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DIRECT LAGRANGIAN NONLINEAR ANALYSIS OF ELASTIC
SPACE RODS USING TRANSFER MATRIX TECHNIQUE

By Yoshiaki GOTO*, Yushi MORIKAWA** and Sei MATSUURA***

A numerical method using transfer matrix technique is developed to obtain solutions for
space rods considering finite displacements. The present method is characterized by the
point that the numerical solutions are directly derived from the highly nonlinear governing
equations with Lagrangian expressions. The governing equations are based on the theory of
finite displacement with small strains and no restrictions are made on the magnitude of
displacements.

Keywords . space frame, finite rotation, large displacement, iransfer mairix method

1. INTRODUCTION

In the Lagrangian formulation of finite displacement theory for space frames, it is a common practice to
derive the governing differential equations, using the ordinary displacement components defined in terms
of the coordinates fixed in spaceV~, However, the formulation of this kind makes the governing equations
highly nonlinear and complicated chiefly due to the finite rotations in space. Therefore, different from
plane frames, it is very difficult to derive accurate governing equations for space frames without
introducing any restrictions on the magnitude of displacements. Further, even when the accurate governing
equations are derived, it is far more difficult to obtain numerical solutions directly from these governing
equations, to say nothing of analytical solutions. For this reason, the approximate method with the
separation of rigid body displacements, i.e. the method using moving coordinates? ™ are primarily used
to obtain numerical solutions for space frames which undergo large displacements.

Thus, so far as space frames are concerned, versatile numerical solutions have not yet been derived
directly from the highly nonlinear governing equations with Lagrangian expressions. However, the
solutions of this kind are important specifically to the point that the validity and the accuracy of the
approximate method can be properly evaluated by these solutions.

We have already presented a new formulation of finite displacement theory for space rods based on
Lagrangian approach”- " This formulation is characterized by the point that new deformation components
are adopted as basic unknowns in lieu of the ordinary displacement components. With the new formulation,
the exact governing equations were successfully obtained not only for the theory of finite displacements
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with small strains but also for that with finite strains through variational calculus. These theories
introduce no restrictions on the magnitude of displacements except the customary beam assumptions, i, e,
no change of cross sectional shapes and the Bernoulli-Euler hypothesis, Although the deformation
components except extensional rate were firstly introduced by Love?, his formulation ignores the
elongation of the centroidal axis of rods. Further, his theory was not derived based on the variational
calculus, thus lacking in the precise expressions of boundary conditions,

In this paper, we further present a numerical method which directly solves the governing differential
equations with Lagrangian expression. Since the theory of finite displacements with finite strains is very
much complicated and impractical, the numerical method is developed primarily for the theory of finite
displacements with small strains!®, The present method utilizes transfer matrix technique, and the field
transfer equations are derived by making use of the Taylor expansion with respect to the element
length™19-19-19 " Tt should be noted here that the numerical analysis based on the accurate Lagrangian
governing equations becomes possible mainly because the governing equations are drastically simplified by
the adoption of the new deformation components,

For the ease of mathematical manipulations in this paper, space frames are assumed to consist of
straight members with doubly symmetric cross section.

2. GOVERNING EQUATIONS FOR SPACE RODS UNDER SMALL STRAINS

Herein, the derivations of the governing equations for space rods based on the new formulation are
explained briefly, since the detailed explanations have already been made in Refs. 10) and 11).

Consider a straight member subjected to distributed external forces as shown in Fig.1. Rectangular
Cartesian coordinate system (x, y, z) with base vectors (g, g,, g.) is introduced at the initial
configuration of the member. The coordinate z is taken along the centroidal axis of the member, and the
coordinates (x, y) with their origin at the centroid are chosen such that the coordinates coincide with the
doubly symmetrical axes of the cross section,

In lieu of the customary displacement components, our new formulation introduces four deformation
components of %, %, ¢ and 4/§,—1, which represent the deformation of the centroidal axis. These
deformation components are mathematically defined by

ixo izo 0, 7, — Xy

d |- S N — - . .

