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PERTURBATION TECHNIQUE TO APPROXIMATE THE EFFECT OF
DAMPING NONPROPORTIONALITY IN MODAL DYNAMIC ANALYSIS

By Benito M. PACHECO* and Yozo FUJINO**

A general second-order perturbation technique is applied in approximating the complex
eigenvectors and eigenvalues of MDOF system with moderately nonproportional viscous
damping, Only the nonproportionality, not the overall level of damping itself, is assumed to
be either moderate or weak. Perturbation coefficients explicitly relate the complex
eigenvectors and eigenvalues to the nonproportional damping matrix of the system and the
natural frequencies and mode shapes of the counterpart undamped system. Using the
perturbed complex “modes”, the dynamic response is expressed in a form analogous to
modal superposition for proportionally damped system, but with additional terms explicitly
representing nonproportionality effect. Numerical examples are given to illustrate the
accuracy of the technique. It is pointed out that once the mode shapes and natural
frequencies of the counterpart undamped system are known, in the present technique there
is no need for numerically solving another eigenvalue problem, which would be bigger,
when the damping is to be considered. This computational advantage is even more
significant when designing or else identifying the system damping ; either task requires
reanalysis everytime that the damping matrix is changed. As a second advantage of the
method, additional physical insights into the mathematical analysis are obtained. For
example, the mode shapes of the counterpart undamped system are seen to couple to form
the complex eigenvectors,
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1. INTRODUCTION

Often it is necessary to take into account not only the overall level but also the distribution pattern of
damping within the structure. In many structures, damping capacity is distributed spacewise in manner not
proportional to either mass or stiffness, nor satisfying the generalized criterion of proportionality that has
been established by Caughey and O’ Kelly?. The damping matrix in the linear multi-degree-of-freedom
(MDOF) mathematical model corresponding to such a structure is nonproportional as to make the
eigenvectors complex and different from the mode shapes of the counterpart undamped system. The
nonproportionality is often either weak or moderate. Examples of nonproportionally damped system
include : structure with tuned mass damper (TMD) ; structure with some high-damping elements or
members ; structure-equipment system ; and soil-structure system.

In this paper, a brief review of the 30-year old generalized modal method of dynamic analysis for
nonproportionally damped system is first given, along with reasons for its apparent unpopularity among
engineers. The discussion is followed by a derivation of second-order perturbations to obtain the complex
eigenvectors and eigenvalues, in such a way that the only eigenproblem that has to be directly solved is that
of the counterpart undamped system. This is to lessen the computation effort, as well as to enhance the
physical interpretation of complex eigenvector by relating the latter to the mode shapes of the counterpart
undamped system.

The perturbed complex “modes” are next substituted into the generalized modal superposition equation
for dynamic response. The resulting equation, involving only real quantities, is analogous to classical
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modal superposition for proportionally damped system, but with additional terms due to effects of
moderate nonproportionality in damping.

All the equations necessary for implementing the method are listed. Numerical examples are given to
demonstrate the computational accuracy and physical interpretation of the perturbations. More examples
and further discussions are given in a companion paper!?

2. REVIEW OF GENERALIZED MODAL METHOD

Representing the mass by matrix M, the stiffness by K, and the damping by C, all of size X7, for
system with n degrees of freedom, the equation of motion subject to external forces represented by vector
f, may be set upasin Eq. (1) below. It is assumed that the coordinates x have been so selected that the
matrices M and K are positive definite. To be considered are cases where C is positive definite and the
overall damping level may be high but still subcritical, the latter as may be checked, for instance, by the
criterion of Inman and Andry? . Inequality (2) is Caughey and O’ Kelly's” criterion for damping
nonproportionality. For free vibration (Eq. (3)) in “mode shape” y; and “frequency” A, (Eq. ( 4)), a
quadratic eigenvalue problem (Eq. (5)) is obtained.

