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SOLUTIONS TO STRETCHING AND BENDING OF
TRANSVERSELY ISOTROPIC, CIRCULAR THICK PLATES AND
THEIR APPLICATION

By Isamu A. OKUMURA*

A solution to a state of plane stress and a solution to a state of generalized plane stress of
transversely isotropic, moderately thick plates in cylindrical coordinates are proposed.
The solutions are derived from a generalized Elliott’s solution which includes five potential
functions. Expressions for components of displacement and stress in the solutions are
presented in referring to non-axially symmetric problems of transversely isotropic,
moderately thick circular or annular plates. As an application of the solutions, an
axi-symmetric bending of a transversely isotropic, moderately thick circular plate
subjected to a partial load is analyzed.
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1. INTRODUCTION

The latest studies on two-dimensional or three-dimensional elasticity problems have been turning to
those on anisotropic solids. Orthotropic and transversely isotropic solids among various classes of
anisotropic solids are mainly treated from the practical necessity. A research on three-dimensional
elasticity solutions to orthotropic solids is very complicated, because orthotropic solids have nine
independent elastic constants. Therefore, three-dimensional elasticity solutions to have been found so far
seem to be few except for those by Hata? and by Sonoda and Horikawa?. On the other hand, a research on
three-dimensional elasticity solutions to transversely isotropic solids is comparatively simple and has been
done by Elliott? and Lodge?, because the number of independent elastic constants is only five. However,
Elliott’s solution yields the contraction of the solution that two independent potential functions are reduced
to one potential function under equal roots of a quadratic equation, The author has proposed a generalized
Elliott’s solution in a previous paper” as a solution to make up this deficiency.

Though the three-dimensional elasticity solutions as stated above are due to be theoretically applicable
to analyses of stretching and bending of thick plates, they are not practically applicable to analyses of
moderately thick plates which are usually called thick plates because of the difficulty in numerical
calculations. Therefore, a simplified and widely practicable elasticity solution is highly required as a
solution to anisotropic, moderately thick plates. Studies on thin plates have been done by Lekhnitskii®,
Reissner and Stavsky”? and by Wu and Vinson®. Also, studies on the theory of bending of orthotropic,
rectangular thick plates have been done by Girkmann” and Panc'®. The theory of moderately thick plates to
have been stated in Love’s book!? seems to be the most exact in the theory of stretching and bending of
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isotropic, thick plates, The theory consists of a plane stress solution and a generalized plane stress
solution' | If the theory is extended to that of anisotropic, thick plates, it becomes a strong means to
analyze orthotropic or transversely isotropic, thick plates. However, studies on cylindrically anisotropic
or transversely isotropic, moderately thick plates in cylindrical coordinates seem to have been hardly
found even at the present time. The author only knows a study on a three-dimensional, thermal stress
analysis of a transversely isotropic, very thick circular disc by Noda and Takeuti®?

From the above point of view, this paper proposes a plane stress solution and a generalized plane stress
solution to be available for analyses of stretching and bending of transversely isotropic, moderately thick
plates in cylindrical coordinates, The derivation of the solutions is very complicated in contrast to that of
thin plates, because displacements and stresses vary with the thickness coordinates in case of thick plates,
The author has previously derived a plane stress solution and a generalized plane stress solution to
isotropic, thick plates in cylindrical coordinates by making use of stress functions. However, in this
paper, the generalized Elliott’s solution in place of stress functions is used for the derivation of the
solutions, because it is difficult for transversely isotropic solids to derive the solutions from the direct use
of the equations of equilibrium and the compatibility conditions in terms of components of stress,
Therefore, in this paper, five potential functions included in the generalized Elliott’s solution are
ingeniously determined and relations between arbitrary constants included in the potential functions are
determined from certain conditions of stresses to be satisfied. The determination of the potential functions
is highly important to the construction of the solutions and is a point to need due consideration. The
solutions are concretely stated to non-axially symmetric problems. An axi-symmetric bending of a
transversely isotropic, moderately thick circular plate is analyzed as an application of the solutions,

