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APPROXIMATE EXPLICIT FORMULAS FOR COMPLEX MODES OF
TWO-DEGREE-OF-FREEDOM (2DOF) SYSTEM

By Benito M. PACHECO* and Yozo FUJINO**

As an application of the general technique presented in a companion paper, the complex
modes of nonproportionally damped close-coupled two-degree-of-freedom system are
approximated through second-order perturbation. Assuming the nonproportionality to be
either moderate or weak, the pseudo natural frequencies, modal damping ratios, and
complex “modes” are expressed in terms of natural frequencies and mode shapes of the
counterpart undamped 2DOF system, and of respective damping ratios of the two
single-degree-of-freedom (SDOF) subsystems. The effects of damping nonproportionality
are contained in eight nondimensional perturbation coefficients. These perturbations
depend only on the ratio of masses, ratio of natural frequencies, and damping ratios of the
two SDOF subsystems. The approximate explicit formulas avoid the complications of
Ferrari’s classical solution for the quartic characteristic equation, Parametric studies
illustrate the convenient use of the present formulas as well as check their accuracy.

Keywords : 2DOF system, nonproportional damping, complex modes, perturbation

1. INTRODUCTION

Modal methods of dynamic analysis of multi-degree-of-freedom (MDOF) systems are generally very
powerful and convenient ; but some computational and conceptual difficulties arise when the damping
distribution in the system is not proportional. In the latter case, the “modes” are complex instead of being
real mode shapes. There are many examples of nonproportionally damped structures, including . structure
with tuned mass damper (TMD) ; structure with localized high-damping elements or members;
structure-equipment system ; soil-structure system and base-isolated structure. Even a two-degree-of-
freedom (2DOF) model, which is the simplest possible MDOF model of any structure, when
nonproportionally damped becomes prohibitively complicated to analyze for modes in exact closed form.
The associated quadratic eigenvalue problem requires the solution of a quartic characteristic equation, say
by the classical Ferrari method”. However, when the general perturbation technique recently proposed by
the authors? is applied, only the quadratic characteristic equation of the counterpart undamped system has
to be solved directly. This can be done in closed form far simpler than a quartic. In this paper are
presented the approximate explicit formulas for perturbed complex “modes”, pseudo natural frequencies
and modal damping ratios, Some example parametric studies follow, to illustrate the usefulness of the
formulas as well as check their accuracy.

2. DESCRIPTION OF THE TWO-DEGREE-OF-FREEDOM (2DOF) SYSTEM

Fig. 1 shows the mechanical analogue of close-coupled 2DOF system, consisting of two masses m, and
ms, and corresponding springs and dashpots. The subsystem natural frequencies @, and w,, and damping
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ratios & and §, are defined as :

ws:\/m—; gszcs/\/‘?k—s'”Ts Sza,b """""" (1)7(2)
To enhance the generality of the resulting formulas, three non-
dimensional ratios are further defined, namely mass ratio 4, ratio of
damping ratios (or proportionality parameter) v, and frequency ratio
(or tuning parameter) 7, as in Eqs. (3)~(5) below.

M= M/ M v==§&/& T=wp/ g e (3),(4), (5)

These ratios describe the properties of subsystem “p” relative to

Fig.1 Mechanical analogue of close-
coupled 2DOF system,

corresponding properties of subsytem “g”. The matrix equation of free motion may then be written as in
Egs. (6) in terms of these ratios and the properties of “p”, namely My, € and ey,
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3. EXPLICIT FORMULAS FOR PERTURBED EIGENVECTORS AND EIGENVALUES

Eqgs. (6-c) and (6-d) show that, if y=1¢ then C becomes proportional to K , and the system becomes
proportionally damped. In that case, the natural modes Yo, are unchanged by the existence of damping.
Otherwise, the eigenvectors of Eq. (6-a) are complex and different from the natural modes. The
eigenvalues, if the system were proportionally damped, would be Aos==—wo; &, lwo;v/1—&Z;, where
i=+/—1, wy,=natural frequency, and §&,=modal damping ratio, When damping is nonproportional, ¢,
and &, also are changed. In this paper, nonproportionality is assumed to be either weak or moderate, and
the nonproportionality effects are expressed as modifications or perturbations on y,;, w,, and &,

