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PLANAR BUCKLING AND POST-BUCKLING BEHAVIORS OF
RINGS AND ARCHES SUBJECT TO DISPLACEMENT
DEPENDENT LOADS

By Akio HASEGAWA*, Toru MATSUNO** and Fumio NISHINO***

The tangent stiffness equation for a planar straight beam to reflect the displacement
dependency of loading is derived. The load stiffness matrices for water pressure and the
center directed uniform distributive loading for circular members are obtained explicitly.
Using the stiffness equation derived, planar buckling and post-buckling of elastic rings and
arches subject to a variety of loading patterns have been examined. It is found from the
computations that the displacement dependency of loadings significantly affects not only the
buckling strength, but also, even more, the post buckling finite displacement behavior of
the structures.
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1. INTRODUCTION

A variety of patterns can exist in displacement dependent loadings applicable for planar circular
members such as gravity loads and water pressure. Displacement dependency definitely influences the
buckling and post-buckling behavior of those structures, and a number of studies have been reported of this
subject, either through a rather classical analytical?™® or a more advanced computational way”™?.
However, those available seem to be rather vague in the treatments of loading and boundary conditions
particularly in the classical analytical approach or to be complicated in the computational FEM approach.
Recently, the authors have presented the analysis scheme for the elastic instability and nonlinear behavior
of thin-walled members under non-conservative forces, and have demonstrated the interesting features of
the follower forces and wind forces!”, The present paper, based on the same concept as Ref. 10), aims to
present the FEM nonlinear analysis, focusing on the characteristics of the buckling and post-buckling
behavior of rings and arches subjected to a wide pattern of displacement dependent loadings.

The present FEM analysis is based on the assembly of the well-known planar straight beam element, but
newly develops the so-called load matrices which make it possible to investigate the influences of the
change of the direction for a variety of loadings. The tangent stiffness equation of planar beams is derived
using the virtual work equation of linearized finite displacements, incorporating the effects of the
displacement dependency of the loads.

Based on the stiffness equation derived, firstly, the buckling analysis is made for a variety of loadings,
and the results are compared with the rather classical existing solutions, if any. Secondly, the
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ences the post-buckling behavior of arches. (L

2. DISPLACEMENT DEPENDENT
LOADING PATTERNS

Fig.1 shows the five loading patterns to be
investigated in this study, some of which have
existing results, and the others are for the interest

of comparison. The followings are brief explana- (e) Center Directed
tions of the loading patterns to be examined. (d) Watezv!:;e)ssure (CED)
(a) Live Loading (LL) : Distributive loading Fig. 1

is applied vertically and uniformly along the hori-

Loading Pattern,

zontal axis at the initial stage and the direction of load does not change during deformation. This
represents the live load pattern in actual situation.

(b) Dead Loading (DL) : The same as the previous live loading except that the load is applied
uniformly along the circular beam axis. It represents the dead load pattern in actual circumstances.

(c) Constant Direction Loading (COD) : Uniform distributive load along the beam axis is toward the
centre of the circular arch at the initial stage, but the direction of load does not change, being away from
the centre during deformation. This pattern is rather artificial.

(d) Water Pressure (WP) : Uniform distributive load along the beam axis is applied always
prependicular to the beam axis both at the initial stage and during deformation. This pattern is well-known
as water pressure,

(e) Center Directed Loading (CED) : Uniform distributive load along the beam axis is always toward
the center of the circular arch both at the initial stage and during deformation, This may represent a kind of
cable supported structures,

Among the five patterns described above, the direction of load does not change anyway during
deformation for (a), (b) and (c) but the initial conditions differ each other. While, the initial conditions
are exactly the same for (c), (d) and (e), but the direction of load differs during deformation. Among
them, water pressure (d) is considered as non-conservative forces, while the others are conservative.

3. EXISTING RESULTS FOR BUCKLING STRENGTH

There exist a number of existing solutions?~® for the buckling strength of rings and arches, As for
rings, the solutions have been obtained for (c), (d) and (e) according to the above classification, in all of
which the load is toward the center of ring at the initial stage. In the case both of hinged and fixed circular
arches, there have been two solutions, one for (c) and the other being not clearly specified. Those existing
solutions have been given by the following buckling formula as

where EI and R are flexural rigidity and the radius of circular beam, respectively, and k is buckling
coefficient depending on boundary and loading conditions. The existing solutions mentioned above were
obtained semi-analytically under some constraints before the era of computers, and the process of
derivation as well as the subsequent proof were ambiguous and somewhat unreliable, being subject to

reexamination,
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4. DERIVATION OF TANGENT STIFFNESS EQUATION

Based on the virtual work equation of linearized finite displacements'” for a planar beam, the tangent
stiffness equation is derived incorporating the influences of the change of direction of loads such as water
pressure (d) and center directed loading (e).