E; iyo :[D] Tyo | s 920:1/g0 i 20, [D]: -7, O, Ky | crrrereme (1 '&"’"C)
gzu 220 299 _‘7’2369 0

where (4o, iy0, i) are the unit vectors obtained by normalizing the deformed base vectors (o, 0, §20)
on the centroidal axis which are orthogonal due to the beam assumptions. Physically, (2z/v/@0, 24/y/30),
t/4/G,. and /G, —1 correspond to the components of curvature in the directions of the deformed
symmetrical axes of cross section, the torsional rate and the extensional rate, respectively, of the
deformed centroidal axis. External distributed force p and distributed moment m applied on the centroidal
axis as shown in Fig, | are expressed by the components in the directions of the vectors (ivo, fuo i)
respectively as (P, Py, P, and (hz, My, M2).

With the four deformation components along with the external force components defined above, the
governing equations for the finite displacement theory of space rods are derived through the principle of
virtual work by introducing the condition of small strains. The condition of small strains is given as follows
in terms of the deformation components

!@_1]<1’ liey] <1, | x| <1, |7yl <1, [ 2oL corervmmeee (2-a~c)

The constitutive relations are assumed to follow the linear elastic relations as

0z=Ees, 0.=2Ge.n 0n=2 (F@ gy e e e et (3-a~c)
inwhich (.., 0.y, 04) and (.., €4, e.,) are 2nd Piola-Kirchhoff stress tensor and Green strain tensor,
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© Qriginal State Table1 Governing Equations with Lagrangian Expression.
9z " Equilibrium Equations Stress Resultant vs.
7 \gz 5 qu quati Deformation Components
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P = Pxi‘xo'*PyﬁyoJ‘Pzi'zo Tables and Equations
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_ _ A= g 0, 1= fx2dA, 1= 4 yRdR, 9= 4 (Ct)dn, 0 = 4 ()P
Fig.1 Coordinate Systems for Direct ) A * Y

Lagrangian Expressions.

respectively, defined in terms of the (x, y, z) coordinates. Utilizing the beam assumptions together with
the condition of small strains, strain vs. deformation-relations are given by

ezz:M_1+ y;?x"—x;‘cy+(x2+yz)f’/2, ezxz——y%/Z, ezy=xf/2 .......................... (4-a~c)
Under the condition of small strains, constitutive relations of eqs. (3) with egs. (4) exactly coincide
with those defined between physical components of stress and strain,

The equilibrium equations along with the stress resultant vs. deformation-relations derived from the
above procedures are summarized in Table 1. The constitutive relation between M, and the deformation
components can further be simplified considering the conditions given by eqs. (2). This relation can be
expressed from Table] as

Mz':TS+K‘2'=GJ%{1+E(x/—§.;“"l)/G+EJnfz/2GJ} ...................................................... (5)
Since both E(/d, —1)/G and EJ,,7*/GJ have the order of the magnitude of strain, the 2nd and the 3rd
terms of the very right side of eq. (5) can be ignored compared with unity, thus resulting in the following
simplified constitutive relation.

Mz= o S AR R RSRRILILTERITS (6)

In the present analysis, eq. (6) will be used in lieu of eq. (5).

In order to introduce geometrical boundary conditions as well as to analyze the deformed geometry, the
deformation components have to be related to translational and rotational components.

Here, the translational displacements on the centroidal axis of the rod are expressed by the components
(1o, Vo, wo) in the directions of the vectors (g, g,, g.), while the rotational displacements are evaluated
by the following directional cosines [[;,] of vectors (;m fw, Ez(,) referred to the coordinate system

(x, ¥, 2).