Mx+Cx+szf CM'1K¢KM—1C ............................................................... (1), (2)
Mif+Cji'+Kx=0 xj=yjeXp(Ajt) ................................................................. (3), (4)
(/\§M+/\jC+K) u;,=0, j=1,2, LT, m, ntl, e, nk Ty e, e (5)

Eq. (5) has 2n solutions, i. e. pairs of eigenvector y; and eigenvalue A;. In a system as specified
above, each eigenvalue is complex with negative real part ; an ordering is assumed here such that the (n+
r) -th eigenvalue is conjugate of the 7-th. The eigenvectors also are complex, These solutions of the above
eigenvalue problem not only show the natural dynamic properties of the system but can also uncouple the
system of second-order differential equations of Eq. (1) into first-order differential equations, As
pointed out by Foss? the dynamic response x () including initial displacement x, and initial velocity 4,
may be obtained by a generalized modal superposition :

x ()=2Re 33P,(1)y,= 3 (2Re P,) (Re g)~2Tm P (I ) = oroorreescorror (6)

where Re and Im stand for “ real part of” and “imaginary part of”, respectively. The scalar function P,
which might be called modal complex coordinate or modal participation function, is :

P,=ylexp(Al) [[tf (r)exp(—A)dr+ As Mx,+ Cx!)+M~:i:0}/7.j ................................... (7)

Tj:y}(z/\jM+C>yj .................................................................................................. (8)

The generalized modal method of Eq. (6), although mathematically well established, did not find early
extensive application in structural engineering practice. The eigenvectors are complex, instead of real ;
hence the otherwise convenient and widely used modal method of analysis became burdened with some
computational and conceptual difficulties. Veletsos and Ventura® observed that (a) the generalized
method is inherently more involved than the classical ; (b) when used in conjunction with the response
spectrum approach in seismic analysis, it has had to rely on approximations of questionable accuracy ; and
(¢ ) perhaps most important, the physical meanings of the elements of the solution for this method have not
been identifed as well as those for the classical modal method,

Several papers have since appeared in the literature that assume the eigenproperties to be known and
concentrate the efforts on efficiently calculating the equivalent of P; of Eq. (6). That is not to deny,
however, that the computational effort required in solving Eq. (5) itself, can be much more than the
requirement of the eigenvalue problem of an undamped system, While each of M, Cand K is of size n X n,
numerical algorithms to solve Eq. (5) actually solve the eigenproblem of a 27, X 27 matrix, Techniques of
reducing both storage and computing time are indeed much welcome®, This is particularly true when either
designing or identifying the system damping; either task requires reanalysis everytime that the damping
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matrix is changed. Some perturbation techniques have been proposed for lightly damped systems®~® that
may avoid increasing the eigenproblem size from n X n to 2nX2n. Chung and Lee?, applying the technique
of Meirovitch and Ryland®, proposed to use a counterpart proportionally damped system as the
unperturbed system in obtaining the eigenproperties. Cronin® | likewise regarding the nonproportionality
as a perturbation, perturbed the harmonic response to first order and explored the possibility of
approximating C by a “ best” proportional damping matrix that is frequency dependent and load
distribution dependent.

The present authors recently proposed!” a general second-order perturbation technique assuming that
the nonproportionality is moderate, and derived explicit real-form formulas for the perturbations on
frequencies, modal damping ratios, and nonproportionally damped “modes”. The approach is equivalent in
order, but different in formulation from Chung and Lee’s? . Details of the method are presented below.

3. PERTURBATIONS OF EIGENVALUES AND EIGENVECTORS

(1) Basic assumptions of the present perturbation method

The real eigenvalues w,; and real eigenvectors y,; of the counterpart undamped system described by
Egs. (9)~(11) below are assumed to be known, with the eigenvectors normalized as in Eq. (12). Eq.
(13) is the other orthogonality property. Note that j=+/—1 and &, is Kronecker delta.

Mi+Kx=0 = Yo, eXp(iwojt) ..................................................................... (9), (10)
(=l MAK) go,=0, J=1, 2, T, »s+qurrereeerrmmremsse it 11
yngyOstjk y({kKyDj:ngsjk .......................................................................... (12)’ (13)

In popular terminology, a,, is natural frequency and y,; is mode shape. Transforming the damping
matrix C using the modal matrix ¥, as in Eq. (14) below, and separating the diagonal and offdiagonal
elements, it is possible to formally identify a counterpart proportional damping matrix C, and a damping
nonproportionality matrix C, uniquely.