Introducing the right hand Cartesian coordinates (x;) or (x, ¥, z) with their desplacement components
(uy) or (u, v, w), the virtual work equation for the finite displacement theory of a general continuum
with volume V and surface S is expressed as

\/;[Eijé\—éij] dV—fv[—]—jiS—dij dV—fs[_fig’ﬁi] S mm () eevrrvr e (2 )

where G, is the second Piola-Kirchhoff stress tensor, &, is Green’s strain tensor, and B, T, and 7, are
body force, surface force and displacement, respectively.

Consider the reference state of equilibrium with ¢}, p}, T? and yu]=0, and then apply perturbed
displacement 1, with the surface force (nodal force) increment T; and the change of direction of body force
p%. The quantities appeared in Eq. (2) are then given by

Gu=outont ol es=ei+ el
Z?’F;D?‘l‘pf T,= T‘H. T, 77 R R ET LR PR PEEPPERPRRPRER: (3.a~e)

where superscript (°) denotes quantity defined at the reference state, and, among the increments, (I.) and
(NL) indicate linear and nonlinear terms. It is noted that body force p! is the linear term produced only
from the change of direction. Substituting Eqs. (3) into Eq. (2) and neglecting the third and higher
order terms, the virtual work equation is transformed into

f[a?j(?ei?+ ohdel+ohoel) dV—/v-[p?&uﬁpf&ui] dej;[T?b‘uﬁ Ti0U) AS=0---wweveeenee (4)

Taking into account that the reference state satisfies the equilibrium condition in the sense of small
displacements as given by

f[o‘éj&e%j]dV—f[p%&u,-]dV—f[T‘}&uJ GS D0 +eererserenesnsesee st (5)
Eq. (4) can be reduced to
fv[ggjae{.vjwr Lo el dV—l[pg‘b\ui] dv_fs[TiguJ A a0 rrereerrereeneeees et (6)

In the case of a planar straight beam element in the xz plane with x being the beam axis of centroid, Eq.
(6) is written as

l{ N/ A6 (w?/2)+E (u'+ zu”) 8 (w'+ 2w} dV—ﬁ[pf&uJ dV—/S-[Tib‘uJ AS=0rrrerreenes (7)

where E, A and N° denote Young’'s modulus, cross sectional area, and axial stress resultant at the
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Fig.2 Water Pressure. Fig.3 Centre Directed Loading.
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reference state, and ( )’ indicates differentiation with respect to z.

The second term of Eq. (7) represents the effect of the displacement dependency of loads, and then pE
is examined herein for the cases of water pressure and center directed loading.

The additional distributive load produced after incremental deformation from the reference state with
the water pressure g can be expressed, as shown in Fig.2, by

Dx=¢q sin/\ P=q COS /\_.q ............................................................................. (8'3, b)
Expanding the above into the Taylor series and neglecting the second and higher order terms lead to
=g PLEm () e et e (9-a, b)

As shown in Fig. 3, center directed loading produces the additional distributive force when an arbitrary
point of interest experiences the incremental displacements (u, w) as expressed by

px:_qu/h pz=q[R—w]/h—q ..................................................................... (10'3, b)
where } is given by

h:[u2+[R_w]2]l/2 ................................................................................................... (11)
which is approximated by virtue of R>u, w as

1/h=[1+w/RJ/R ..................................................................................................... (12)
Using Eq. (12), the linear terms of Eq. (10) is finally given as

pi:—qu/R pézo ......................................................................................... (13-a, b)

It is noted that the linearization of Eqs. (9) and (13) is consistent with the present formulation to
reflect the effect of the displacement dependency of loads in the virtual work equation of linearized finite
displacements.

In order to derive the stiffness equation of interest, the following well-known interpolation functions of
Hermite polynomials are introduced as

N=1-x/L  N,=x/L

N:=1=3(x/L¥+2(x/LY  N=—z+2x(x/L)—x(x/L}

N.=3 [IL‘/L]Z—2 [I/L]3 stx[x/L]—x[x/LJZ .................................................. (14-a~f)
Using Eq. (14), displacements (u, w) at an arbitrary point of the beam are expressed in terms of the
nodal displacements (u, w; A, u; w; A;) as

u={A}t{U} wz{B}t{U; ................................................................................ (15.3’ b)
where

{Al={N; OO N, 00} {BI={0N; NyO Ny Nt ooveeemmmmmm e, (16-a, b)

{ U }z{ Us Wi A Uy Wy Ay %t .............................................................................................. (17)