Exo Ix l;?:x, liy’ lz.
Lot =Llan) { 9ul, [lao)=| B Diws Loz | oovveeeeeoreeormmmmmm (7-a, b)
220 9z lAZx‘s l%:‘!s l%z

Following the procedures explained in Refs. 10) and 11), the above displacement components and the
deformation components are related to each other as

Al lan)/dz=[D][Lay] -+-evveermermerrsmmmememsessssiene
we=yGo b 00=V00 by, We=vGo b1
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3. FIELD TRANSFER EQUATION

Transfer matrix method is introduced here to solve the nonlinear differential equations in Table .

Field transfer equations, i.e. basic discrete equations in this method, are derived here by the Taylor
expansion method. For this purpose, the governing equations are firstly transformed into the first order
differential equations expressed in terms of the physical quantities. The first order differential equations,
so obtained, are summarized in Table 2. The components of mechanical quantities adopted in Table 2 are
defined by

F=F izt Fyint F i, M=Myip— Moaiygd M gigg -+eeemmeememeneeeeeee s (10-a, b)
where F' and M are vectors denoting sectional force and moment respectively. The components of
geometrical quantities in Table 2 are already explained in the previous section,

The field transfer equations can be obtained by expanding physical quantities with respect to the element
length ]=z,,,—z,. These discrete equations are in the form of transferring the physical quantities from
node ; to ;41 of a finite element i as

Q,—]L~+;=Q,-I,~+i&!,-l"/n! ......................................................................................... (11)

where @, is the component of the state vector {Q,} defined later by eq. (13) and Q,L is the n~th order
derivative of Q; at node ;. The derivative Q ;| can be expressed in terms of the components of the state
vector {Q, ] at node i by successive differentiation and substitution of the first order differential equations
in Table 2.

In the usual analysis, external forces are assumed conservative and it is convenient to use the component
in the directions fixed in space, Thus, the components in the directions of the coordinates (x, y, z) are
defined, as follows, respectively for external distributed force p, external distributed moment m,
sectional force F', and sectional moment M.

P=DxGxt Dygyt D9z, Mm=myg,+ mygy+ m=z9-

F:fxgx—{—f"ygy-}ffzgz, M= Mygx ngx—}—Mzgz .................................................. (12)
Using the components fixed in space, the state vector |Q,] is defined as
{Q }—{uo, Vo, W, “ab} an Fy, Fz» My, —st sz ........................................................ (13)

Although [ /5] contains nine components, only three components are independent,

The derivative Q,], is explicitly expressed up to the 2nd order in terms of the components of the state
vector {Q,|} defined above and the terms higher than the
2nd order are truncated in Eq. (11). This algorithm is
equivalent to Runge-Kutta method of order 2 which is | #'=F 7.F ¢ .}

Table2 First Order Differential Equations.

known to be the lowest order algorithm required to obtain ;:_; ;+; ; ';
convergent solutions in numerical analysis, The deriva- y o ox  Ex f
tives, so derived, are shown in Appendix A. ?;=-?Y2X+Ex ;y-Pz
Field transfer equations derived here are nonlinear in RS TR v
terms of the physical quantities, Therefore, the basic :: Ax ,,YA ,,Z Ax Ay
algebraic equations involved in the present problem also L AL
become nonlinear and some iteration is required to solve 7;:34; Qfo‘y 2y—r?xz
them. Thus, in view of the application of Newton-Raphson O R V-SSR
method as well as the analysis of singular points on o AD ° ¢ o=
equilibrium path, the incremental transfer equations are dlfz5, 1/7dz=[D1075, ]
derived from eq. (11). These incremental equations can be where
obtained as follows, by taking the incremeqt of eq. (11) p =My/ e, E =0 EL ?=ﬁ2/GJ

X
with respect to the physical quantities and ignoring /— ? /EA+'!-J(M /60)2) 2

nonlinear incremental terms,
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AQJ-L'n:AQin‘!‘,g A(gl)j[il”/n! .................................................................................. (14)

where AQ; and ABj denote incremental quantities,

For the ease of applying the customary techniques used in the transfer matrix method, incremental
rotational angles (Aay, Aay, Ae,) respectively around the coordinate axes (x, y, z) fixed in space are
introduced in lieu of the incremental directional cosines[Al3,]. The incremental directional consines in eq.
(14) can be easily transformed into the incremental rotational angles by making use of the following
relations as derived in Appendix B.