TOYy=A1a8 [2 wos&os ] OFFATAG € -+vrrvvvrerrerrermnesses st (14)
Cp: YoM diag [2 ng&j] M YoT ...................................................................................... (15)
Cn=Yo M OFffQIag CM ¥ L - rereeeesmmmnrme et (16)

By the assumption of moderate nonproportionality, the norm of C, is one order smaller than the
corresponding norm of C, The quadratic eigenproblem of Eq. (5) may now be rewritten as :
(/\§M+ A (Cp+ Cn)+K) y;=0, j:L 2,0, T, 0, m, n+1’ eontr, e, DY v (17)

where (, may be viewed as a perturbation due to damping nonproportionality.
(2) Unperturbed system

From Eq. (17), by neglecting C,, the unperturbed (or zero-order perturbed) eigenproblem of Eq. (18)
below may be obtained, with solutions known from Egs. (19) ~ (20).

(AﬁM-’-/\ij'*‘K) y,-=0 ............................................................................................... (18)
A= Aoy = — wososF Lwos V1= by, JI=1, 2, ven, Ty eoeqhrenersenrenoeseonmnetirii et (19)
Eo s lT Clolos /2 oz wwweememme e s s e e e e (20)
YT oyttt e e et (21)

where C, in Eq. (20) is replaced by C in actual calculation of (unperturbed) &,. Note that the eigenvectors
(Eq. (21)) are real and identical to the undamped modes, while the eigenvalues (Eq. (19)) are complex.
As+n 18 conjugate of A;; y;,, and y; are identical.

(3) Perturbations up to second order

The complex-valued perturbations are assumed to have the following form.

AT Aas Ay Agyremeerr s e 22)
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YsmBosF PisBay oo oo e (23)

yu=kZZJl @i (1= 85x) Yox ij:é Bk (L= 05m) Pogrerrremrrmmmrsremmmeeei e (24), (25)

where the first of two subscripts in Eqs. (22), (23) indicates the order of perturbation, In Eqgs. (24),
(25) for y,; and y,,, it is not necessary to include k=j, i.e. yo;. The vector set yo, yoy, >, Yon
constitutes a compete vector space, in terms of which the expansion of y, can be written ; however Yoy i
already included in the expansion (Eq. (23)) as the first term.

The perturbation coefficients A,;, A,;, a;x and b, are obtainable by : substitution of Egs. (22), (23)
into Eq. (17) ; grouping of terms of the same order of magnitude to yield three separate matrix equations,
namely zero-order (Eq. (26)), first order (Eq. (27)) and second-order (Eq. (28)) ; and application of
ortho-normalization properties of Eqgs. (12), (13) and expansions Egs. (24), (25).

(Ang_*. /\oij"f'K) Pos T e (26)

()ﬁ;M‘f‘ /\Ojcp+K) yn':‘“@ AosAus M + Ay Cpt Ao Cr) Bog tre et (27)

(XM +2;Cot+K) Yo =—(2 AsA, M+ A1 Cot20;C) 11— (2 Aoshost ) M+ 2;,Cot+ AyCr) Yoy (28)

Observe that Eq. (26) is identical to Eq. (18). As for Eq. (27), after some tedious but
straightforward matrix algebra, it can be reduced to formulas for Ay and g, ; likewise Eq. (28) yields
formulas for ),; and b,,. Denoting the elements of C as ¢ s the complex perturbations may be expressed as

follows.
ém':yoTkCyoj ....................................................... el (29)
Ay==0r-eeene e e e (30)
AZj:_—AOijZ:‘II @ (1= 85) Csx/2 (Mos+ @Woyaz) Tt (31)
Q= /lojéjk/(/lok'— /\0]) (Aox+2 WokEor Aas) e (32)
b= Aoy é a a —6\,’;) ékl/(/\%_ AM) (/\M.g_z worbont+ /\w) ...................................................... (33)

With Eqs. (19) ~(25) and (29) ~ (33), the complex eigenvectors and eigenvalues of Eq. (5) are now
expressed in terms of the real eigenvectors, or mode shapes, and real eigenvalues, or natural frequencies,
of Eq. (11). This can mean a big reduction in the numerical calculations. The denominators of Egs. (32)
and (33) indicate that eigenvector perturbation is particularly large when both W= wor, and §;= &

(4) Perturbations in real form

The complex eigenvalues and eigenvectors may be rewritten explicitly in terms of their respective real
and imaginary parts. The forms in Eqgs. (34) ~ (37) below are so chosen that the perturbations may take on
some physical significance. For example, Eq. (34) is analogous to Eq. (19). By this analogy, c;, is pseudo
natural frequency, and § is pseudo damping ratio of “mode” j.

