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ELASTIC INSTABILITY AND NONLINEAR ANALYSIS
OF THIN-WALLED MEMBERS UNDER
NON-CONSERVATIVE FORCES

By Akio HASEGAWA*, Toru MATSUNO** and Fumio NISHING***

Elastic instability and the nonlinear finite displacement behavior for spatial thin-walled
members under displacement-dependent loads are investigated. The displacement-
dependency is reflected on the load stiffness matrix, of which the nonsymmetry indicates
the nonconservative loads, A general formulation to derive the load stiffness matrix is
presented. As important examples, the follower force and the wind forces are treated, and
their load stiffness matrices are given explicitly. The mass matrix of thin-walled mambers
is also derived to examine the dynamic instability. The nonlinear finite element analysis as
well as the static and dynamic instability analyses are made as computational examples for
the follower force and the wind forces, and some interesting features are discussed.

Keywords : Static Instability, Dynamic Instability, FEM, Nonlinear Analysis, Thin-

Walled Members, Follower Force, Wind Forces

1. INTRODUCTION

In the common structural stability analysis, the external forces considered are mainly the gravity
loadings such as the live and dead loads. The direction of the gravity loadings does not depend on
displacements during the deformations of the structures. However, the direction of external loads in the
real situation may be changed and displacement-dependent such as water pressure or wind forces. Butin
the standard and practical analysis, the method has been simplified and load is kept constant during the
deformation, Even if the displacement-dependency of the loads is considered, the analysis method has been
either abstract, mathematically complicated or treated in an approximate manner, mostly concerning the
determination of the critical loads for simple hypothetical structures, and the general method for numerical
computation has not been well established yet, particularly for the instability and nonlinear finite
displacement behavior of spatial structures, although some literature are available as general references
1) ~4) and as specific papers for the FEM analysis®® and the theoretical investigation”. The purpose of
this paper is to develop a general and efficient analysis method for the elastic stability and the finite
displacement behavior of thin-walled space structures under the displacement-dependent loads, using the
finite element technique. The general tangential stiffness equation to analyze thin-walled spatial
structures including warping contribution has been given in Reference 8) for the displacement-independent
loadings only. As a natural consistent extension to include the effects of the displacement-dependency of
external loads, the theorem of virtual work for linearized finite displacements is established and the
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tangential stiffness equation of the thin-walled members is developed for the problems of displacement-
dependent loadings.

The displacement-dependent loads do not always have potentials, depending on the nature of
displacement-dependency of the loads. If external loads have potentials, they are called conservative
forces, otherwise, nonconservative forces. The conservativeness of external loads can be checked by
symmetry of the load stiffness matrices, as indicated in References 5) ~7) . For the conservative loading,
the load stiffness matrices derived from displacement-dependency of the loads are symmetric. But for the
nonconservative loadings, those matrices are nonsymmetric. This criterion for the conservativeness of the
loads seems important particularly on the numerical analysis of elastic stability. Although the conservative
loads always produce the static instability only, the nonconservative loads may create the static instability
called divergence and/or the dynamic instability called flutter, depending on the type of problems and the
magnitude of parameters concerned. Hence, in this paper, the mass matrix of spatial thin-walled members
is also derived to examine the dynamic instability.

Finally, illustrative examples using the tangential stiffness equation derived in this study are presented.
Two examples of displacement-dependent loads are considered. One is the problem of cantilever column
subjected to follower force which is frequently quoted as an example of displacement-dependent loads? .
The other is the problem of wind forces acting on thin-walled beams which is treated as a typical example
for the spatial behavior of thin-walled structures. The elastic stability and finite displacement behaviors
are of primary concern. For the numerical examples for those purposes, four types of analysis methods are
used. The first is the common static stability analysis. The second is the dynamic stability analysis
involving the mass matrix to examine a possibility of the dynamic instability, whatever the static instability
exists for the nonconservative loads or not. The third is the nonlinear finite displacement analysis, and the
last one is the linearized finite displacement analysis which is expected to be very simple and effective for
practical engineering applications, both of which (the third and the fourth) are applied for static
instability of nonconservative systems. Through the above analyses, the versatility and the validity of the
present formulations are demonstrated.