0, Aa,, —Aay
[Al)=[1lz] | —Aes 0, Ay | oerremesssenneee e (15)
Aay, —Aay, 0
Lwlse™ byloz,  loclen— lolon,  liwlay— lixloy
[a)=| Byloe— lolse laelio— lalins  laolay— loalay |oeremreremms s a6)
Lvlse— livlsey  lLeliw— lyzlx, oz gy lyn lzw

The components of incremental state vector {AQ%] can be expressed as

YAQH=1AUo, AV, Awo, Aax, Aay, Aag, AF ., AF,, AF. AM, —AM., AM ,, 1eeeeveeeees 1n

Hereinafter, the starred notation, as used above, is adopted to distinguish the incremental state vector
of eq. (17) from the increment of eq. (13).

It should be noted that the incremental rotational angles in eq. (17), which are infinitesimally small, can
be treated as vector quantities. Considering that the incremental equations of eq. (14) are linear in terms
of the components of incremental state vector, eq. (14) can be rewritten in a matrix form as

{AQ?IH-X}: [AT(jQJU)] {Afj} {AQ;"M ....................................................................... (18)

o} 1
where [AT(Q,| )] is 12X12 matrix expressed by the components of state vector |Q,| } and {Af}} is a vector
resulting from the incremental distributed forces. For later convenience, eq. (18) is expressed in a
simpler form,

{AQII+!} [AT*] {AQ*} ................................................................................................ (19)

The form of the above equation is the same as that used in the customary Transfer Matrix Method for
small displacement theory. Thus, so far as the incremental quantities are concerned, all the solution
techniques developed for the customary Transfer Matrix Method are applicable to the present analysis.

4. POINT TRANSFER EQUATION

If the centroidal axes of adjacent elements are not parallel to each other, or if concentrated loads are
applied at the nodes of the elements, it is necessary to transfer the state vector from the left to the right at
the node. Thus, the point transfer equations used for the above purpose are derived in this section.

Suppose elements ; and ;-1 are rigidly jointed to each other at node j+1, as illustrated in Fig, 2. The
directional cosines [Lg.)is: of the element coordinbtes (x**!, y**', z*') are defined in terms of the
adjacent element coordinates (x°, y’, 2% as

Fe

i+l

element i+l

gx i+1 gx i |Ml+1
gy =[Laplier { Gy} cooerrrmrmerererem (20) element i
9= gz
F¢,, and M¢,, in Fig.2 are the concentrated force and moment,
respectively applied at node j+1, and the (x**!, y**!, z**!)-components
of these concentrated loads are defined by

i+l

i+2

Ca=F5ngs 't Fongd 0 Y L (21-a, b) Fig.2  Joint of Elements in
= MSngs MGy MG gs! ' Original State.
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Considering the equilibrium and the compatibility at node i+1, the point transfer equations can be
easily derived. With the directional cosines as well as the components of concentrated loads defined above,
the point transfer equations can be expressed as follows for each physical quantities,

Uzpy |31 Uiy | ¥

Virr | =[Laplis1{ vss1 |, [lablz+1]i+l=[Lab]t+1[lab|t+1]it[Lab]i,»1

Wiy Witr

Fau | (Fori| [Fu) | My | [ My |* [ M)

Fua | =[Lakor | Fan |+ Foonr || =Mas| =Laskier | =Mosr | | Mot

Fn Funl Faal |31 Mo
............................................................................................ (22-a~d)

In a similar way, point transfer equations for incremental quantities defined by eq. (17) can be givenina
matrix form as

{AQ;FEi+l}i+l:[AP?:+l] {AQﬂiH}i ................................................................................... (23)
[Lavlia ot
(Lol 0 {of
[APF. )= [Lanlis Aarsta b (24-a~c)
0 [Laokisr 1AMS|i0d
1

AF lt+1 AF(L‘L+17 AF.‘V%“II) AFZL"’!} {AMC!L-{“I% iAM.’L'h}I) AM;’JL+17 AM.;LH‘I}

where the superscript j in eq. (23) denotes the quantities in member coordinates ;, and[AP¥,,]isa point
transfer matrix which exactly coincides with that for small displacement theory.

