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A SIMPLIFIED SPATIAL ULTIMATE LOAD ANALYSIS OF
MEMBERS WITH OPEN CROSS SECTION

By Khaled MAALLA*, Tetsuo INAKUMA**  Shigeru KURANISHI***
and Yasuharu FUKASAWA****

An inelastic finite displacement analysis of arbitrary thin-walled open cross sectional
members, using the finite element method, is presented, For the constitutive relation, the
tangent modulus approach taking into account the contribution of the St. Venant shear
stress to the yielding, is employed. In order to show the efficiency and versatility of this
analysis, another analysis based on Prandtl-Reuss flow theory (abbreviated J2F) is
developed. It is found that there is no significant difference in the results of the illustrative
examples treated by the two analyses. Besides, the J2F based analysis is improved by
including the shear stresses caused by non-uiform bending and torsion into the yield
condition of von Mises,
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1. INTRODUCTION

Ultimate strength of thin-walled open cross sectional members and frames has been in the subject of many
experimental and numerical investigations’~® in recent years. Understanding the behaviour up to collapse
and the parameters which have a direct influence on the ultimate load of these structures is rational for
safe, economical and simple manipulating design proposals.

Usually this type of structures, before the complete collapse, can undergo large deformations
accompanied with plastification of some parts of it. Therefore, in the present analysis, besides the
geometrical and structural imperfections, the finite displacement theory as well as material nonlinearity
are taken into account,

In keeping track of the large displacement experienced by the member, a moving coordinate system is
employed. This selection is motivated by the fact that all rigid body motions will be contained within the
motion of the reference system and that all static and kinematic variables are referred to the current local
coordinate system, This approach has been successfully used by many investigators in this field?9-9-9,

Among the several constitutive equations which have been proposed in the literature, the Prandlt-Reuss
flow theory (J2F)?: and the tangent modulus approach®® have been commonly used to describe the
nonlinear behaviour of steel. Rajasekran? and Murray® presented analyses based on the tangent modulus
approach. These analyses showed satisfactory results in treating problems where bending and compression
are dominant, However, their analyses fail when the collapse of the member is caused mainly by the St.
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Venant shear stress, because in their analyses, the contribution of this stress to the yielding has been
neglected. In a recent work by Sakimoto et al.? | a J2F based analysis is presented. Since J2F leads to a
coupling between shear and axial deformations in the plastic range, it is necessary to divide each small
segment of the wall into a number of layers in order to locate the yielded zones on each cross section. The
presented numerical analysis showed more efficiency and wider applicability than the ones mentioned
above. However, as far as yielding is assumed to be caused by only the axial and St. Venant shear
stresses, it is shown through the present work, that the tangent modulus approach in which the axial and
St. Venant shear deformations are kept uncoupled even in the plastic range, practically leads to the same
ultimate load that can be obtained by the use of the J2F theory.

It is widely accepted that the shear stresses caused by non-uniform bending and torsion have no
significant effect on the behaviour of thin-walled members as long as the material remains elastic,
However, when inelastic material is concerned, these stresses play a primary role in the von Mises yield
criterion. Despite of this fact, it has been common®~? to neglect their contribution to the yielding. This is
inferred from the fact that their corresponding strains, basically, can not be determined from kinematics
developed in the basis of the Bernoulli-Euler assumption for bending and the Vlazov assumption for
torsion'”, Maier'® | using different approach, develops a theory for thin-walled member, where all effects
of shear were taken into account, The shear strain on the midline of the wall which is normally taken zero
according to Vlazov's assumption, was determined geometrically in this theory, and an incremental
procedure based on the J2F theory was presented.