2. A GENERALIZED ELLIOTT'S SOLUTION

We shall use a generalized Elliott’s solution in the previous paper”, If we use cylindrical coordinates
(7, 8, z) such that the axis of z is taken parallel to the axis of elastic symmetry, the solution is expressed
in terms of components of displacement, that is, U, U, and u, and elastic constants of transversely
isotropic solids, that is, ¢, as

ur=587 [¢M+¢03+% (,,._2%4_2.%%)_.72@“%%]_,_%%, ......................................... (1-a)
u(,:%"a%_[%ﬁ%ﬁ% (T%%L+Z%%)"7z¢l—73¢s]_%%‘, ......................................... (1-b)
uz:_é@z_ [kx (01— 2:00)+ k2 (bos— 2ah5)+ % (kl'l‘ %’:T‘.{,kzz%%)}, ..................................... (1+¢)
in which
Vigatu a;::‘zo, vf¢%+y,%2§;i=o, vf¢1+uz%;9-il=o, Vf¢3+u,§§$=0;
Vig+y, g;‘/z’zo’ vi= aar: +%‘aa_r+';17‘§§f ...................................................... 2-a~e)
—_ 1 [MZVZ] —_ Clzlyiiyz“ [M:VZ} = ’ [Vlzyz:l ............... 3

n= 0 [n*wl "= 2 Cun— Cu [M:\:Vz}’ B V;Z_uzyz [u*un] ' (3-a~¢)

U=V, Cule—Cy

and »; and y, are the roots of
CuC“Vz'*'[Cm (C13+2 C“)— C”C”] Y Ca3Cag==0), vvevrmmam e (4 )
and k,, k, and y are the following parameters and ratio of the elastic constants, respectively :
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We will call the above solution by the name of the generalized Elliott’s solution,
The generalized Hooke’s law of transversely isotropic solids is expressed as

Orr= C116rr+ C12800T C13€22,  Too™ Ciz€rrt Cri€oot Cis€zz,  0z2™ Ci3€rrt Ci3€00 C33€225

=2 Cistors  Gar=2 Casbarr  Grom2 Caglro, *woior o imrms i imsmsssessosesss e (6-a~f)
in which
1

C“:é_(cu_cw), ..................................................................................................... (7)

and ¢,, and ¢;; are stress tensor and strain tensor, respectively.
Components of strain are expressed in the form

_ OUr _Ur 1 Ou _ Oug __l<aue ‘i8u2>
e =5y feo= o T op0 2T gz % 2\az 1 of

(G (-

’

e\7r 28 Tor 7

Thus, the generalized Elliott’s solution, the generalized Hooke’s law and the components of strain which
are needed for the derivation of a plane stress solution and a generalized plane stress solution have been
stated.

3. A PLANE STRESS SOLUTION

We denote the thickness of a plate under consideration by A and put the origin of the cylindrical
coordinates on the middle plane of the plate. A plane stress solution which will be sought here is a solution
satisfying the following conditions :

0-22:0’ O'Bz:O, Uzr‘:o J S R R R AR AL (9.a~c)
We put the potential functions satisfying Egs. (2-a,c, e) in the form
o0 w n o @ ,rm+2 ,rmzz
¢01,_m2:0 Dm coS mgr -’—;nz-':o Dm coS mg [m_ " ]’ ......................................... (10.3)
-3 Fo _rmt __,_Tmzz] —$ EDgj {_____7‘"”2 ___Tmzz} .......... .
p=3 Ficosmd| gy | 4= S EAsinml |3, | (10-b, <)

in which DY to E¥ are arbitrary constants with superscripts (1) or (3) for the distinction,
Expressions for the components of displacement are obtained from the substitution of Egs. (10-a~c) in