5. SOLUTION PROCEDURE

For simplicity, the solution procedure is explained primarily for the case when the present method is
applied for a two-point boundary value problem as shown in Fig. 3, where boundary conditions are given at
both ends of the structure.

If the components of state vector at node 1 are known, the state vector at node 7 can be calculated
numerically by transferring the state vector at node 1 with the successive use of egs. (11) and (22). The
result of the above procedure can be symbolically expressed in the form

{Qj'n}" I_F({QJ,H e e (25)

In a usual case, it is a rarity that all the components of the state vector are given at node 1, and, hence,
some iteration is required to obtain solutions which satisfy the boundary conditions at node 7. Herein,
Newton-Raphson method, as explained below, is introduced as an iterative procedure,

Let {Q,] .}t be a trial value of the state vector at node 1. With this trial value, it is possible to calculate
the state vector at node n, following the procedure expressed symbolically in eq. (25). However, the
components of the calculated state vector at node 7 do not necessarily coincide with the prescribed values
given as boundary conditions, unless the trial value is correct, thus, resulting in the following error.

{AQﬂn}n_l:fQjfn}"—l'“F(foI 1}(10’) ................................... (26)

" Direction of Transfer
In a rod model, six independent components of the state vector are

T T
given as boundary conditions at node 7 and the corresponding six ® ©) o
components of {AQS|,*"" can be calculated. If an appropriate 0 @A‘E’\ ®
correction {AQ5|,}' is made to the trial value, the following relation O+ Node Number
holds [J: Element Number
{QJIH}” p— F( QJI } {AQJI }) ...................................... (27) Fig.3 Finite Elements for Two-Point
Herein, Newton-Raphson Method is employed to estimate the Boundary Value Problem,
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correction {AQ%|,}'. Supposing that the error {AQ¥|J"* and the correction {AQ}|,}' are small, the relation
given by eq. (15) is applicable, and these vectors can be respectively transformed to {AQF| 7! and
{AQF|,J* expressed in terms of the components shown in eq. (17).

With the successive use of the incremental transfer equations given by eqgs. (19) and (23), {AQ|}! can
be related to {AQF'| ! approximately as

(AQF | = ATH(1Q -l NAPRIAT Qs | n-ofi N APT 1]+

[ATHIQ S [APHIIATHIQ I LAPFHAQT [ ff --ovvveerereosememsemesseseens (28)

where |Q,] J5 (k=1, 2, -, n—1) is the state vector at node k which is calculated, using the trial value
{Q, |45 It should be noted in eq. (28) that the increments of external forces, both concentrated and
distributed, are zero, because there is no increment in external forces in the iterative procedure. For
simplicity, eq. (28) is rewritten in the form

{AQFM""‘#[AF*] IAQ?!;}I ....................................................................................... (29)

As seen from eq. (17), |AQF|.]' consists of twelve components. Among the twelve independent
components of |Q; ]!, six components are given as boundary conditions. Therefore, the six components of
IAQF"| ' are always zero, and the rest components are obtained from eq. (29), utilizing the six known
components of [AQF |~ All the components of [AQF|,J', so obtained, are again transformed to {AQ}|.f!
by eq. (15) in order to calculate a new trial value ({Q,] .}y +{AQ}|.}'). However, the new trial value derived
from the above procedure is still approximate due to the approximation in Eq. (28) and this procedure has
to be repeated until the error AQ%|,/** given by eq. (26) becomes within some prescribed tolerance.