Noting that the second term of Eq. (7) represents the displacement dependency of loads and the third
term is the incremental nodal force, substitution of Eqs. (15) into Eq. (7) leads to the following stiffness
matrix, reflecting the displacement dependency of loads, as

FF V(KA Ko KL U beeveoveeeeeeeeee oo, 18)
in which | F' | denotes nodal force vector, K, and K, are the well-known small displacement and geometrical
stiffness matrices for a planar beam, as given by

{F E:{ PP.C;, Py, P.;C; }t ......................................................................................... (19)
KE=fEA A HAP x+fEI B H B g oveerermeee e (20)
:f N B H B o v vvvereeme e e et (21)

with | denoting the moment of inertia of beam and K, represents the load stiffness matrix newly introduced
in this study to reflect the effects of the displacement dependency of loads.

Noting the relation for Egs. (7) and (9) as

DEOU QAGUq [ ) G+ e ermmemmere ettt 22)

the load stiffness matrix for water pressure can be expressed as
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Kszq}AHB' }tdx .................................................................................................. (23)
In the case of center directed loading, noting the relation as

pfé\ui:[_ qu/R] TR E R TR E L LT D L LR T e T TERT LRI RTSTERERER (24)
the load stiffness matrix is expressed as

Kng/R{AHA}’dx ............................................................................................... (25)

Performing the integration for Eqs. (23) and (25), the load stiffness matrices are explicitly expressed by
0 —1/2 —L/12 0 1/2 L/12

0 0 0 0 0 0
_lo o o 0 0 0
K=a\0 10 1512 0 172 —L2 (26)
0 0 o 0 0 0
0 0 o 0 0 0
for water pressure, and
L/3 Sym.
0 0
0 0 0
K=a/Rl 0 0
U816 0 0 L @n
O 0 0 0 0

0 0 0 0 0 0

for center directed loading.

It should be noted that the load stiffness matrix for water pressure is nonsymmetric, indicating the
non-conservativeness of loading, while that for center directed loading is symmetric, making clear that the
load is conservative. In case that the load is non-conservative, dynamic instability called flutter may be
incurred, but it does not always happen, depending on the problems concerned. In order to examine a
possibility of dynamic instability, dynamic analysis incorporating the mass matrix is required, from the
nature of which it is made clear whether the dynamic instability will be involved or not through the solutions
of frequency . real or complex!.

5. BUCKLING AND FINITE DISPLACEMENT BEHAVIOR OF RINGS AND ARCHES

(1) Buckling of rings and arches

An assembly of the straight beam elements is used to approximate rings and arches for their initial
geometries, The number of elements of 32 are adopted in the following computations.

Buckling of rings and arches can be investigated by performing the eigenvalue analysis for the tangent
stiffness matrix including the load matrix. The internal axial stress resultant N° is determined by the small
displacement analysis at the initial configuration subject to distributive load g. The dynamic stability
analysis has been made for the case of water pressure throughout examples stated herein, and it has been
confirmed that no dynamic instability occurs although the load matrix is nonsymmetric,

a) Rings

Table 1 shows the comparisons between the present FEM analysis and the existing results? for the
buckling coefficients of rings. Since the first mode of the present analysis produces the rotation of rigid
body as shown in Fig. 4 (a), resulting in trivial solutions, the buckling coefficients have been obtained for
the second mode as given in Table 1 and Fig. 4 (b), and agree well with the existing results for a variety of
loadings.

b) Circular arches ’

Buckling analysis has been performed for a hinged circular arch, as shown in Fig. 5, and the results are
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Table 1 Buckling Coefficients of Ring.
1st.Mode ‘[ 2nd.Mode
Ref. (3) 4.0
COoD T
FEM 0.0 I 4.03
Ref.(3) 3.0
WP
FEM 0.0 T 3.02
Ref. (3) 4.5
CED
FEM 0.0 1 4.53

(a

(b

~ o

) Ist Mode

) 2nd Mode
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Fig.5 A Hinged Circular

Fig.4 Buckling Mode
of Ring.

Arch.

given in Table 2, indicating that the buckling coefficients do not depend so much on the loading patterns,
when the subtended angle is small. However, with the increase of subtended angle, the difference becomes

remarkable, reaching to the buckling coefficient for water pressure being as much as three times that for

constant direction load and 5 times that for dead load, when subtended angle becomes 300 degrees,

although all the values themselves are drastically decreased. A reason why the buckling coefficient

becomes zero for ¢=36(° comes from that at
this configuration the structure is a ring with
one point hinged support, resulting in an
unstable structure from the beginning.