Egs. (1-a~c). Also, expressions for components of stress are obtained from Eqs. (6-a~f) and (§-a—~f)

with the aid of the expressions for the components of displacement. For economy of space, only

expressions for the components of stress which are needed for the derivation of the solution will be stated.
Equation (10-a) yields

k %
ooN=2 (Cw_ Cn—’) S DI COS MO P, oo (11-a)
Y/ m=0
1+k = .
03?22 Cas ! z 20 D('i) msin m@ 7-7”‘1’ ................................................................. (ll.b)
1 m=
1+k J
0@;}’:—-2 Cas » ! ZmZo ('i)mcos mo ,rm—l' ............................................................. (11.(:)
A =

Equation (10-b) yields

o m—
o%P=2 Z_:o FYcos mé { sl (m+2)— 7= cuks N . 73] P, e (12-a)
9 o
o= Cus z mz_"o FYm sin mé [pm 1+ k)—(n+ kﬁ’s)] P e (12.b)
2¢ e ‘ '
a-g;’?)-—_.— —-——V-:i z ,:Z_lo F'ml) m cos m@ [%m (1+ kl)_(72+ klys)] PIL e (12.0)

Equation (10-c) yields
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2 Cu had
=2z Z E% m sin mor™!, a‘;’f’z--T 22 EQmcos mOr™ . e (13-, ¢)
3 m=0

In the first place if we impose the following condition on the component of stress from condition (9-a) :

Gzz . g 22 (), e ..................................................................... (14)
we obtain the following relation between the arbitrary constants :

n= & ._._C_,_h_ N S T K ¥ O
D= —F% ( >{C13V1 C33k [V173+ Uz(z K 72)]+71m }’3}, (15)

In the second place, if we substitute the above arbitrary constant into Eqs. (11-b, c) and impose the
following conditions on the components of stress from conditions (9-b,c) :

oSN+ 582 +0.<03 0, a(gﬁ-{-a;}f—f-a T, e (16'3, b)
we obtain the following relation :
w_ o {M } .................................................
ER=FR(0) [ a2 5 )l 0 (17)

Thus, relations (15) and (17) between the arbitrary constants which have to satisfy the conditions of the
plane stress solution have been obtained. If we use these relations and the following relations :

2 Ciu Vs 2 Cui Vs

U173+V2 (2 71—72)::—?”-,/2—_:(:—447 yz_"ya:m, ............................................... (18.3’ b)

we obtain the plane stress solution as the results :
U= ULV 0D 30

=,§]Dcosm0[ Wy, e ‘+me5[ +1{76[u1 m+2)—vym (1+ k)] —(m +2)+ mus )

+2 kl%mrmdzz]}y ......................................................................................... (19‘3)

Ue=ug"+ uf¥+ 4%

o m+1
:ng( )S]n ma[D%me 1+F“75[m+1{YGEVlm"%(l“”"k m+2)] m+V3V4(m+2)}
+2 klysmr"‘“z’“, ......................................................................................... (19'b)
U= U+ U =4 k7 702 ‘i,(_)F(’;’)COS TGT™, weeeeemmnn e (19-¢)
Orr (01)+U$TZ+ (03)

=”§0 cos m6 {Dxm (m—1)(cu—cu) 7™+ FE%[r™%m (cu— cup) n— 1 1+ k)

+2 {VI (C11+ c12>_2 Clsklﬂ—' Cn (m +2)+ Ciz (m —2)+ M s vy (Cu“ C;z)}
+2m(m—1)(c,— Ci2) Ky Yo T 22 e (lgd)
Ooo= 065+ 088+ als
'—'go cos m8 Dum (m—1)(cu—cu) 7™+ FY%[r™ % [m (cro— cn) 1y — vs (1+ ko)

+2{n (cint Ccu)—2 cukidl—cu. (m+2)+ culm—2)+ My (Cra— cull
+2m (m— 1)(cis—c¢q) kl%,rmvlzz];y ...................................................................... (19'8)
Oro= 0%+ 0%+ g%

=2 Cssg;{)(") m sin mé {D;};’(m‘_l) Tm"z"F(rWs[Tm“"{‘% [ (1+k1)_V1:{_U3U4}

‘—2(m—"1)k1767”m'222]}, ....................................................................................... (19.{)
in which
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Caa Cis Cu
= , = e ca~c
% Crve™ Cus % Cisvi— Casky e (20 )
Though the solutions with minus exponents of power may be obtained from putting m=—m in Eqs.