A=—w;&+ icojﬁ:g .............................................................................................. (34)

;= o, m §=6,4/1 B (35) , (36)

yj=y0j+}§ Enloxt+ T ,?;; D ok * e e (37)
n n

Reyj___yoj_*_); Ciwllon Imyj:g:_"; /7T (37.3’ b)

Then a; and B, may be regarded as nonproportionality-induced perturbations of natural frequency and
modal damping, respectively. As for the eigenvector, Eq. (37) shows that an eigenvector being complex is
equivalent to damping-induced “coupling” of natural modes. As the perturbations ¢, and 7, are generally
not the same for all pairs of j and k, the relative values of these perturbations indicate which natural
modes of the counterpart undamped system are significantly coupled due to damping nonproportionality,
The formulas for a;, 8,, ¢ and 7,, are summarized below. For compactness of expressions, Egs. (38) ~
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(42) are introduced as definitions,

0oy = wosos Bosm= oy AL By ++rmmme e s s e e (38), (39)
Ri= [{(Uok— UOJ‘)2+ (p2,— ¢(2”)} aoj__{z ) ¢w} ¢o,~]/Dm .................................................. (40)
Lx= —[{(Ucuc'_ Uoj)2+(¢gk__ ¢§,~} ¢oj+{2 (Gox— 001) ¢0j§ UOj]/Djk ................................................. (41)
D ;x={(oox— 00/ +(Pex— BINE 12 (Gor— Gog) Posfteevvmreererssmmmmmmmmrs s 42)
%zé(Rm"ImO’w/%;) BLi/2 Gy wwvreee e n e e e (43)
= EZZ‘; (Rjno'oj/ $o;+ Lk) cgk/z uj trrrere e (44)
;= 531 [(1 + ’)'j)z'—(l + kj)2]+(2 x+ l?) ............................................................................. (45)
/9;"—“(7§+2 ')/j—aj)/(l-i-aj) ............................................................................................ (46)
L= R”é”ﬁ_g (Rijjl—IjkIjl) B algg rrerrnernrses s s st s (47)
77jk=1jkéjk+§(RjkLl+Iijﬂ) Tyalp roermmmmmmeeeees B R R TR R TR P TR R LRI ELLERLLE (48)

The equations may look cumbersome ; but they are in fact explicit formulas ready for computer coding.
These may be easily added to standard subroutines that are originally intended for the eigenvalue problem
of Eq. (11) subject to eigenvector normalization of Eq. (12) . Note that Eq. (12) is a very common choice of

normalization in computer implementation of classical modal analysis.

4. DYNAMIC RESPONSE ANALYSIS BY SUPERPOSITION OF PERTURBED MODES

When the perturbed nonproportionally damped “modes” are substituted into Egs. (6)~(8), to obtain
the displacement response x to a general load f including effects of initial conditions x, and i, the
following form emerges. Note that all perturbations in the following are real (not complex).

o T Tgeb g oo (49)
:cl——j: PEaD oy reemeeienessersnsens BSOSO T SO UOTO PP PO PO PP (50)
xz:,i:l é; [Eont s - Mol @i} orH Eml TP gLl Ponl oooveeeseeeseomms s 1)
= ,21 :é g} (€ nine) Ui ) BorH sl Contd) BTl Gos] -ovvverveeesseemsssommsssssss (52)

where the eigenvector perturbations ¢ and 7 vanish, as do x, and x,;, when damping is proportional. The
term x; is expected to be negligible compared to the sum .4 x, ; hence for practical purposes the second
term x, may be regarded as the main effect of damping nonproportionality on the displacement response.
Analogous equations, and similar comment as the foregoing, can be derived for velocity or acceleration
response,