6. NUMERICAL EXAMPLES

Several structures are analyzed in order to demonstrate the accuracy and the validity of the present
numerical method.

(1) Analysis of plane cantilevers

Herein, the accuracy of the present method is examined in comparison with the closed-form solutions.
Since no closed-form solutions are available for space rods, plane rods are used for comparison.

The accuracy of the numerical methods for plane rods has customarily been evaluated, making use of the
elliptic integral solutions for inextensional elastica where the elongation of member axis is ignored.
However, the use of the solutions for inextensional elastica is not adequate in an exact sense because the
numerical methods usually consider the elongation of member axis. In view of the fact that the present
numerical method is based on the theory of finite displacements with small strains, the closed-form
solutions for the same theory are utilized here. These closed-form solutions derived by us'® make use of
the elliptic integrals and hence, the solutions are highly accurate.

Cantilevers used for this analysis are illustrated in Fig. 4, where an axial force a little higher than the
buckling load is applied at free end together with a small end moment. The slenderness ratios (A=
1/ I/A) of the structure are of two kinds, that is, 4 and 100. The structure with A=4 is added in order to
show more clearly that the present numerical method is convergent to the closed-form solutions for the
theory of finite displacements with small strains, though such a stocky column is impractical. This is
because not so much quantitative difference can be found in the solutions for A=100, whether the
elongation of member axis is considered or not. Convergence of

the numerical solutions according to the number of elements is 2& Initial Configuration 3 F

summarized for end-displacements in Table 3. It can be con-

firmed from the table that the present numerical solutions surely

converge to the closed-form solutions for the theory of finite - i:‘foo N\ %%0.0005

displacements with small strains, \\\ f—zg—lri2=2.us7
(2) Three-dimensional analysis of a 45-degree bend FZL-50'  (FzersBuckling load)
A cantilever 45-degree bend subjected to a concentrated end Fig.4 Cantilever.
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Table3 Convergence of the Present Method (Cantilever).

L 1R | el or | Yo "y e Yofs  wofs - afs
1 Elements v fs w,fs afs vofis wof“x » ofi ’k=l¥,0

10 ] 1.733 | 2.926 | 1.747 - FOLY,2)=(42,6,21.3,57.0)
25 | 1.136 | 1.282 | 10137 | VoTS/Vofi = 1.000 X Vi

:
50 | 1.035 | 1.068 | 1.035 0.5661 Deformed/ j —
2.47 100 | 1.009 | 1.017 | 1.009 | w_fs/w fi = 0. \—L 1 Initia
250 | 1.001 | 1.003 | 1.001 | © ° FIXED 7 ,
100 500 | 1.000 | 1.001 | 1.000 :