The pertubation technique? expresses the complex eigenvectors and eigenvalues of Eq. (6-a) in terms of
the natural modes and frequencies of the counterpart undamped system, and the actual damping matrix.
The natural frequencies w,, and ,, of the associated undamped system are obtainable as roots of the
characteristic equation det(—@iM+K)=0, which is quadratic in the case of 2DOF system. The
corresponding modes y,; and y,, are next obtained by substituting o and @y, in turn, into the matrix
eigenvalue equation, i.e., (—wi,M+K)y,,=0. y,, is normalized such that voiMyo;=1. The
(unperturbed) damping ratios &, and &, are subsequently obtained by transforming the damping matrix C
through the modal matrix ¥,, whose j-th column is Yo, ; the j-th diagonal element in the transformed matrix
is 2ao;&;. On substituting M, C and K from Egs. (6-b) to (6-d), the resulting explicit formulas come out
as .

S%=%— [(1+12+,u,r2)_\/(1+tz+,ur2)2“-4 T2 (Y-a)
ng.z~ [+ 22+ we)+V0 + T2 ) T2 e (7+b)
W0 S W/ T, T L, D et (8)
1

Yo, = \/;‘Z P T P (9)
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The nonproportionality-induced perturbations are redefined in the following formats? :
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A By e T R L E I PP (11)
;= woy ‘/1‘:(_‘&; ....................................................................................................... (12)
§=6, m ........................................................................................................... (13)
U=+ Entton)F 1 Mnttod), () B)=(1, 2), (2, 1) +vererereeremmemeeiesieeseien s (14)

where the nondimensional perturbations a;, 8;, ;;and n;, are real-valued functions of the nondimensional-
ized parameters u4, vy, 7 and §. Note that the properties m, and w, do not affect the perturbations,
although they influence w,; and y,; (Egs. (8), (9) ). The explicit formulas for the perturbations are
given by Eqs. (15) ~ (20). In the terminology of Ref. 2), «; (Eq. (15)) and 8; (Eq. (16)) are the
nonproportionality-induced perturbations on the j-th natural frequency and modal damping ratio,
respectively., &, (Eq. (17)) and 7, (Eq. (18)) are the modal perturbations that “couple” the natural
modes to form the complex eigenvectors.

2 4 2 . 2
o=t [si— oL (s1— st S (g1t sp— Sl (587 snsy S0 g2g2
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............................................................................................. (15)
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Y D] e s 18)
Ap=2(52+ S (EnSn— &8, (82— 82 (82— 8Y— 2 162, 82— E2,82)- e verremreimerreeninieieen (19)
p=2 &( WV ) \/(H— t2+/;j;)z-4 e (20)

The perturbations (Eq. (15) ~ (18)) become zero when the nondimensional quantity p is zero. As may be
seen in Eq. (20), the nonproportionality so disappears when y, the ratio of subsystem damping ratios
(Eq. (4)), is equal to . Hence v can also be described as damping proportionality parameter of
close-coupled 2DOF system. However, Eq. (20) also indicates that once y and 7 are unequal, i.e.
damping is nonproportional, the degree of nonproportionality (as reflected by the perturbations a;, 8;,
&y, and 7;,) is influenced not only by v and r but also by 2 and §,. The following section is on parametric
studies of several example systems.

4. PARAMETRIC STUDIES OF SEVERAL 2DOF SYSTEMS

(1) System parameters

Four systems are studied, namely : (A) structure and TMD ; (B) structure and equipment ; (C) ground
and superstructure ; and (D) base isolator and superstructure, The parameters 4, v, 7, and &, are listed
~in Table 1, where it is indicated also that one of the four parameters is varied in each system, to
demonstrate how the perturbations would vary correspondingly. In systems, A, C and D, the structural
damping ratio considered is 2. 0 %. For the structure with equipment or secondary subsystem, i. e, system
B, 5.0 % structural damping is considered,

The tuned mass damper (TMD) in system A has a mass ratio g that can be reasonably expected for
massive civil engineering structures, i.e. 1.0 %. The damping ratio & of 6.4 % is optimum when r=
0.9868, by Warburton and Ayorinde’s optimization criterion”. The value of ¢ is parametrically varied
around this optimally tuned case.