2. STIFFNESS EQUATION OF THIN-WALLED MEMBERS UNDER DISPLACEMENT-
DEPENDENT LOADS

The general stiffness equation of spatial thin-walled members developed in Reference §) does not
consider the displacement-dependency of the loads. Hence, by using the theorem of virtual work for the
linearized finite displacement theory, the stiffness equation of thin-walled members applicable for the
problems of the displacement-dependent loads is derived. In this derivation, the kinematic field and
notations of thin-walled members are based on Reference 8) (see Fig.1).

The virtual work equation with body forces for general continua with volume V and surface S can be
expressed in the form :

ﬁ(?ej@?ij)dv—_[y(-ﬁﬂ?ﬂi)dv ?i Byi
— [(T0u)dS=0 oo (1) ol ot oo
s Dy l s, _Cu Coi 2 / S(.ys ,2g) __)_C»w, o

in which o ,; and &, are the second Piola- / F_z / e TR Pzj / Crj '
Kirchhoff’s stress tensor and Green's ~ le. fyi Lz
strain tensor respectively, and P, and Vﬁ/ | ; / l !
T, are body forces and surface forces Wy Vsi 5
acting on the continuum respectively, !L L ,]f
and 7, are displacements caused by i{x=0) j(x=L)
these forces. Fig.1 Generalized Forces and Displacements.
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At the reference state defined as 1,0=(), the system is supposed in equilibrium under ¢}, p} and T7.
Considering that the system is also in equilibrium after the application of incremental surface forces (loads
at the nodal points) , body forces and corresponding displacements, the following components, which take
the effects of the displacement-dependency of external forces into consideration, are introduced as

E =obtaitoi ey=eit el U= Uil (2 a—e)
=pi+ptpit+pit+pi” T=Ti+ T+ T+ Ti+ T

The superscript ‘0’ denotes values at the reference state, and ‘L’ and ‘NL' are linear and nonlinear parts of
quantities measured from the reference state. p, and T, express the increments of loads, the directions of
which are the same as those at the reference state. p’* and T are the linear components produced by the
displacement-dependency of the loads at the reference state. (p%, T%) and (p}*, Ti") are the linear and
nonlinear components produced by the displacement-dependency of the incremental loads, both of which can
be treated as the second and higher order small quantities,

Substituting Egs. (2) into Eq. (1) and neglecting the third and higher order quantities, the virtual
work equation can be written in the form

/(mﬁe,“l— Y I dv—f (PO OUt pdUst PIOu)dV
_£(Ti3ui+ T;é‘ui+ TgLﬁu;)dSZO ............................................................................ (3 )

Taking into consideration that the system is in equilibrium in terms of small displacements for the
reference state which is before the application of the incremental loads, as expressed by

f(a'ij&ew dV f au dV f(T‘Z&u,)dS=O .............................................................. (4)
Eq. (3) is reduced to the equation as
[totveti+atoet)dV— [ (pouctptouddV— [(Tduct THEUIAS=0 worvorsesosssoe (5)

in which p?* and T indicate the displacement-dependency of the reference loads and they are the first
order quantities of displacements. By using arbitrary displacement u, and arbitrary nodal displacement
U, those quantities can be expressed as

p=t,u, T T REITEMTRATES (6a, b)
in which z,, and s,, are coefficients which may depend on the continuously changing deformed configuration
of the reference state. Substituting Egs. (6) into Eq. (5), assuming that #,; and s,; are independent
from integration, Egq. (5) yields

f(oué‘e F+otd et )dV — Ly [ (u,u)dV — s”f(UaU )dS— fpté‘u AV —IFITold)=0 - rennr (7)

where {F} is the nodal force vector, and |d} is the corresponding displacement vector, as given for spatial
thin-walled members by

IFI=F, (FJT AR AT P O P L 1Y) LRSI (8a, b)
where
{Fal=1{Fzs, Fef" [Fl={Fuy;, Dy, Fus, Dy } ....................................... (9 a-d)
{Fz}z*th Dz, Fo, Dzj}T {T}'—-{Cn‘y Cuwi, Crs, ij}T
and
ful=lucs, wed” (Wl=tvs, = v, ver —oul” | _
(= l0s, — W, 0, — 06T VB=18 — i, b1 — B (1020