(10-a) to (19-f) for m=>2, they are omitted on account of limited space.

Thus, a plane stress solution to a transversely isotropic, moderately thick plate has been stated,
4. A GENERALIZED PLANE STRESS SOLUTION

We denote the thickness of a plate by h and put the origin of the cylindrical coordinates on the middle
plane of the plate in the same manner as the plane stress solution. A generalized plane stress solution which
will be sought here is a solution satisfying the following conditions :

022=0, (Uez)z=ih/2:Oa (Uzr)z=ih/2:0~ ................................................................ (21-a~c)

We put the potential functions satisfying Eqs. (2-b,d, e) in the form
o . n o @ ,rm+2 7_771.23
¢03__m220 Am cos mar z+7nZ='l0 Am coSs ma [Z(m—]—l) z 3 " }’ ..................................... (22.3)
(1) Tt "z’ S ) o n
Z} CYcos mor z+Z Ciycos mﬁ[ ACES A ] ¢——"§0 BYsin mér™z,
............................................................................................. (ZZ.b c)

in which A% to BY are arbitrary constants.

Equation (22-a) yields

O'Egzl)‘_'z (C]S Cis— )z i A(;l) coSs me/rm, .................................................................. (23.a)

Va m=0

o= ca 1+ k)| 2 () Abm sin mor™-+ 3 (=) Adm sin mé | 55— 2], - 23b)

m=0

ozr=Ccu(l+ ks {;Z:iﬂ ARm cos mor™ mi:, cos mé [ (':n—:zl) r’"“—% r"‘"zz]}. ----- (23:¢)

Equation (22:b). yields

©,2) 3) m-1 ) m—+2 mt1
uPP=(n— )@)zZ}C m cos mér +Z‘,C cosm&[ (m+1)(7 7)™tz
_3_77?/1_ 3 71_73)7.7&7123], .................................................................................. (24- )
uS?=(n—7n z i (—)C¥%m sin mor™ '+ f} (=) CY m sinmé [ 1k mHz
° A " = 2(m—+1)
3
7;;”!73 m—lz-?]’ ........................................................................................ (24+b)
3y, — o
o2 =2 [013(71_73)_ Casks 7‘% 72] Z 25 CWEOS MOT™, +orveseemsmssmmssssssss s (24-¢)
eS2=culn 1+ k)—(n+ kz?’z)]mil (=) C¥m sin mOr™ '+ cu g (=) Clm sin mé
m+1 m—-x 2
'[ﬂ%fl)[” A+ k)= (5 Fa )] =2 [3 7 (1+ k) — (7z+km)1}, ~~~~~~~~~~~~~~~~~~ (24-d)
e =culn U+ k)—(5+ k7)) g]o Fm cos mor™ '+ Cu Z Chcos mb
'{—Z{?n-—!—-i"z_l){% A+ E)—{(n+ k7)) TMH_%B 71+ k)— (3t kz)’z)] ne 122}, """""" (24-¢)

Equation (22-c) yields

up¥=z Z BYm cos mOr™', uS¥=z 2 (—)Bymsin mér™', o%P=0;
m=0
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oS =cy Z (—)BYm sin mor™?, &%¥=cu. ZO BUm cosS mOr™ . e (25-a~e)

In the first place, if we impose the following condition on the component of stress from condition (21-a) :

GOD A GODIZm(), vttt 26)
we obtain the following relation between the arbitrary constants :

Ci3
®— oW b (3 Y ) b e
A3=cy () [ o2 bant m @ = p =G 5 ). @7)
In the second place, the sums of Eqs. (24-a,b) and (25-a,b) yield
°2+u<°3)“zZEB”+C3)( %]mcos MOT™ T eee, v PR F PRI ( zg.a)
WS Y=z iﬂ —)[BY4 CY (— 1] 1, SI0L M OF™ A ven . wvemeereemeeeeeeee e (28-b)