The aim of our work is to show, on one hand, that the use of the tangent modulus approach leads to an
efficient, versatile and simplified ultimate load analysis, and on the other hand, that the inclusion of shear
stresses due to non-uniform bending and torsion into the yield condition is possible without modifying
Vlazov's assumption,

2. BASIC EQUATIONS

(1) Virtual work expression

Because of the nonlinearity imposed by the material law and the finite displacement theory, an
incremental equilibrium equation based on the virtual work principle is adopted. In the formulation of the
problem, the deformations are assumed to be small while displacements are unrestricted. Under this
assumption, the use of a moving coordinate system approach rather than a total Lagrangian one has been
found to be more suitable®?. This approach states that all the static and kinematic unknowns are referred
to a known stressed state. As the desired new configuration is supposed to be close enough to that of the
reference state, the linearization of the incremental equilibrium equation will be permitted. Without losing
generality, these considerations lead to a simplified expression of the virtual work which can be written for
one element of volume ¢ and surface s, in the contemporary configuration, as”

f?iijb‘eijdv+ vau(?nudv=f(Te+i) 5uid8__f0”5~ewdv ................................................ (1)

where G,; represents the incremental component of the 2nd Piola-Kirchhoff stress tensor and e, and 7,
are, respectively, the linear and nonlinear part of Green’s strain tensor components. T, and u; are
increments in external loads and their corresponding displacements. These quantities are referred to the
reference state where g,; and T are acting. In their elastic analysis Hasegawa et al” have derived a similar
equation. However, the right-hand side of this equation is reduced to [ T,0u,ds, because they assume
that the reference state of one element is locally very close to the contesmporary state. The accuracy of
their numerical solution is helped by applying very small increments. In the present analysis, since
inelastic material is considered, the equilibrium of the reference state is checked at every incremental step
aiming to minimize the error caused by the linearization of Eq. (1).
(2) Strain-Displacements relationships
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It has been commonly known that the equilibrium equation will have a simple form if some quantities of
the unknown displacements are referred to the shear center and others to the centroid, This is true as long
as the material does not experience yielding. However, after the initiation of yielding, the equilibrium
equation will lose this feature because these reference points are no longer fixed, Therefore, there seems
to be no advantage to follow such formulation and the displacement components will be referred to the single
centroidal axis of the elastic cross section. Using the usual beam assumptions concerning thin-walled open
cross section, the non-zero strains are only the axial strain?,

a=u—v" (y—z¢)—=uw (z+yd)— w¢”+%— (v +w'?)

+%(y2+22) ¢’2....k ........................................... (2-a)

and the St. Venant shear strain,

where y, v and w represent the incremental displacement compo-

nents of the centroidal point in the respective directions of the local

coordinate system (x, y, z). ¢ is the incremental angle of rotation

of the cross section with respect to the longitudinal axis x. w

denotes the normalized unit warping coordinate with a pole at the
centroid, and y, z and 7 locate the point of the wall where the Fig.1 Local coordinates and rigid motion
strains are evaluated (see Fig.1).
(3) Method of analysis
a) Tangent modulus approach
The use of the tangent modulus approach has the advantage of decoupling St. Venant shear and axial
deformations leading to a simple constitutive equations®, These equations are given in the matrix form
C1 Cy
o[ ¢
Cz E Cs

of the cross section,

Ex

7s

O

Ts

where ¢,;=E;/E ; ¢,=0 and ¢;=G,/G. E; and G, being the tangent moduli of tensile and shear tests,
respectively. g, and y, are the incremental strains given by Eqs. (2-a,b) and G, and 7, represent the
corresponding stresses. In the elastic range, E, and G, are identified with the Young modulus E and the
shear modulus G, respectively. In the plastic range, however, it was suggested in Ref. 12) that they are
approximately related to each other by