In the structure-equipment system, i.e. system B, only the tuned condition (z=1. 0) is analyzed, this
being the potentially most damaging situation for the equipment or secondary subsystem, The equipment is
considered to be much less damped than the structure (y=0.2), and ranging from extremely light to very
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light compared to the structure (O 002< 1<0. 01). Table 1 Non-dimensional parameters of examples.
In system C, tuning or resonance between ground

System A System B System C System D

natural frequency and structural frequency is like-

wise postulated, representing a significant case of ‘'a' structure structure ground isolator

soil-structure inertial interaction, There being a 'p: TMD equipment structure structure
wide variability in soil damping, the ratio of damping

ratios, y, is parametrically varied (0.10<y< " 0.0t 0.00270.01 0.30 500
2.00). Of the four systems, only the parametric ° 3.20 0.20 0.10~2.00  0.20
study of system C includes a case where y=1¢, i.,e, T 0.7071.30 1.00 1.00 1.00-3.00
proportionally damped. g, 0.064 0.01 0.02 0.02

Systems A, B and C all require a coupled model of
the two subsystems, because of the tuning and associated strong interaction between the subsystems, In
contrast, system D is designed such that the isolator frequency is much lower than the natural frequency of
the superstructure, i.e., r>1.0. Nevertheless, a coupled model may be used in investigating the effects
of isolators that are softer than the superstructure by different degrees (1.0< r<3.0), and are relatively
so highly damped as to make y<r.

These examples are chosen for the present study because they are commonly encountered in practice,
and since they cover a wide region for the four parameters 4, v, 7, and &,

(2) Analysis of perturbations

Fig.2 (a) ~ (d) are plots of the eight perturbations : a), @z B, B2 &z &u, 72, and 7. Fig.2 (a),
for example, consists of two sets of graphs ; the upper graphs are for a;, a,, £, and g, versus the tuning
parameter z, which are eigenvalue-related, while the lower graphs show the eigenvector pertubations L,
G, The, and 7,. Systems A, B, C and D correspond to figures (a), (b), (c), and (d), in that order. It
should be noted that the vertical scale varies from graph to graph in Fig. 2.

Alook at the overall trends of the plots in Fig, 2 reveals that the eigenvector perturbations, particularly
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Fig.2(a) Perturbations on structure with TMD Fig.2(b) Perturbations on structure with equipment
(system A). (system B).
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s and 7,,, are much larger than the eigenvalue perturbations. It is to be recalled (Eq. (14)) that 7, and
7, are associated with the imaginary part of the complex eigenvectors.

Specifically, Fig.2 (a) demonstrates that the respective magnitudes of the perturbations do not
necessarily all increase or decrease simultaneously when one parameter— in this case, the tuning
parameter r—is changed. This observation is in contrast with Figs. 2(b) ~ (d). It is noteworthy that in
the range of  in Fig. 2 (a), there is a value of 7 where some of the perturbations (namely, a;, a», &,
and &,,) are almost zero while the others (namely, 8,, 8, 7, and 7,) practically attain their respective
peak magnitudes ; and this 7 is nearly equal to (. 9868 which is the “optimum” value that was numerically
obtained by Warburton and Ayorinde ?.

Fig.2 (a) also demonstrates the point made just after Eq. (20) above. That is, while the condition z—
y=0 is enough to ensure proportionality and render all perturbations zero, the quantity r— y=( alone is
not a direct measure of the perturbations. In Fig.2 (a) where y=3.2, the difference (r—y) varies
monotonically from -2.5 (at z=0.7) to -1.9 (at z=1.3), yet the associated perturbations are largest at
intermediate values of z.