1000 | 1.000 | 1.000 | 1.000 | ofs/efi =1.000

10 1.014 | 1.043 | 1.022 vofs/v fi = 1.000

2t 1 008 1 nne 1 an3

25 i.0666 ¢ 1.006 | 1.003 R g 5o R /.
3.0 50 | 1.000 | 1.001 | 11001 | Yofs/Wofi = 1.000 y Vo
100 1.000 | 1.000 | 1.000 afs/afi = 1.000 R = 100, (IN)
10 | 1.739 | 1.062 | 1.747 . - 0.8 v =0.0
22 | 1156 | 1009 | 113 Vofs/vofi = 0.8471 or? E=10" (b))
50 | 1.035 | 1.002 | 1.03 . _PR” _ )
2.47 100 | 12009 | 1.001 | 1.009 | YofS/Wofi =22.90 K-m Ao é'gsz(l?mﬂ
‘ 250 | 1.001 | 1.000 | 1.OOT | oo g a0 I, = 0.0833 (IN°
i 500 1.000 { 1.000 | 1.000 ) Iy = 0.0833 (IN4)16)
10 1.017 | 1.028 | 1.022 | v fs/v fi =0.8952 J = 0.1406 (IN")
25 | 1.002 | 1.004 | 1.003 .. 6 = E/2
3.0 50 | 17000 | 1001 | 10001 | WofS/Wefi =1.259 ‘
100 1.000 | 1,000 | 1.000 afs/afi =1.000 Fig.5 45-degree Circular Bend.
Remarks: F 22/ El=2.467 : Buckling Toad from the theory of Finite
z Displacements with Small Strains
Vo, W, @ : Present numerical solutions based on the theory of Finite
0r ot o Displacements with Small Strains
v fs, w fs, ofs : Elliptic integral solutions for Finite Displacements
oo with Small Strains 06
v fi, w fi, ofi : Elliptic integral solutions for Inextensional Finite T
0 0 Displacements 2~
0.5¢ T
Uo/R -~
Table 4 Convergence of the Present Method o4t //
(45-degree Circular Bend). // » Present Analysis
oz o 0.3 s -————Bathe et al.9
0. O efients ug, Vo, Wo /
/EI for One Member 4 % X 02t/ “Ho/R "
S VolR
1 0.4682 | 0.1006 | -0.1792 7 e 9.
5 0.4718 | 0.1013 | -0.1743 o1l / gy
5 10 0.4719 | 0.1013 | -0.1741 / e
15 0.4720 | 0.1013 | -0.1741 /o= L
50 0.4720 | 0.1013 | -0.1741
250 0.4720 | 0.1013 | —0.1741 0 1.0 20 3.04.05.0 62.0 7.0
1 0.5668 | 0.1633 | -0.304] -PR%
5 0.5803 | 0.1673 | -0.2962 EI
10 10 0.58?9 (0).}6;4 -8.2933
15 0.5810 | 0.1675 | -0.25 Fig.6 Tip Displacements of 45-degree Circular Bend
50 0.5810 | 0.1675 | -0.2590 9.6 Tip Disp 45-degr uwlar Dend,
250 0.5810 | 0.1675 | ~0.2590

load as shown in Fig.5 is calculated. The bend with a radius of 100 in. lies in the y-z plane. The
concentrated tip load is applied into the x-direction. The above model is exactly the same as was used by
Bathe et al. in his three dimensional finite displacement analysis”. Following the idealization by Bathe,
the shape of the bend is approximated by the assemblage of § equal straight members, In the present
analysis, each straight member is further divided into 15 equal finite elements, in view of the convergence
of the numerical solutions as shown in Table 4. The material is assumed linear elastic. The torsional
rigidity is calculated by the formula described in Ref. 16), since only the size of cross section of the bend is
given in Ref. 6).

The results of the analysis are shown in Fig. 6 in terms of end displacements, comparing with the results
given by Bathe, In this analysis, Bathe adopted up-dated Lagrangian approach combined with moving
coordinate method, where the small displacement theory was used to describe the deformation after the
separation of rigid body rotations. Although the present approach and the Bathe's approach are different,
a good agreement is observed in the calculated results.

7. CONCLUDING REMARKS

A numerical method is developed to obtain solutions directly from the highly nonlinear governing
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equations for space rods with Lagrangian expressions. The accuracy and the convergence of the solutions
are confirmed by numerical examples,

The present method is based on the theory of finite displacements with small strains and have no
restrictions on the magnitude of displacements. This method becomes possible chiefly because the adoption
of new deformation components considerably simplifies the governing differential equations without
introducing any additional approximations.