G.=E, /Zﬁ ............................................................................................................. ( 4 )
In this case, Egs. (3) are dependent only on the value of E, which can be determined provided a yield
criterion has been defined, Suppose that the yielding is caused by only axial and St. Venant shear
stresses, von Mises yield criterion states that yielding takes place only if

gggai+3rgzaé ....................................................................................................... (5)

where g, represents the tensile yield stress of the material. In terms

of strains, Eq. (5) can be formally rewritten as Oe ..
' 5
2 2 G\ o 2 E
€e:5x+3 f 73—(05,/E) ......................................... (6) oyl i
Assuming a trilinear stress-strain diagram as shown in Fig. 2, the l:o i :
value of E, is defined as follows, i :
E if e.<ey ; :
E={E, if eSeeTag e (7) éy és
Es if e.=es €e
Substituting Eqs. (3) and (2) into Eq. (1), the governing Fig.2 Stress-strain diagram.
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equation becomes
[ 6d7Bd da+ [ My (0" 5+ 900"\~ M. 59+ gou)
+P (v’b‘v'+w’8w’)+Mo¢’3¢’] dx:fS(Tﬁ_fi) SuidS*[l SATFAL ++++vvevveermrerrnneernerninean. (8)

where
Cy ciy Ciz Ciw 2nc,
c1y CiYZ CiYw 2nCY

2
BzEl Symm. ¢z Gzw 2nc.z QA +oerermee e (9)
et 2ncw
1 2
%4n2c3

and the vectors d and f are defined as follows,
d'=<vu —v —w —¢" ¢>;Ff'=<P M, My M, Ts>
with

P= Azfdi; M.= AaxydA; M= Aaxsz;

M,= wadA; TsEfzntsdA ............................................................................... (10.3)
4 4

and the remaining stress resultant ), which appears in Eq. (8) is given by

M,= A0x<yz+22)dA""“"""'7 ................................................................................. (10-b)

In the evaluation of the stiffness equation given by Eq. (8), anumerical integration over A, the area of
the cross section, is required to determine the stress resultants (Eqs. (10)) and the cross sectional
properties contained in matrix B. These properties are dependent not only on the shape of the section and
its dimensions but also on the value of E, which is path dependent. To this end, consider an arbitrary
thin-walled open cross section whose profile has been divided into a convenient number of small segments
such that the linear distribution of the axial strain ¢, inside each segment can be neglected. Fig, 3 shows a
small segment of the wall and the distribution of the strains inside it. As the St. Venant shear strain has its
largest value 7% on the surfaces and according to Eq. (6), yielding commences simultaneously there and
propagates toward the midline of the wall as 7, increases. Consequently, at any reference state where the
total strains ¢, and y¥ are known, it is always possible to detect the elastic, plastic and strain-hardening
zones for each small segment. These zones are located by the following expressions (see Fig.3)

2__ 2172
Elastic zone te=t% [eg},*ix]
S
2___ .2 /2 n
Plastic zone tpzt%[egy*afy — e € Y fe
S

Strain-hard. zone t,=t—t,—f, - (11-a,b,¢)

In a segment where y* is zero, the stress state is uniform

: g2

T 3 ] ) >‘31‘
|

3

and there exists only one of the three zones, and thus the

g

value of E, will be constant through its thickness, Now it

&)
becomes possible that a partially yielded cross section is ?
- - — E
E\DES

governed by only the elastic modulus E provided that the
original thickness # of each_segment is replaced by i,

which is defined by 1Asi E; Dist.
E, Es Fig.3 Location of the yielded zones and distribution
tn= te+_15_ tg+,.E~ Bgorrrmrmmmrrenienas (12) of the tangent modulus in cach segment.
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where E, and E; are shown in Fig. 2 and ., %, and I, are given by Eqs. (11). By making use of the
distribution of E, inside each segment, the stress resultants given by Eqs. (10) will be also evaluated by
numerical integration except St. Venant torque T which will be obtained by accumulation of its increments
AT, calculated from displacements as follows

A T8: GJm¢, .......................................................... saeseeesvessesreneesnrstivencrsransetenrnnuannonns (13)
here J, represents the St. Venant constant of the modified cross section which can be obtained easily since
the distribution of the tangent modulus is known. This can be computed by the following expression

Jm=ZAb{%z+[(te+ t,F (E,—EJ+Est*—E,13/6 ch} ................. PRSP (14)

where the summation is taken over the total number of the small segments, The width of each one is Ab.

b) Prandlt-Reuss flow theory (J2F)