The disturbance-related vectors p and g are defined below (Egs. (58), (59)). Also for compactness of
formulas, definitions are given by Eqgs. (53), (54) that are analogous to Eqs. (38), (39). The convolution
integrals of the force vector f have been written in terms of the impulse response function h; (Eq. (55))
and its derivative with respect to time £,

0= w;&; = w; \/1__‘3' .................................................................................. (53) , (54)
h,,-(t)=exp (—ojt)sin(¢jt)/¢,- .................................................................................... (55)
Xi=—2 0072 0v; 1+ ')’f) g;l (ﬁk“’ 7]5'1:)_4 Bos (1+7¢j) é{jknjk

+2§UM(§§;¢_‘ ﬂgk)_{_zk: é’jkéjk“’ k‘i; (é’jké‘jl—njknjl) R RAAIARLITERLLLERRLERERLEEE (56)

¢=2 Gosst2 Pos 1+ lj) i (é’?k" ﬂ?‘k)'—‘l o0 (1+ ')’j) é Cinlin

k=1
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+4 kg': UOké-jwjk+2 2;1 vjkéjk+'§§ (fjk’?ﬂ‘#ﬁjné‘jz) Gttt e e e (57)

Py (O=(22 bort 4) 642 ol [ £ (Db (b= det2 1, [ F (0) by (11 dr

+(2(2 ¢o;+ ¢) $:i1+2 ¥505) (Cxo+ Mic ) —2 Xsw5 (Max,) by
+{(2(2 go;+ ) G2 Xy05) (Maxc,)+2 X (Cxo+ Mx,) h.i]
/[4 ¢§j+4 ¢w¢j+ X§+ ¢§] .................................................................................. (58)

@ W=12@ tort g o218} [ £ (2) hi(t=v)de+2(2 hut o) [ 1 (2) by (1) de

+i2 (2 Bost &) 0,—2 Xids) (Cxo‘l'Mi'o)“z (2 ¢o;+ &) Wi (Mx,)} h;

(=22 dort ) 0,=2 2,85 (Mxo) +2 2 dos+ ) (Cxo+ Mo} B,]

/[4 ¢§j+4 bos i+ XH" ¢,§] .................................................................................. (59)
¥; and ¢, are perturbations in Eqs. (58), (59) ; but unlike a;, B;, &ixand 7, they have the dimension of ¢
instead of being dimensionless. An efficient computer algorithm may be written to numerically evaluate the
two convolution integrals in Eqgs. (58), (59) simultaneously.

5. NUMERICAL EXAMPLES

Systems with nine degrees of freedom are given here as examples, The structure is a cantilever with
eight lumped masses and a tuned mass damper (TMD) attached at the free end, as illustrated in Fig.1. To
emphasize the immediate source of damping nonproportionality, the original §-DOF structure itself
(without the TMD) is chosen to be proportionally damped. Two example values of TMD damping ratio,
&ma, are considered. Accordingly, the two 9-DOF examples have different levels of nonproportionality,

The mass, damping, and stiffness matrices of the
total system are of the following form :

M=diag[m, m, m;s - Ms)
reite,  —c, 0 eeeeen
CotCs  —Cy e
C= Sym.  eeeees M
CstCy —C
Cy J
kitk, —k 0 eeeens 0
kot ks  —ky  eeeees 0
K= SYym.  seesse eeaenn 0
kst ko ks
ks
The TMD mass, m,, is considered to be one percent :
of the generalized mass of the fundamental mode of the Fig.1 9-DOF cantilever with TMD at free end.
structure, The TMD frequency (,/%,/m,) is tuned to
the first natural frequency of the or iginal 8-DOF Table1 Maximum perturbations for the two examples,

system. Denote the mass matrix of the original

eight-degree-of-freedom cantilever as M,; its fun- fop 2% Enp 7 75
damental frequency as w,,; and the corresponding first max ey 0.0057 0.0131
mode shape as y,,, which is renormalized such that the max B, 0.0072 0.0212
modal displacement of the eighth degree of freedom, or max g, 0.0089 0.0197
cantilever free-end, is unity. Then the TMD prop- max ng, o 0.1971 0.2872

erties are calculated as follows,
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me=10.01 lesMsym ks=mywls Co=2 Mow1sEtma
As numerical examples, the following structural properties in consistent units are used.

me=0.04286 ks=0.4955 €o=0.01457 (§ma="5 %) or 0.02186 (&ma=7.5 %)

There being nine degrees of freedom, the real perturbation coefficients consist of nine pairs of ¢ and 3,
and nine sets of eight pairs of ¢ and 7. The maximum values of these perturbations are listed in Table 1 for
the two examples. It is to be noted that in the case of the more highly damped TMD (§n.=7.5 %), the
nonproportionality of overall damping is higher, as may be understood from the larger perturbations.
However, the cause of stronger nonproportionality is not the higher value of &, alone; the stonger
nonproportionality is due to the bigger discrepancy between TMD damping and structural damping.