On the other hand, Fig. 2 (b) represents a system where the difference (r—y) is fixed at 0. 8, and only
the mass ratio is varied, Fig,2(b) shows clearly that, in this system, nonproportionality increases—and
all perturbations monotonically grow—as the equipment becomes even lighter relative to the structure. In
fact, for the lightest equipment considered here for system B (4=0.002), the perturbations are large
enough for one to doubt in that case the applicability of the original assumption of this perturbation
technique, namely, weak to moderate nonproportionality, This question of accuracy is further discussed in
the next section.

In Fig.2(c), meanwhile, all perturbations are zero, as expected, when y=1.0 =z. Perhaps less
readily expected is the existence of two different trends for the perturbations in the range y<(1. 0 and the
range y>1.0 . The results in Fig. 2 (c) indicate that the nonproportionality-induced perturbations are
greater when the superstructure is less damped than the ground (v <1.0), rather than when it is the other
way around (y>1.0). It may be noted that, indeed, reported studies of soil-structure interaction cover
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Fig.2(c) Perturbations on ground and structure Fig.2(d) Perturbations on isolator and structure
system (C). system (D),
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mostly cases of y<1.(. Damping nonproportionality has been almost invariably judged to be significant by
those investigations. Fig.2(c) serves to verify this trend, and also to display it in a wider context by
showing also the dissimilar trend for y>1.0.

Looking at Figs. 2(a) and (c), it may verified that neither the difference (r—y) nor its absolute value
alone is sufficient indirect measure of the degree of damping nonproportionality,

Lastly, Fig.2(d) demonstrates a system where r and v are unequal and very different, yet the
perturbations are very small. Nevertheless, as ¢ is decreased from right to left in the graphs, the
perturbations increase moderately. It must be pointed out that these increases in the perturbations are
associated in Fig.2(d) with decreasing difference (r—y).

Since r=1. () corresponds practically to maximum perturbations for system D in the range of 7 in Fig. 2
(d), it may be of interest to consider a modified isolator-structure system with r=1. 0 but y=0). | (half of
the value for system D). Separate calculations which are not shown here, indicate that at z=1. () the effect
of halving the ratio v to 0.1 (i.e., doubling the damping of the isolator) is practically to double the
perturbations. Still, the nonproportionality effects are small in comparison with systems A, BandC,

The above observations concerning magnitude of perturbations due to damping nonproportionality, are
not all directly obtainable by mere examination of Eqs. (7), (10), (15)~(20). Nevertheles, these
approximate explicit formulas are convenient for parametric study because they eliminate the need for
numerically solving the eigenproblem of size-four matrices and also avoid complicated formulas from
Ferrari’ s exact solution of the quartic characteristic equation. The present formulas have beeen written
for ease of calculation, but it may be possible also to rewrite them in forms that would highlight the effect
of each parameter. This latter task may not be very simple, however, since four parameters (¢, v, 7 and
&,) are involved.

(3) Check on accuracy of perturbations

As noted above in connection with the large perturbations in system B (Fig. 2 (b)), the applicability of
the perturbation technique becomes questionable when it results to perturbations that are large enough to
be comparable to unity in magnitude. As was done in the accuracy check for the numerical examples in Ref.
2), “exact” eigenvalues and eigenvectors may be obtained through the formulation that was pointed out by
Foss”, which involves a size-four matrix in the case of 2DOF system. These “exact”” values may be used
as reference in calculating the errorsin w,, §, y,, w, &, and y, as estimated by perturbation formulas in
this paper.