The first terms of the summation notations in the above equations are needless solutions, Therefore, we
exclude their terms and so obtain the following relation :

B e O (g ). oeeeemesm ettt e e e (29)
Lastly, if we substitute relations (27) and (29) into Eqs. (23+b, c) and (25-d, e), respectively and impose
the following conditions on the components of stress from conditions (21-b,¢) :

(09 + 692+ ag;))z_ih/z 0, (oG4 g%P+ 50 )z—th/z 0, crereer e (30-a, b)
we have
W CY cis(1+ k)

AR (ko) CR ks (n— =" {7z—ys+h[w§+» 1] N (31)

From the above equation, we obtain the following relation :
A% (1+kz) h*CY Cis 1+ k)
() __ — — e Tyt (2 Y — N e
Cy PR C7— +4 w ks ('}’1 %) [72 ¥+ Crsta— Caska untw@rn— 72)]} (32)

Thus, relations (27), (29) and (32) between the arbitrary constants which have to satisfy the conditions of

the generalized plane stress solution have been obtained. If we use these relations, Eqs. (18-a,b) and

Eqgs. (20-a,c), we obtain the generalized plane stress solution as the results :
ur=u"+ud?+u?

=2z i cos mé {A(nlz) mr™ C‘”( ) [Zi? ”‘“(vm—l)—-z-gm* 'r"’“zz(%-%)“, """ (33-2)

;Zjo( )msin mﬁ[ n C“ ( ) {m%—l (Vz%—“l)’“% me 22(77_y4)}}’ ........ (33.}))
U= 20 + (02
:g( Jcos mﬁ[ ”Cu’“( ) [m+1 a1+ nu)
+rr"‘[§b’k_[% 1+ ks)— w]—2 772«2”}, ................................................................. (33-¢)
0.(;7;) (02 +g(0 ,3)
=z§ocos mH[A‘,},’m (m—=1)(cu—cw) 7" 7*—Ch ( ) [ Mnlvlcn(m+2)—ci(m—2)
—4 kaz]"‘cu (m+2)+ sz(m“z)}‘“z_m*(gm‘t}_)(cu— C) "R (77*" VA)]}, """"""" (33'd)

Ooo= 00+ g2+ 50
d Y,
=z g:lo cos mé { wm (m—1){(c—cy) r™*—CW (ﬁ) ¥ [r”' {rlwicuim+2)—cu (m—2)
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—t ek = cu(m+2+ e (m—2}— 2PN (0 o) et 2 ()] o (33-¢)
Ogz 0'02%}'*" 0'(0 Z)+ (0 3)
. (;‘4 ( Vz> [ (1 o) — ] (HP—4 27) gﬂ CU SN MO T, cveeeereveenaieeieeie e (33-)
Oer= 0%+ 0+ o2
= CZ“ (””) w7 A+ k) — w] (B2 —4 2%) mi:;o(_) COM COS MO F™7, cwvreeememimeeaenneiean (33-g)
Ore <0U+ 0'7002)+ 0'(03

=2 Ces zmi;o(—) m sin mé {A%’(m—l) ™t —CY (L) ¥ [r’”(vm-l)

141
2(m—1
__._L"%_). 2z (y— 1/4)“, ............................................................................ (33-h)
in which
Ci3
gy g (34)
Though the solutions with minus exponents of power may be obtained from putting m=—m in Eqgs.

(22-a) to (33-h) for m=2, they are omitted.
Thus, a generalized plane stress solution to a transversely isotropic, moderately thick plate has been
stated.