This theory, successfully employed by Sakimoto et al. 2, utilizes Hooke’s law for the elastic range and
Prandlt-Reuss incremental equations for the inelastic range in conjunction with the von Mises yield
criterion, This theory formally results in the same incremental stress-strain relationships as Eqs. (3),
but with different expressions for ¢;, ¢, and ¢;. In this case, ¢;, c, and ¢, must be replaced by (1-D,),
-D, and (1-D;) of Ref.2), respectively. The von Mises yield criterion which will be used in this analysis,
includes the effects of the axial stress ¢,, St. Venant shear stress 7, and the shear stress r, due to
non-uniform bending and torsion and is defined as follows

ol=c¢i+3(r,+ ‘L'w)2=0§ ................................................... (15)
Unlike ¢, and z,, 7y can not be determined from kinematics
because the corresponding strain is originally assumed to be
zero, Therefore, it will be determined from equilibrium
consideration®. Referring to Fig. 4 and using the technique of
the finite element method, we can approximately determine

the shear stress ry for an arbitrary segment 7j of the cross
section as follows

qQ__ P
Th= =TT 0% A (16)

l

where ¢% and ¢ denote the average of the axial stress acting

Fig.4 Determination of the shear stress ry.

on the considered segment at the end points p and g of one
element of length [, respectively. This equation can be easily
solved if an appropriate contour coordinate g with origin located at an open end point free from shear is
selected. The variation of these shear stresses inside the segment will not be taken into account, and only
their average will be considered.

In comparison with those of the previous section, the expressions of ¢,, ¢, and ¢, become more
complicated, and their distribution inside the segment can not be known in advance. Therefore, the
thickness of each segment is divided into many layers, and at the center of each one of the layers, the
stresses, the plastic strain and then ¢,, ¢, and ¢, are evaluated in order to carry out the numerical
integration required to determine B and £. k

(4) Tangent stiffness equation

The governing equation Eq. (8) with four unknown incremental displacements; i.e. u, v, w and ¢,
will be discretized by the F. E. M. technique and solved by an iterative procedure. The usual Hermitian
shape functions (n1)=<l——x—;£> and {(m,) =<1__3x2 +-2i3 s —x+ 2z*_ x° ;'3‘762 2 ;12 x3> are

l l 12 13 Z l? ZZ l3 l lZ
employed here to describe, respectively, the variation of 4 and 9, w and ¢ along the length of the element.

Upon substituting these shape functions into Eq. (8) and making some usual manipulations, the
incremental stiffness expression for one element in the local coordinate system (x, y, z) can be derived and

83s



106 K. MaarLra, T, IwakuMA, S, KURANISHI and Y, FUKASAWA

written in the familiar form of F.E. M. as

b‘rT[Kep+Kg]r=b\rT(R——F) ....................................................................................... (17)
where K., and K, represent the elasto-plastic small displacement stiffness matrix and the geometrical
stiffness matrix, respectively. These two matrices resulted from the first and second terms of the
left-hand side of Eq. (8), respectively. While R and F which denote the total applied external force and
internal force vectors, are obtained from the first and second terms of the right-hand side of Eq. (8),
respectively. The incremental nodal displacement vector r is given in the following order

rT:<up Up Wp $p —Wh Vo —Poi Ug Vg We bg — Wy U ...¢;> .................................... (18'3)
and the explicit form of F is

F'=(—(Py+P)/2 —(M{~M29/1 —(Mi—M9/1 —(ME—M%)/1 —(T5+T8/2 —M5 M2

ME—(TE—=TH 1/12;(Py+Pg)/2 (ME—M9/L (M3I—MEY/1 (ME—M5)/1+(T5+T9/2

M —ML —MI+(TI—T9 1/12> ............................................................................. (18'b)
It should be noted that, in deriving Eq. (17) and (18-b), except for the stress resultant P, all the
components of B and £ were assumed to vary linearly through the length of one element in the following

form
B, =(By,)y+(Bi)g— (B, ﬁl .................................................................................... (19-a)
ﬁ:(ﬁ)p+[(fj)q_,(ﬁ)p]% .......................................................................................... (19-b)