Only for purposes of calculating errors, each complex eigenvector is renormalized in the manner shown
in Fig. 3. Thatis, the element of vector y, (=1 or2) that has the bigger modulus (i, e, square root of the
sum of the squares of real and imaginary parts) is multiplied by a complex constant in order to make it pure
real and equal to unity. This element of vector y, then lies on the real axis of the Argand diagram of Fig. 3.
The other eigenvector element, when multiplied by the same complex constant, takes a modulus [,; and
argument ¢, as shown in the same figure,

Percentage error is defined for each of the eight real scalars w,, &, L., 6, w, &, L,and 6, in the
following manner :

exact—perturbed
exact

e=absolute value < >>< 100 %

Errors for systems A and B are plotted in Figs. 4(a) and (b). Certain
general observations may be made concerning the trend in the errors. For
instance, it may be noted that the percentage error is roughly proportion-
al to the absolute value of perturbation. In the upper half of Fig, 4 (a), for
example, the plot of ¢ (w,) resembles the plot of absolute value of 4, from  Fig.3 Argand diagram of elements
the upper half of Fig.2(a). Recall that g, is the perturbation on «,. of renormalized eigenvector.
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Similarly, the plot of £(6,) in the lower half of Fig. 4 (a) resembles the plot of absolute value of 7,, from the

lower part of Fig.2(a).

The errors in §,, meaning the errors in 7,,, are the greatest. This trend is to be expected, in light of the

preceding paragraph, and the observation from the parametric studies above, that the perturbations 7, and

7., dominate the others. As noted also in the numerical examples of Ref. 2), the magnitude of perturbation

itself is an indication of the error involved in the formula. In this sense, the present perturbation technique

generates its own accuracy check. The parametric studies in this paper and numerical examples in Ref. 2),

suggest that the percentage error in § does not exceed 10 % if the magnitude of perturbation 7 does not

exceed 0.3. The errors in the other per-
turbations are then much smaller.

Table 2 is a summary of the range of error
introduced by perturbation to each of the
eight quantites w,, &, L, &, w, &, L,and
8, . For system A, for example, the respec-
tive peaks of the plots in Fig. 4 (a ) are listed
as “maximum” percentage errors. For sys-
tem B (or Fig.4(b)), the errors within the
range of g considered, do not reach zero ;
hence the respective lowest points of the
plots in Fig, 4(b) are listed in brackets as
“minimum” percentage error.

Both Fig.4 and Table 2 indicate that the
present perturbation formulas may not be
accurate enough for structure-equipment
system when the mass ratio is extremely
small. In principle, one may improve the

Table 2 Summary of maximum [and minimum] percentage errors in

parameter range considered for examples.

System A System B System C System D

max €(w,) 0.028 % 0.345 % 0.047 % 0.000 %
[min] [0.000] [0.018] {0.000] [0.000]
max £(&,) 0.248 0.836 0.019 0.000
[min] [0.000] [0.019] [0.000] [0.000]
max =(L;) 0.616 0.760 0.023 0.000
[min] [0.000] [0.018] [0.000] [0.000]
max €(8,) 5.011 24.160 2.758 0.022
[min] {0.000] [4.0831 [0.008] [0.000]
max €(w,) 0,026 0.338 0.029 0.000
[min] [0.0001] [0.017] [0.000] [0.000]
max £(&,) 0.175 0.810 0.014 0.000
[min] [0.000] {0.018] [0.000] [0.000]
max £(L,) 0.675 0.768 0.020 0.000
[min] [0.000] [0.021] [0.000] [0.000]
max €(8,) 4.975 23.900 2.711 0.022
[min] [0.000] [4.072] [0.008] [0.000]
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formulas by extending the order of perturbation beyond second order?, This does not ensure, however,
that the resulting formulas would not be too long and involved, The formulas developed by Igusa and Der
Kiureghian® may be used instead. Said formulas have been specifically derived under the assumption that
the mass ratio y is small (e, g., £<0.01 in the examples of Ref. 5)). However, it must be remembered
that these formulas also assume that the overall damping is low (e. g., &1£,<0.06 in the examples of
Ref. 5). Also, the formulas are not nearly as explicit as Egs. (7), (10), (15)~(20) of the present

paper.
5. SUMMARY AND CONCLUSION

As a direct application of the general technique presented in a companion paper?, the pseudo natural
frequencies, modal damping ratios, and complex “modes” of close-coupled two-degree-of-freedom
(2DOF) system with moderately nonproportional damping have been approximated in terms of natural
frequencies and mode shapes of the counterpart undamped system, and of damping ratios of the two
single-degree-of-freedom (SDOF) subsystems. The effects of damping nonproportionality have been
expressed as nondimensional perturbations a,, £, &2 7 s, B, &n and g,

The explicit formulas for complex modes, frequencies, and damping ratios, which include the
perturbations, are convenient for parametric studies. It may be possible also to rewrite these explicit
formulas in order to highlight either separate or joint influence of the following nondimensional parameters

mass ratio y, damping proportionality parameter y, tuning parameter 7, and damping ratio of
b-subsystem §&,.

