600 Hz. The recording time was 1.5 sec and 2 400
samples were recorded. Four accelerometers were arranged at 10 mm, 90 mm, 180 mm and 270 mm from
the free end of the cantilever. To minimize the bias in the data, the excitation was set to a constant value
for a reasonable long time before it was terminated.

Table1 Identification Results for the Beam for Six Modes 25% Noise and 24 Degrees of Freedom.

MODE FREQUENCY DAMPING MSCC WITH INPUT MODE No
RATIO
No. (Hz) (Hz) 1 2 3 4 5 6
i 12.06 1.87 100 0 0 0 0 0
2 12,53 2.12 3 100 0 0 0 0
3 39.93 2.11 0 0 100 0 0 0
4 48.09 1.82 0 0 0 100 0 0
5 55.87 2.06 0 2 0 0 100 0
6 76,17 208 0 0 3 0 0 100
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Table 2 Identified Frequencies and Damping Ratios for the Cantilever,

Experimental Results Theoretical Results
Mode Proposed method Circle fit method Analytical | Finite element
Frequency | Damping | Frequency | Damping | Frequency Frequency
(Hz) ratio (Hz) ratio (Hz) (He)
1 11.03 0.081 11.27 0.084 1255 1244
2 7163 0.016 71.51 0,017 79.22 77.85
3 20025 0.015 200.32 0.008 220.06 218.10
4 395.75 0.004 398.07 0.004 43131 427.95
5 65225 0.002 657.25 0.003 712.99 709.67
The tested results using the first proposed Table3 Identified Modes for the Cantilever,
algorithm are listed in TableSZ and 3 FOI‘ Complex mode Normal Mode
comparison, test results by frequency domain Proposed method | Circle it method | Finite element method
method-circle fit using pseudo random noise excita- 1.000 1.000 1.000
. . . . Mode 1 0.732+i0.008 0.709+10.005 0.862
tion are also listed in these tables. Theoretical 0.584+0.221 0.539410.187 0.725
modal parameters of the cantilever were calculated 0.462-i0.063 0.410-i0.028 0.590
. . . . . 1.000 1.000 1.600
without consideration of damping. Analytical and 0.482+i0.010 0.4504i0.007 0515
: . Mode2 |  0.091+i0.021 0.082+i0.017 0.055
numerical results by finite element method are 056400010 | -05394i0.006 0338
included in these tables. 1.000 1.000 1.000
. . . 0.094+0.002 | -0.089+i0.015 0.001
It is noted there is good consistency between the 4.3 | 067640023 0.637.10.015 0429
results for modal parameters obtained by two -0.778+i0.009 | -0.748+0.007 -0.684
. 1.000 1.000 1.000
experimental methods. 033240021 | -0309-0.018 -0.095
Moded |  -0.868-i0.031 0.837-i0.026 -0.684
8. CONCLUSIONS -0.151-i0.002 -0.147-i0.001 -0.398
1.000 1.000 1.000
. . . 0.667-i0.032 0.647-i0.027 0.353
This paper presents a time domain method for 45| -0591+i0.005 0.5754i0.004 0.623
modal identification of a linear vibrating structure 0.763+i0.015 0.741+i0.011 0.271
using the autoregressive model. The method can
1.25cm

reduce the computation time compared with ITD

method without loss of the advantage of capability

i
of identifying closely spaced modes or highly T
coupled modes.
2.5cm

A simulated example and a test case illustrated

the effectiveness of the method. - % —

APPENDIX A Fig.4 Dimension of the cantilever beam.

Equation (29) may be rewritten as

i C CQAI - P ae e s s aa s s e it eesease s s e s N A e e e et se s s atsereeeeRNeeoe s EnetessresetRto e o et bsberas
OIS ‘
Assume

co |

B 7 D U PPN PRUR RPNt A

{ pe } [E F] (A-2)
then

co™! _ Cé'E CO'F _ Io

{C][EF][CE CF}[OI}
Hence

CO'E=1, CO'F=0 CF=I, CEm0 et (A-3)

Substituting equation (A-2) into equation (A-1) and considering equation (A-3) obtain
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-| C | CE  CF | L0 .
H“[CQ]EE F}“[CM C@F]_[Hz Hl} " (Ad)
with
[H, H]=[COE CoF]
APPENDIX B

The Kronecker product of an mXn matrix 4=[q,,] and a pX r matrix B=[b,,] is defined as

auB 6B - anB

A®B: anB Q2B -+ QB

amB am:B -+ QuuB

This is an mpXnr matrix.

The operator “column” is defined as the operation to form a column vector out of a matrix by stacking its
columns on top of each other

BI
2
Column B: B .................................................................................................... (B.Z)

BT
where B’ is the jth column of B,
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