(5) Transformation and Assembly®

Before proceeding with the derivation of the incremental equations of equilibrium of the structure as
whole, it is necessary that the nodal displacement vector real as well as virtual of Eq. (17) be transformed
into a single global Cartesian system (x, y, z) of the structure. This requires that the element local unit
vectors (x, y, z) be determined in terms of the global ones. For this purpose, two assumptions are taken
into account : (1) rotations are assumed to be reasonably small and hence they can be, approximately,
transformed like vectors and ( 2) warping parameters (moments and deformations) have no equivalents in
the global system and hence they are not transformed. When the element deforms, its end cross sections
will rotate successively through their corresponding angles (4, 6., 8,) or in terms of the generalized
displacements (—w/, v, ¢) into their new directions. Since in most cases the local z-axes at the two end
cross sections do not lie in the same direction, the corresponding local axis of the element will be selected
to be along the average direction. The longitudinal x-axis of the element will be determined from the global
coordinates of the reference points at the element’s end cross sections, while the y-axis which must be
normal to the z-x plane, will be obtained using this property. The local z-axis will be ascertained by
making use of the orthogonality condition with the x-y plane. Finally, the transformation matrix can be
readily set up and by making use of it, Eq. (17) can be written in the global coordinate system, The tangent
stiffness for the whole structure under consideration will be deduced from this equation by usual assembly
procedure. Recognizing the arbitrary nature of the virtual displacements, leads to a set of non-linear
equations to be solved iteratively in the subsequent chapters.

3. SOLUTION PROCEDURE

The solution procedure of Eq. (17) for the two presented analyses is almost the same. The major
difference is in how to judge the elastic, plastic and strain-hardening ranges. The method employed will be
briefly reviewed below,

(1) Tangent modulus based analysis

In this analysis, the thickness of each segment of the wall needs not to be layered since its elastic,
plastic and strain-hardening parts are located from the known distribution of the strains as was explained in
the previous chapter. This will enable the evaluation of the components of B and f required for the
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formation of the assembled tangent stiffness matrix and the internal force vector. Then the right-hand side
of Eq. (17) is checked whether it is zero or not. If it is satisfied, the new configuration is in equilibrium
state and thus we can move to the next incremental step. Otherwise, the incremental displacement vector r,
is evaluated, and updated are the coordinates and rotations of the end sections of each element required for
the formation of the transformation matrix. Then these displacements are transformed to the local
coordinate system to find the strain increments by using shape functions and subsequently stress
increments at each segment. Then the total strains and stresses are calculated by simple accumulation of
increments and the entire process is repeated. The ultimate load is defined as the load after which iterative
convergence could not be achieved although the incremental load has been reduced to 0.1 % of it ; and the
computation is stopped.

(2) J2F based analysis

The solution procedure for this analysis and the previous one differs on the manner of the discretization -
of the cross section and on how to evaluate ¢,, ¢, and ¢; of Eqs. (3). The numerical evaluation of these
expressions depends on whether the shear stress of warping and bending does contribute to yielding or not.
In the case of no such contribution, their evaluation follows exactly the process given in Ref, 2). However,
in the other case, St. Venant shear stress z, in Ref. 2) will be replaced by (7,4 ,) in the evaluation of the
equivalent stress g, and parameters ¢, c, and c,. Here ry represents the shear stress due to warping and
bending found from the equilibrium condition with the axial stress g,. The other steps of the solution
procedure remain unaltered.