Parametric studies were performe(i on four commonly encountered systems : A) structure with TMD ;
B) structure and equipment ; C) soil-structure system ; and D) base-isolated structure, These systems
have varying degrees of damping nonproportionality. The parameters considered in the study covered a
wide region of g, y, 7 and &,

Among the significant findings of the parametric studies are :

1) The eigenvector perturbations are dominant. While natural frequencies and modal damping ratios
may be hardly perturbed by damping nonproportionality, the natural modes are often converted into
complex eigenvectors with significant imaginary parts.

2) While the condition y= 7 is enough to remove nonproportionality, neither the difference (y— z) nor
its absolute value alone is sufficient as direct measure of perturbations. All the parameters y, v, 7 and &,
have some influence,

3) A change in one parameter (g, v, 7, or g,) does not necessarily mean simultaneous increases or
reductions in the magnitudes of all perturbations,

4)  Nonproportionality and the associated perturbations tend to be significant when the two subsystems
are tuned, i.e., r=1.0.

5) Comparing any two systems with identical 7, 4, and y (where y#1t), the system with larger ¢,—
hence with higher overall damping—has stronger nonproportionality. The present formulas may be used
even in such system where the overall damping is subcritical but high?. This is a major advantage over
other previously reported perturbation formulas.

6) When the subsystem frequencies are tuned but the subsystem dampings are unequal, nonpropor-
tionality tends to increase with a decrease in mass ratio x. For tuned structure-equipment system with
extremely small mass ratio and low overall damping, other specialized perturbation formulas® may be more
accurate,

APPENDIX-LIST OF MAJOR SYMBOLS

Matrices (size 2X2)
C : damping matrix (Eq. (6-c))
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K : stiffness matrix (Eq. (6-d))
M : mass or inertia matrix (Eq. (6-b))
Y, : modal matrix where column j is natural mode y,;
Vectors (size 2X1)
x . displacement (Eq. (6-¢))
y; - complex j-th eigenvector (Eq. (14))
Yo, - j-th natural mode, mode shape, or real eigenvector (Eq. (9))
Scalars pertaining to subsystem s (s==a or b)
Cs . viscous damping coefficient
ks . stiffness coefficient
M . MAsSs
ws . natural frequency (Eq. (1))
& : damping ratio (Eq. (2))
Scalars relating subsystems a and b
« . mass ratio (Eq. (3))
y . ratio of damping ratios, or proportionality parameter (Eq. (4))
7 . frequency ratio, or tuning parameter (Eq. (5))
o (Eq. (20))
Scalars pertaining to mode j (j=1 or 2)
s;t (Eq. (7))
L, : modulus of smaller element of renormalized j-th complex eigenvector (Fig.3)
6, . phase angle of smaller element of renormalized j-th complex eigrnvector (Fig.3)
a; . perturbation on natural frequency (Egs. (12) and (15))
B, . perturbation on damping ratio (Egs. (13) and (16))
A; . complex eigenvalue (Eq. (11))
Ao; . complex unperturbed eigenvalue
&; - damping ratio when proportionally damped (Eq. (10))
& . pseudo damping ratio (Eq. (13))
wo; - natural frequency (Egs. (7) and (8))
w; . pseudo natural frequency (Eq. (12))
Scalars relating modes j and j({j, k) =(1,2) or (2,1))
A= (EQ- (19))
¢x=perturbation coefficient on real part of j-th mode ( Eqs. (14) and (17) )
nw=perturbation coefficient on imaginary part of j-th mode (Eqs. (14) and (18))
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