5. AN APPLICATION OF THE PRESENT SOLUTIONS TO AN AXI-SYMMETRIC
BENDING OF A CIRCULAR THICK PLATE

As an application of the solutions stated in Chaps. 3 and 4, we analyze an axi-symmetric bending of a

transversely isotropic, moderately thick circular plate as shown

in Fig.1. 2
(1) A homogeneous solution ed e do]
If we put m=0in Eqs. (19-a~f) and (33-a~h), we obtain the t‘ q
plane and generalized plane stress solutions to axi-symmetric W2
. . . 0 b n
problems of transversely isotropic, moderately thick plates, We s
¥

use their solutions as a homogeneous solution here. From adding
. . . I
the plane and generalized plane stress solutions, expressions for ‘

a Sle a ]

components of displacement and stress to have a direct bearingon  Fig.1 Coordinate system of circular plate.
boundary conditions are as follows :

uy=—4 Fik%rz+A—C 2 k27 7'2(“277—1+V1V4>+ll_[77(l+kz)_lf4]—2 P77 Al MERRED (35-a)
W Zkz

on=—2F% feut ci—Y%lu(cutci)—2 Cuskil}

_ch< )752{77{v2(cu+c,2) 20131:2]—(01,+c12)], e (35-b)

in which F,, A4, and C, are arbitrary constants to be determined from given boundary conditions on the
circular edge.

(2) A particular solution

A particular solution is needed for satisfying loading conditions on the upper and lower faces of the
plate, because the homogeneous solution can not satisfy their conditions. The potential functions to be
needed for the axi-symmetric bending are as follows :

Bor= 23 o @ )(A“)cosh =+ Ly'sinh W)
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ask

= 3 (1) ) 2 [\ R¥4
?s s}]:lJo(asr)<CS coshﬁ+Ms smhﬂ>,

in which 4% to MY are arbitrary constants to be determined from given loading conditions on the upper and

lower faces and a,=2A,/a.
Expressions for components of displacement are obtained from the substitution of Eqs. (36-a,b) in

Eqgs.

(1-a,¢). Also, expressions for components of stress are obtained from Eqs. (6-a,b,c, e) and

(8-a, b, ¢, e) with the aid of the expressions for the components of displacement. Their components are
distinguished from the homogeneous solution by superscript (1).
(3) Loading and boundary conditions
We consider the circular thick plate whose upper face is subjected to a partially distributed uniform load
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over a circular area and whose lower face is free from surface tractions. Then, loading conditions become

on z=%, O =0, Gggm=— D (T), wereerermrsremmsene et e (37-a, b)
on zz....g_’ G0,  Gagm=(), orererrrretae e (37-¢, d)
in which
g [0<r<d] e
= I R A P S e PP P PO SPUTEPPPP PPN 38
p("') 0 [d<7‘£a] gesjo(as/r) ( )

The coefficient e in the above equation denotes a Fourier coefficient in a Bessel expansion of p (r) and is
expressed in the form
—2g ( > Ji(Ad/a)
al AJi(As) 7

From imposing loading conditions (37-a~d) on the components of stress, that is, ¢, and o3}, the

AS=I‘OOt’S OF Jy (A0, emermenmnernssri (39.3’ b)

arbitrary constants in the particular solution are exactly determined.
If the circular edge of the plate under consideration is simply supported, boundary conditions become

on r=q, T=0, (Up)go=0,  Mpm=0, --rreeveerrmreerseeenti st (40-a~c)
in which :

/
_f O+ o4 dz, MT:/::/: (G gM) da . crremrersmre i (41-a, b)

From boundary conditions (40-a~c), the arbitrary constants in the homogeneous solution are exactly
determined.

(4) Numerical results

Numerical calculations were made for a circular thick plate with d /a=0. 3 and various values of e=h/
(2 @), referring to two materials of transverse isotropy and a material of isotropy. The values of the
elastic constants of magnesium crystal, cadmium crystal and an isotropic material with Poisson’s ratio y=
0. 25 are given in Table 1, Numerical results were obtained from taking the first 56 terms in the Fourier
series, They are shown in Figs.2 to 5.

Thus, an axi-symmetric bending of a transversely isotropic, moderately thick circular plate has been
analyzed as an application of the plane and generalized plane stress solutions.