in which the displacement components with subscripts ; and j refer to the cross-section at x==0 and L
respectively, as shown in Fig.1.
At this stage, the following set of the well-known interpolation functions is introduced as
N1=1—(.I'/L) N,=(x/L)
N.=1—3(x/L}*+2(x/L) Ni=—x+2(x? L) —(a3/ L% | e, (11 a-1)
N;=3(x/L;—2(x/L) Ne=(x*/L)—(x*/L’)
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and the displacement components at an arbitrary cross-section (0<zx< L) can be written in terms of the

nodal displacements as

ue={Al"{d} ve={B/"{d} ws={B.}"ld] G={BalTld} - (12 a-d)
where
Al =IN,, N;, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, OfF
{Bi=10, 0, N5, N;, Ns, Ns, 0, O, 0, 0, 0, 0, 0, OF
B CCLEPTTTTRPPPPPRRIRPRRPRPPS (13 a-d)
{Bz}:{o, O, O, O, O, O,Na, Nq, Ns, Ns, O, O, 0, O}

{Bd={0, 0, 0, 0, 0, 0, 0, 0, 0, O, Ny, Ni, Ns, Nof"
From Egs. (12) and (13), an arbitrary displacement 1, can be re-expressed as

uizfcimd} .............................................................................................................. (14)
in which {C} is the interpolation functions corresponding to displacement 1, obtainable from Eq. (13).
And, an arbitrary nodal displacement [, is also re-expressed as

Uym{DTIA -+ veeeeeemmeeeme et (15)
in which {D ] is the vector of 14 dimensions, where only the component corresponding to U, is equal to ] and

the others equal to (.

Noting the kinematic and stress fields of thin-walled members at the reference state? substituting Eqs,
(11) (14) and (15) into Eq. (7) leads to the general stiffness equation of a thin-walled beam applicable for
the displacement-dependent loads, as expressed by

fF}Z(KT"‘KH"Ks) fd}"—{FO} .......................................................................................... (16)
in which K is the tangential stiffness matrix including geometrical stiffness already given explicitly in
Ref. 8). K, is the load stiffness matrix produced by the displacement-dependency of distributed loads, as
expressed by

K,=— Ly Lszch}de .............................................................................................. . (17)
K; is the load stiffness matrix produced by the displacement-dependency of nodal loads, as expressed by
Ki=—s,; {Di} fD,-ET ..................................................................................................... (18)

and {F,| is the equivalent nodal force vector resulting from the displacement-independent incremental

distributed forces.

3. LOAD STIFFNESS MATRIX OF FOLLOWER FORCE

The problem of the so-called follower force is shown in Fig, 2; where a con-
stant compressive force P is applied to the column and always acts in the direc-
tion of the tangent to the deflection curve at the top of the column, This prob-
lem is examined here as an example of displacement-dependent nodal loads, and L
its load stiffness matrix is derived. For this inplane problem, the nodal force
vector and the displacement vector are extracted from Eq. (8), as expressed
by

Fl={Fd" FJT SV =T, ] T e (19 a, b)

As shown in Fig.2, the nodal incremental loads T resulting from the dis-
placement-dependency at the deformed configuration are given by

z

Fig.2 Follower Force.

Fzj=—(P"+P)cos A+(P°+P) Flom=— (PO P)SIN A weeeveeveemeeernaeaearnieesnn (20 a, b)
Assuming that cos A=1 and sin A=A with A=—w’, Eq. (20) is reduced to
Frey=0 Froymm (PO Pl ) vmeeeee e (21 a, b)

Noting that the term P/ is negligible because of its higher order quantity, substituting Eqs. (21) into Eq.
(18), by making use of Eqgs. (6) and (15), leads to the load stiffness matrix of follwer force as

Ks:PO{Dg} {DI[T ......................................................................................................... (22)

where
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{DJ=10, 0,0, 0, 1, 0} IDJ=10, 0, 0, 0, 0, 1} wveveremmrereemmimmiriiii (23 a, b)
and thus, the load stiffness matrix K is given explicitly as
0000 O0O0
00 0O0O0O0
.0/ 0 0 0 00O
K=P 0 0 0 0 0 0| T (24)
000001
000000

4. LOAD STIFFNESS MATRIX OF WIND FORCES

The load stiffness matrix of wind forces is developed here as an example of the displacement-dependent
distributed loads. The treatment of wind forces is based on Ref. 10). It is assumed that constant wind
velocity [J is applied to the beam perpendicularly to the axis. In the analysis, static wind forces are
decomposed into three force components across the section, namely drag, lift, and moment, as shown in
Fig.3. They are expressed with aerodynamic coefficients C, C,, Cy respectively as