As for comparing the perturbations on natural frequency, damping ratio and mode, it is observed that the
dominant effect is on the eigenvector; the perturbation 7, which converts real mode to complex
eigenvector, is most significant.

For verifying the computational accuracy, pseudo frequency (w), pseudo damping ratio (¢) and complex
“mode” (y) are calculated by the method suggested by Foss®, and values so obtained are treated as exact.
For comparison, each complex vector, say vector j, is renormalized such that the complex element with
largest modulus, say element 7, obtains a modulus of unity (L;,=1) and zero phase angle or argument
(6,m=0). The modulus and phase of element % of the renormalized j-th vector are denoted as L, and ;5.
Then for each real scalar quantity : w; &, L;; and G,
exact—perturbed

perturbed
Tables 2, 3 list for each mode the errors in w; and & ; only the maximum errors among L, and §;; are

e=percentage error=abs (

)><1oo%

shown. As comparison of the two tables shows, the errors are bigger when the perturbations are larger
(Table 3 corresponding to &ma=7.5 %) ; this is consistent with the basic assumptions of the method.
Comparing the various “modes”, in Table 2 for instance, it is observed that the errors (and the
perturbations) are larger for modes 1 and 2. These are the modes that have nearly equal natural
frequencies (woy= o), as to be expected since the TMD has been tuned to the first mode of the original
8-DOF cantilever (w;s=3.4). Other examples that are partly reported in the companion paper? likewise
show that nonproportionality tends to be particularly significant when natural frequencies are close.
Numerical examples have shown that the perturbation coefficients, particularly 5, are themselves a partial
check of the accuracy of the method, Examples herein and in the companion paper' indicate that the
pecentage error in phase, 6, does not exceed 10 % if the magnitude of perturbation 7 does not exceed 0. 3 ;
the errors of the other perturbations are then much smaller. Should the perturbations prove to be too
large, the technique shall have served as indicator of necessity of a direct solution of the quadratic

eigenproblem.

Table 2 Percentage errors when &me=5.0 %. Table 3 Percentage errors when §na=7.5 %.

Mode € sg max €, max €, Mode € sg max €5 max €g
1 0.011 % 0.049 0.223 3.633 1 0.068 % 0.356 1.110 7.629
2 0.011 0.018 0.241 3.627 2 0.063 0.288 1.220 7.593
3 0.000 0.000 0.001 0.037 3 0.000 0.000 0.006 0.072
4 0.000 0.000 0.001 0.029 4 0.000 0.000 0.005 0.068
5 0.000 0.000 0.001 0.009 5 0.000 0.000 0.003 0.044
6 0.000 0.000 0.001 0.008 6 0.000 0.000 0.003 0.018
7 0.000 0.000 0.001 0.004 7 0.000 0.000 0.003 0.009
8 0.000 0.000 0.001 0.004 8 0.000 0.000 0.003 0.017
9 0.000 0.000 0.000 0.004 9 0.000 0.000 0.003 0.030
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INTEGRAL

f

f(t)

Proceed to exact quadratic
eigenvalue problem

Fig,2 Flowchart of the perturbation technique. Numbers in boxes refer to formulas in the paper. Generalized eigenvalue problem
refers to equations (11) and (12).