6. CONCLUDING REMARKS

From paying attention to the latest increase of transversely isotropic materials, this paper proposed a
plane stress solution and a generalized plane stress solution to transversely isotropic, moderately thick
plates in cylindrical coordinates and analyzed an axi-symmetric bending of a circular thick plate as an
application of their solutions. The solutions were derived from the generalized Elliott’s solution in the
previous paper. As stated in Chap. 1, three-dimensional elasticity solutions are not practically applicable
to analyses of stretching and bending of moderately thick plates which are usually called thick plates except
for a particular case. Therefore, the simplified and widely practicable elasticity solutions presented in
this paper are highly important to practical analyses of moderately thick plates and the theory of elasticity.
It has been confirmed that the solutions were exactly coincident with plane and generalized plane stress
solutions to isotropic, thick plates previously reported by the author, when the solutions were specialized
into those to isotropic solids., The solutions are applicable to an analysis of stretching and particular
bending of a circular thick plate or an annular thick plate in themselves. Also, the solutions are applicable
to analyses of more general bending of the thick plates, when a particular solution is used together as
stated in Chap. 5. Furthermore, the solutions are applicable to a thermal stress analysis of a transversely
isotropic, moderately thick plate which has lately attracted considerable attention.

In consideration of the premises, the author may conclude that the plane and generalized plane stress
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solutions presented in this paper are fully useful for elasticity and thermoelasticity problems of
transversely isotropic, moderately thick plates in cylindrical coordinates,

REFERENCES

1) Hata, K. : On one method for solving three-dimensional elasticity problems in orthotropic solids, Proc. of the 6th Japan Natl,
Cong. Appl. Mech., pp.43~46, 1956.

2) Sonoda, K. and Horikawa, T. : Displacement functions for an orthotropic elastic body and their applications to thick plate
problems, Theoretical and Applied Mechanics, Vol. 29, pp. 117~126, 1981.

3) Elliott, H A, : Three-dimensional stress distributions in hexagonal aeolotropic crystals, Proc. of the Cambridge Philosophical
Society, Vol.44, pp.522~533, 1948.

4) Lodge, A.S. : The transformation to isotropic form of the equilibrium equations for a class of anisotropic elastic solids, Quart.
J. of Mech. and Appl. Math., Vol.8, pp.211~225, 1955.

5) Okumura, I A. : Generalization of Elliott’s solution to transversely isotropic solids and its application, Proc, of JSCE, No. 386/
1-8, Structural Eng. /Earthquake Eng., Vol.4, No.2, pp. 185~195, 1987.

6) Lekhnitskii, S.G. : Anisotropic Plates, Chap.2, Gordon and Breach Science Publishers, 1968.

7) Reissner, E. and Stavsky, Y. : Bending and stretching of certain types of heterogeneous aeolotropic elastic plates, J. of Appl.
Mech., Vol.28, No.3, pp.402~408, 1961.

8) Wu, C.-]. and Vinson, J.R. : Influences of large amplitudes, transverse shear deformation, and rotatory inertia on lateral
vibrations of transversely isotropic plates, J. of Appl. Mech., Vol. 36, No.2, pp.254~260, 1969.

9) Girkmann, K. : Flachentragwerke, 6. Aufl., Anhang, Springer-Verlag, 1978.

10) Panc, V. : Theories of Elastic Plates, Part [I, Noordhoff International Publishing, 1975.

11) Love, A E H. : A Treatise on the Mathematical Theory of Elasticity, 4th ed., Chap. 22, Dover Publications, 1944.

12) Noda, N. and Takeuti, Y. : Transient thermal stresses in a transversely isotropic thick circular plate, Theoretical and Applied
Mechanics, Vol 31, pp.123~133, 1982.

13) Okumura, 1.A. : On some solutions to plane stress problems in cylindrical coordinates, Mem. of the Kitami Institute of
Technology, Vol. 12, No.2, pp.225~238, 1981 (in Japanese).

14) Huntington, H. B. : The elastic constants of crystals, Solid State Physies, edited by Seitz, F. and Turnbull, D., Vol.7, p.213,
Academic Press, 1957.

(Received April 14 1988)

302s