=CrAq py=CLbq C=Cub’q
......................... (25 a-c) Moment o
in which A and b are the depth and width of the beam ¢ = ¢, b%a -~
section, g is the wind pressure expressed with air Py= Cpha
density p and wind velocity U as v e " brag
S (1 /2)pU 2 ereeerereemreeneniei (26) ? Q/
Generally, aerodynamic coefficients are not constant el

during the deformation, but depend on the angle of yaw

Lift Py = C ba

¢. It is now assumed that the gradients of aerodynamic
coefficients are given by s,, s, and gy at the reference Fig.3 Wind Forces.

state with g,. Then considering that the system is in

equilibrium after the application of wind pressure increment ¢ and corresponding displacement increment
$, the incremental distributed loads at the deformed configuration are given by

pz=spA(q°+ q)¢ py=sLb(q°+ q)¢ C=sub¥q°+ q)¢ .................................. (27 a-c)
in which the term ¢¢ is negligible because of its higher order quantity. Substituting Eqs. (27) into Eq.
(17) by making use of Egs. (6) and (14), the load stiffness matrix of wind forces is obtained as

z_squ f 33 de SpAq f de SMb2q0fB3 B3§ ap v (28)
which is expressed explicitly as
0 0 0 0 156 Sym. ‘l
0 0 0 s.bK, —22L 4L°
= — AT fA0o0) T T e b
B=710 0 0 sk, Ko=a'LA20\ 5 131 156 @32, )
0 0 0 sub’Ky 13L —3L* 22L 4L’

5. MASS MATRIX OF THIN-WALLED MEMBERS

In order to examine the dynamic instability, the stiffness equation of small vibration of thin-walled
members is derived in this chapter. Considering that the inertia forces by movements represent body
forces, the virtual work equation is expressed as

ﬁ('a’ué"e‘ij)dV—ﬁ(@&"ﬁi)dV—ﬁﬁﬁﬁi)ds—[(pmiii&_di)dV=0 ....................................... (30)

in which g, is the mass density of the material, and (*) denotes differentiation with respect to time. The
4th term of the left hand side of Eq. (30) is the new additional term to Eq. (1). Applying this virtual work
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equation for a thin-walled beam, and considering that the independent displacement components %, 7,
are quantities at the centroid, and ¢ is a quantity at the shear center, all of which are measured from the
reference state, the 4th term of the left hand side of Eq. (30) can be given by

omA [izCSucderpmAli}cb‘vcdx-FpmAlwcﬁwcdx+meM£$5¢dx .................................... (31)
in which I, is the polar moment of inertia referring to the shear center, as expressed by

L= [ (= ol A (2 ZaP A oo ememememem e, (32)
By using the coordinate system as shown in Fig,1, displacements p, and w, are given as

ve=vs+y;(1—cos ¢)+zssin ¢ We=Ws—YsSIN $+ 2, (1 —COS @)-evrrvvmrerrrmrenes (334, b)
Using the Taylor expansion and neglecting the second and higher order terms, Egs. (33) are reduced to

Ve=1vs+ Zsp W= We— ?/s¢ ........................................................................... (34 a, b)

Substituting Egs. (34) into Eq. (31) leads to
ond [ cbucdatond [ 0:00,0z+omA [ edwidxt zomA [(Gov,+ bid0)da
—~YornA [[(Bowt i0,58)dz+ pu it Alyi+ 23} [ $opdz
and then substituting this into Eq. (30), by making use of the interpolation functions of Eqs. (12), the

stiffness equation of small vibration is obtained as

{Ft= K+ Ko+ K Id = 1F 0 M) e (35)
where the mass matrix M is given explicitly by
AKn, Sym.
M=0,L/420 Abn:
on 0 ARy
0 2sAKn: —YsAKn: Iyt AYi+ 20 Kn,
............................ (36 a_c)
156 Sym.
140 70 22 L 4L
K"“_{ 70 140} Bu=1 oy 131 156

3L —3L* 22L 4L’

6. ANALYSIS METHOD

Four types of analysis methods are presented herein. The first is the common static stability analysis.
The second is the dynamic stability analysis involving the mass matrix to examine a possibility of the
dynamic instability, The third and the last are the nonlinear and linealized finite displacement analyses,
respectively, both of which are applied for static instability of nonconservative systems,