4. RESULTS AND DISCUSSIONS

In order to show the efficacity and versatility of the tangent modulus based analysis, a variety of
problems that include torsion, bending and compression are solved, and the results are compared with
experiments and the more theoretically sophisticated (J2F) analyses,

(1) Eccentrically compressed members

A Wide-Flange cross section (5X6H) column with residual stresses (g,.=—0.145 o,) subjected to the
axial load P applied eccentrically with respect to both y and z axes, is examined up to failure, For the
tangent modulus based analysis, the cross section was divided into 44 segments while 192 were required for
the J2F analysis, Using 8 elements for both, the F. E. solution in Fig, 5 of these two analyses shows good
agreement with the experimental results of Birnstiel? and the numerical ones by Sakimoto et al.? . In this
problem, since the shear stresses of bending and warping are playing a secondary role, their effect on the

P(KN)
o 2 P
£
G Warping Restrained
300} o Denotes Load Appti. Z 1A B ping ‘
Point = e
y ey=-23 , e,a-72 " L PT o
Warping p e
Restrained L "
_’———\ -~
L it Y«
200 ! \.2*‘\5 - 4
| N
o oExperiment (6) | : z P >
—— J2F Analysis | 3 /P/ o o Experiments (5)
Ty Included [ N 5.} —J2F Analysis (T Included )
1008 __ e Analysis \ 5;3%730;24 120 *===J2F Analysis (T,, Neglected)
T Neglected ‘ £5=00152 . —~Tangent Modulus Analysis
—-—Tangent Mod. - Eg=5175MPa
Analysis
0 . P .
0 oot 002 o(rd) 0 , s . P{rad)
05 10 15 20
Fig.5 Eccentrically compressed member. Fig.6 Member subjected mainly to torsion,
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Fig.7 Channel under flexure and torsion.

ultimate load is not observed,

(2) Members subjected mainly to torsion

To demonstrate the ability of the tangent modulus formulation in analyzing torsion, a wide flange cross
section member that correspond to a specimen HT-2 in Ref.5) is analyzed. The geometrical and mechanical
properties as well as the distribution of the residual stresses and their magnitudes are given in Ref. 5).
Fig. 6 indicates that the proposed tangent modulus formulation can predict with acceptable accuracy the
ultimate strength of members where St. Venant torsion plays a leading role.

(3) Beam under the combined action of flexure and torsion

Treated next is the ultimate strength of beams with unsymmetrical cross section under a simultaneous
action of bending and torsion. A theoretical model to be solved is shown in Fig.7. The effect of load
application point is taken into account, and an additional term “—(. 1515P-+0. 04 Pd”, for this particular
example, must be introduced in the diagonal element of the assembled geometric stiffness matrix. Here P
is the total applied load at the reference state and d is the distance between the centroidal point and the web
center of the cross section. The cross section profile is divided into 32 segments for the tangent modulus
solution but for the other analyses, each segment is divided into 8 layers. As can be seen from the figure,
there is a large discrepancy between the experimental and numerical results from the very beginning of the
deformation. According to Ref. 10), this error is mainly due to the setting-up of the experiments and the
difficulty of keeping the load in the plane of the web. The solution based on the tangent modulus approach
seems to be, again, in agreement with the J2F one when the shear stress 7, is not included. However, when
this stress is taken into consideration, the solution seems to be closer to experiments and that of Maier 19 _
The formulation of Maier was not based on shape functions and it was necessary to divide the member into
35 elements (here only 8 elements) for accuracy requirements,

5. CONCLUSION

An inelastic F. E. M. analysis of arbitrary thin-walled member with open cross section, is presented.
Two different constitutive equations have been employed and a variety of problems for which experimental
results exist, have been examined numerically.

Compared with the more theoretically sophisticated analysis (J2F analysis), the presented tangent
modulus analysis has adopted a more simplified constitutive equation that keeps St. Venant torsion
uncoupled with other deformations. Thus the plastic flow is prevented and the thickness of the wall does
not have to be layered. In spite of this, satisfactory results for a large range of applicability, have been
obtained. Moreover, the computation time has been reduced as a consequence of the way of the
discretization of the cross section profile and minimization of non-zero cross sectional stiffness
parameters,

In the case of J2F analysis, without modifying Vlazov assumption concerning the shearing deformation in
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the mid-surface of the wall, the warping and bending shear stress resulting from equilibrium with the axial

stress has been incorporated into the yield condition. The numerical results confirm the validity of this

approach and show that the effect of these shear stresses on the ultimate state may be negligible.
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