Comparisons with the existing results? are
given in Tables 3 and 4. Good agreements
are observed for the constant direction load-
ing as given in Table 3, Table 4 indicates
that the existing result where its loading
pattern could not be identified has agreed
with the present analysis for water pressure.
A similar comparison and observation of the
present analysis with the existing results has
been made also for the fixed circular arch, as
given in Table5 and 6,

(2) Finite displacement behavior of

arches

Displacement dependency of loads seems to
influence not only the buckling loads but also
the finite displacement post-buckling be-
havior of structures, In order to obtain the
nonlinear behavior of arches subject to dis-
the
iterative analysis scheme is introduced as

placement dependent loading, non-
presented and confirmed in its precision in
Refs. 10) and 11) . The tangent stiffness Eq.
(18) is utilized at present study, incorporat-
ing newly the external force increments in the
form of the equivalent nodal force vector
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Table 2 Buckling Coefficients of Hinged Arch,

o 60° 120° 180° 240° 300° 360°
LL 36.87 9.29 3.50 1.08 0.14 0.0
DL 35.90 8.27 2.59 0.63 0.09 0.0
COD 36.04 8.73 3.28 0.99 0.13 0.0
WP 35.09 8.00 3.01 1.25 0.44 0.0
CED 36.08 8.93 3.80 1.71 0.40 0.0
Table3 Constant Direction Load for Hinged Arch,
o 60° 120° 180° 240° 300° 360°
Ref.(3)| 36.00 8.72 3.27 1.00 0.13 0.0
CcoD 36.04 8.73 3.28 0.99 0.13 0.0
Table 4 Water Pressure for Hinged Arch.
o 60° 120° 180° 240° 300° 360°
Ref.(3)] 35.00 8.00 3.00 1.25 0.44 0.0
WP 35.09 8.00 3.01 1.25 0.44 0.0
Table5 Constant Direction Load for Fixed Arch.
a 60° 120° 180° 240° 300° 360°
Ref.(3)| 74.94 19.59 9.00 4.63 1.99 0.70
Ccop 76.41 19.62 9.02 4.65 2.00 0.71
Table 6 Water Pressure for Fixed Arch,
o 60° 120° 180° 240° 300° 360°
Ref.(3)| 73.32 18.14 8.00 4.59 3.27 3.00
WP 74 .42 18.17 8.02 4.61 3.29 3.02
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Fig.6 Post Buckling Behavior of Circular Arch with both Ends Hinged.
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(a) Water Pressure (b)

Fig.7 Deformed Configurations of a Circular Arch with both Ends Hinged.

(see Eq. (16) in Ref. 10)) where the change of the direction of load is excluded as in the common nonlinear
analysis. To avoid bifurcation in tracing the equilibrium path, a small disturbing horizontal force P=10"°
gerL is given at the crest of arch. After having confirmed that there exists no dynamic instability, the
nonlinear static finite displacement analysis has been performed.

Fig. 6 shows the results of computation for a circular arch with both ends hinged. The results indicate
that the displacement dependency of the load produces much more influences on the post-buckling behavior,
as naturally understood by the large deformations involved. Water pressure produces the snap-through
phenomenon, while the continuous unstable behavior is observed for the constant direction loading. Fig.7
shows the deformed configurations of the hinged arch both for water pressure and the constant direction
loading.

The same structure as given in the previous example but with the different boundary condition (one end
fixed and the other hinged) is also investigated, and the computational results are shown in Fig. 8 for the
load displacement relation, and in Fig.9 for the deformed configurations. In this case, both of water
pressure and the constant direction loading have produced the snap-through phenomena with clear

distinction,
6. CONCLUDING REMARKS

Tangent stiffness equation for a planar straight beam to reflect the desplacement dependency of loadings
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® Buckling Coefficient
2.0 k = 2.46 for COD
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Fig.8 Post Buckling Behavior of a Circular Arch with one End Fixed and the other Hinged.

SISy Sy

(a) Water Pressure {b) Constant Direction Loading

Fig.9 Deformed Configurations of a Circular Arch with one End Fixed and the other Hinged.

has been derived, where the load stiffness matrices for water pressure and the center directed uniform
distributive loading for circular members are obtained explicitly, Using the stiffness equation derived,
planar buckling and post-buckling behaviors of elastic rings and arches subject to a variety of loading
patterns have been examined,

The present computational results have been compared with the existing results, if available, for
buckling strength. The results of buckling strength for rings have agreed well with the existing results, It
has been made clear that the influences of the direction of loadings for circular arches become remarkable,
when the subtended angle of arch increases. The existing results which were rather vague in their
definitions have been carefully examined based on the present study.

The post-buckling nonlinear finite displacement analysis for circular arches have been successfully
performed. The results indicate that the displacement dependency of loadings significantly influences the
large deformation behavior of structures, more than the determination of buckling strength.
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