(1) Static method for stability problems

Static .stability problems can be solved as an eigen value problem through Eq. (16) by

det [K£+ A{KG(N°)+KV(Q°)+KS(P")}}:O ......................................................................... (37)
in which ¢° and P° are the displacement-dependent distributed loads and nodal forces at the reference state
respectively, N°expresses stress resultants, and K is the stiffness of small displacements and K is the
geometric stiffness., From this equation, the value of coefficient ) is obtained, and Ag° or AP® is the
critical value,

(2) Dynamic method for stability problems

The basic eigenvalue equation for the dynamic instability is expressed through Eq. (35) by

det {KE+ A{KG(NO)“FKV(QO)"FKS(PO)}- sz:IZO ............................................................... (38)
in which @ is the frequency, as introduced by
{d}ziﬂeiwi ............................................................................................................... (39)
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in which | f} is the amplitude independent of time, and { expresses time. If ¢ has a minus imaginary part,
the vibration |d} will diverge. So, A which gives ¢ a minus imaginary part indicates the critical value which
is given by Ag® or AP°.

Two types of instabilities are obtainable from Eq. (38). In the case that all the ¢’ obtained from Eq.
(38) are real, the instability occurs when the smallest «* becomes minus, Then, A which gives «* zero is
the critical value, and in such a case, Eq. (38) is the same as Eq. (37). This type of the instability is called
Static Instability (or Divergence). On the other hand, when «* has a imaginary part, an instability also
occurs, This type of instability can not be obtained from Eq. (37), and this is called Dynamic Instability
(or Flutter).

When the load stiffness matrices are symmetric because of the conservativeness of external loads, all
the ¢? in Eq. (38) are real. So, instabilities caused by conservative forces are always static. However,
when the load stiffness matrices are nonsymmetric because of the nonconservativeness of the external
loads, ¢’ may be complex. Insuch a case, instabilities caused by these forces may be a static instability for
the former case, and may be a dynamic instability for the latter.

(3) Nonlinear finite displacement analysis

The tangential stiffness equation of thin-walled members after the application of the set of incremental
loads {F}| and {F°} can be expressed by

{F}z[KE(wn)"*'KG(ZUn, NO)“"Kv(wn, QOH‘Ks(wn, Po)]{d}—{FO} ............................................ (40)
in which w, refers to the geometrical configuration at the reference state for the formation of the stiffness
matrix, and N° expresses the stress resultants, and ¢° and P° are the external loads at the reference
state. In the analysis, a non-iterative computational scheme!V is used to trace the exact nonlinear finite
displacement behavior of thin-walled members.

(4) Linearized finite displacement analysis

This method assumes that w, of Eq. (40) always refers to the initial configuration w, for the formation
of stiffness matrix, and is not updated as in the nonlinear finite displacement analysis. The displacement
{d} which is the accumulated value from the initial configuration is calculated by applying a set of the
accumulated loads {F'} and {F'%} for the initial configuration with N° g° and P° also defined at the initial
configuration. This method is very simple and corresponds to the well-known analytical beam-column
solution for plane beams, and therefore is expected to be very effective before very large deflection
behavior, but still in the range of finite displacements.

7. COMPUTATIONAL ILLUSTRATIVE EXAMPLES

(1) Follower force

First, the instability of a column under follower force, as shown in Fig.4, is examined by the static and
the dynamic methods. By the static method, all the eigenvalues have been found complex and the critical
load can not be obtained, indicating that the static instability does not occur. But, through the dynamic
method, the critical value of the dynamic instability has been obtained with the frequency  being complex.
The computed results are compared with the available results from Ref.9) as given in Table 1. The
results are found to be in good agreement with the existing analytical results.

Next, the nonlinear static finite displacement analysis is performed to obtain the load-displacement
behaviors of a column under the follower force and under the conservative constant directional force
respectively applied at the free end, with an initial disturbing horizontal load at the same point. The
results are shown in Fig. 5, indicating that the follower force does not show divergence and the horizontal
displacement returns to zero at the load P/ P.,=8 which produces the dynamic instability. Also computed
are both of the static and dynamic stability analyses for the partial follower force, that is, the combined
case of the follower and constant directional forces. The results are shown in Fig, 6, demonstrating some
interesting features of stability phenomena, where either static or dynamic or both of them have been
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Fig.5 Load-Displacement behavior of a Cantilever. Fig.7 A Simple Beam Under Wind Forces.

observed, depending on the ratio of the follower force.