Appendix A Derivatives of Physical Quantities

(1) First order derivatives
a) Displacement and Directional Cosine

d Yo, 0o, wol/ dz=% 80 Iz, VG0 iz, VG0 b T]reeerreesmee (A1)
@[ and/ A2 [ Lag] +++reerereeeereseeeseeese et (A-2)
b) Force and Moment

Flm—Day, Fym =Dy, Fam Dy smssessss ittt (A-3a~c)
—M;cz(l&xl@y*‘ l%yl@x)”F—x'{”(l@ylﬁz lxylyz> ztmy

My=lsz loy— Ly lin) F y+ (L lyz— L s a— Mg | -oeeeeeemsmmmmmsmmms s (A-4a~c)

lez(la?z Ly Iz l@zﬁ:—’—x"}"(lfzz lyy— l@zliy)-Fy_’ mz

(2) Second order derivatives

a) Displacement
=/ Ty b—+/To (M lio/ EL+ M ylz/ EL)
\/E;lzy x/@:M L/ EL Myloy/EL) | rrorereresnrsmmersiemsiisiin e (A-5a~c)
‘=T b=/ G0 (Mo lzo/ ELA+ M y b/ EL)

where
1/.66—: =—{ l@xfx_*_ l@y—F‘y'*‘ l@z—fz)M y/EIy'f‘(la?xe'*" la'by”F_y'i‘ lf:zfz)Mz/ELc
+H (Dt Dyt Lp N/ EA— 1 M {1/EL—1 /EII)MxMy
— bame— bumy— lamd/|A (GJ) R IERETITERIEpLY (A-6)
UMy, — Mo, M=ol My, — M, Moo (A7)
b) Directional Cosine
[la =[DY [l FLDTID] [Lag)--e-evrereeeemrmssssssmsmsmsesssis st (A-8)

Non-zero components of [D] are given by
Div=—Du=11/EL—1/ELM:My— lemz— lymy— Lmd/ GJ
Diy=—Da={laeF 2+ layF y+ ls:F -+(1/GJ —1/EL)M M,
+ Lyema+ lpymy+ l@zmz}/Elx ............................. (A-9 a,fc)
Dig=— D=1l F ot lsuF o+ lgF o= (1/GJ ~1/EL)M:M .
— laxMmae— lgymy— lzmA/ElL
¢) Force and Moment
Fi=—p, Fy=-p, T e (A-10a~c)
Mi={ls lyy— lzy l@x)M;/Elx"‘(&y lox— Ine li"y)M y/EIy}-F—r'*‘K loylzz— liz LM x/EI:c
o +( l%y lz.— liy l%z)M y/EIyﬁ’:z_ ( i3z lyy lxy lyr)px (l'yy xz lxy lyz)pz+ mx
M =!Iy le— Iy li)M o/ ELA Iz bay— lx ls)M o/ ELF g+l b= 122 ls)M =/ EL
- + ( Lolze— e la?z)M y/EIy}Fz_ ( laz lyy lxy lyx)py ( I3 lyz lyac lf:z)pz- m;c
M2={boloe— lw oMo/ ELA+ (o laa— lla)M o/ ELIF o Lol — I ls)M 2/ EL
+(bylse— bola)M o ELF y— Lz lye— b b Da— Lo loy— lozlz)Dy— M

Appendix B Derivation of Eq. (15)

. (A.ll a~c)

Infinitesimally small increment (Afso, Aiw, Ais) can be expressed as follows, making use of the
incremental rotational angles (Ad,, Ad, Ad, around the vectors (i, [y, iz).
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Aixo 0, Ad,, —AdyT | ixo
Aiyl=| —Ad,, 0, Bl | fyo | werrerermmmememm e (B-1)
AlA'm Aay, —Aady, 0 220
(A, Aiyo, Aly) can also be obtained by taking the increment of eq. (7-a) as
’ Aixo G
Al LA Tgp] § Gy b ooeee e e (B.z)
Aizo 9=
Considering eqs. (B-1), (B-2), and (7-a), [Als) is given by
0, Aé,, —Ady
[Al)=|—Ad., o, Dl | [l everemrermmeereseeee e, (B-3)
Ady, —Ady, 0
Equation (15) is derived by substituting into eq. (B-3) the following relation
UAdy, Ady, A&z}:[lab]t{Aa.r, Aay, Aaz} ..................................................................... (B.4))
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