Concerning computational efficiency, the present technique reduced to about one-fifth the time required
to calculate the eigenvalues and eigenvectors of the 9-DOF examples. The reduction is expected to be more
significant for larger systems. It may also depend on the system configuration,

6. SUMMARY AND CONCLUDING REMARKS

The method presented here can be summarized as in Fig. 2. All the formulas that are required in
calculating the modal perturbations have been listed. By avoiding a direct numerical solution of the
quadratic eigenvalue problem associated with nonproportionally damped system, the present technique
reduces the calculations. The accuracy check is indirectly accomplished by verifying that none of the
perturbations are too large ; and tentative criterion has been indicated by numerical examples, Physical
interpretation can be given to the real valued perturbations. Having expressed the complex “modes” in
terms of natural modes, the perturbation technique may also pave the way for other rational extensions of
classical modal combination rules for response spectrum method of seismic analysis,

The twin advantages of the present technique are even more significant when either designing or
identifying the system damping. In either task, reanalysis is required everytime that the damping matrix is
changed. The present technique requires only the eigenproblem of counterpart undamped system to be
solved directly, and only once,

APPENDIX - LIST OF SYMBOLS

Matrices
C=damping matrix
C=offdiagonal matrix from transformation of C by ¥, (Eq.(14))
C,=nonproportional part of C (Eq. (16))
C,=proportional part of C (Eq. (15))
K =stiffness matrix
M=mass or inertia matrix
Y,=modal matrix where column j is natural mode y,;
Vectors

f (t) =external force
p (1) =main disturbance vector (Egs. (58) and (50)~ (52))
g (1) =auxiliary disturbance vector (Egs. (59) and (51), (52))
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x,=initial displacement

x,=initial velocity
x (1) =displacement
x, (%) =primary part of x (%) including only eigenvalue perturbations (Egs. (49) and (50))
x, () =secondary part of x (%) due to eigenvector perturbations (Eqs. (49) and (51))
x; (1) =tertiary part of x (%) due to eigenvector perturbations (Egqs. (49) and (52))
x (1) =velocity
% (t) =acceleration

y,=complex j-th eigenvector (Eqs. (4) and (5))

Yo,=j-th mode, mode shape, or real eigenvector (Egs. (10) and (11))

y.,=complex first-order perturbation on j-th mode (Eqs. (23) and (24))

y.;=~complex second-order perturbation on j-th mode (Egs. (23) and (25))
Common scalars
{=unit imaginary number
t=time
g==percentage error
Scalars pertaining to mode j
h;(t) =impulse response function (Eq. (55))
P;(t) =complex coordinate or participation function (Egs. (6) and (7))
7,;(t) =complex normalization constant (Eq. (8))

L;y=modulus of k-th element of renormalized j-th complex eigenvector
@;x=phase angle of k-th element of renormalized j-th complex eigenvector
a;=perturbation on natural frequency (Egs. (35) and(45))
B;=perturbation on damping ratio (Egs. (36) and (46))
y;==perturbation paired with x, (Eq. (43))
x;=perturbation paired with y, (Eq. (44))

A;=complex eigenvalue (Eqs. (4) and (5))

Ao;=complex unperturbed eigenvalue (Eqs. (19) and (22))

A =complex first-order perturbation on eigenvalue (Egs. (22) and (30))
Az;=complex second-order perturbation on eigenvalue (Eqgs. (22) and (31))
&,~damping ratio when proportionally damped (Eq. (20))

&=pseudo damping ratio (Egs. (34) and (36))

gp;=absolute value of real part of A,; (Egs. (19) and (38))
o;=absolute value of real part of A; (Egs. (34) and (53))
@o;~imaginary part of A;; (Eqs. (19) and (39))
¢,~imaginary part of A; (Eqgs. (34) and (54))
x,=perturbation paired with ¢, (Eq. (56))
¢y=perturbation paired with y, (Eq. (57))

woy;=natural frequency (Egs. (10) and(11))
w;=pseudo natural frequency (Egs. (34) and (35))

Scalars relating modes j and k&

D= (Eq. (42))

Lx=(Eq. (41))

R;=(Eq. (40))
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a,;s=complex coefficient of first-order perturbation on j-th mode (Egs. (24) and (32))
b,x=complex coefficient of second-order perturbation on j-th mode (Egs. (25) and (33))
¢,x=element of C (Eq. (29))

&;x=Kronecker delta

¢;w=perturbation coefficient on real part of j-th mode (Egs. (37) and (47))
n;x=perturbation coefficient on imaginary part of j mode (Eqgs. (37) and (48))
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