(2) Wind forces

First, the static instability of a straight symmetric simply supported | beam under the wind forces is
examined, as shown in Fig. 7. Here, three types of analyses are examined, the first considers only the drag
of the wind force, the second considers the drag and lift, and the last considers all the three aerodynamic
forces, i.e. drag, lift and moment. In this example, the aerodynamic coefficient C,, is assumed always
constant, approximating the measured typical aerodynamic force curves for H-sections'”, It should be
noted that this is different from the assumption of Eq. (27 a ), but the force is displacement independent,
resulting in the stiffness matrix expression such that s,AK,, is reduced to zero matrix in Eq. (29 ), and,
instead of this, the drag of Eq. (252 ) is reflected in the equivalent force vector of {F'% in Eq. (16) or
(35), as expressed by | p IB;ldx. C, and C, are also approximated from the same source! as C,, being
first equal to ( for ¢==(, and changing linearly as the torsion of the beam increases as given by Egs.
(27b, ¢) in an incremental form, The results of computations are shown in Table 2, where all the
eigenvalues were found real, and it was also confirmed that ¢ of the dynamic analysis did not contain the
complex values. The computed results are found to be in good agreements with the existing approximate
results found in Ref. 10).

For a possible example of dynamic instability, a solution is given in Fig, 8, where the gradient of the lift
coefficient g, is varied in the vicinity of zero as parameter with the drag coefficient being constant C,=
0.28 and the moment coefficient Cy neglected to be zero. It is interesting to note that the dynamic
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pul
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a~%p bLZ L2 * 2 Fig.10 Post Buckling Behavior of a Beam under Wind
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instability does occur, depending on the value of s;, where the characteristics of the static instability
change abruptly due to the change of static buckling mode from the first mode to second mode,

Considered next is the load-displacement behavior of the I-beam under the same condition as in Fig. 7. In
this case, an initial disturbing y-directional load is applied at the center of the beam. Fig, 9 shows the
behavior of the rotation at the center of the beam under the wind, where the deformation remains relatively
small, but finite. These results computed by the nonlinear finite displacement analysis for three cases of
wind loadings are compared with the linearized finite displacement analysis as described before. The
results obtained by two different methods show a very good agreement, demonstrating a good accuracy of
the linearized finite displacement analyses for relatively small but finite displacements near the buckling
points. Fig.10 shows the post-buckling behavior of large displacement at the same point of the beam,
computed by the nonlinear finite displacement analysis, which is proved to be effective to trace the large
deformation for the thin-walled members subjected to displacement-dependent loadings.

8. CONCLUDING REMARKS

Elastic instability and nonlinear finite displacement behavior for spatial thin-walled members under
displacement-dependent loadings have been investigated in this paper. When the load is displacement-
dependent, the tangential stiffness matrix includes the load stiffness matrix, of which symmetry or
nonsymmetry corresponds to conservativeness or nonconservativeness of loadings, respectively.

As a natural and consistent extension from the general tangent stiffness matrix for thin-walled members
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under the constant directional loads®, a general treatment to reflect the displacement-dependency of the
loads has been developed here, and the corresponding load stiffness matrices have been expressed in a
general manner,

As important examples, firstly, the well-known problem of a cantilever subjected to the follower force
has been examined, and its explicit expression of the load stiffness matrix is given, Secondly, rather
important in this paper, the load stiffness matrix of wind forces acting on spatial thin-walled members has
been derived explicitly in a concise form. Since both of the load stiffness matrices derived are found
nonsymmetrlc indicating the nonconservativeness of the load, the dynamic stability becomes of great
concern and thus the mass matrix of spatial thin-walled members is also derived in this study to examine its
possibility,

The methods of analysis presented in this paper have been of four types : (1) static instability analysis
called divergence, (2) dynamic instability analysis called flutter, (3) static nonlinear finite
displacement analysis, and (4) static linearized finite displacement analysis, all of which feature part of
the important roles to investigate the stability and post-buckling nonlinear behavior of thin-walled
structural systems subjected to displacement-dependent loadings.

Finally, some computational illustrative examples have been given to demonstrate the problems of
interest both for the follower force and wind forces, and some interesting characteristics of the instability
phenomena and the nonlinear finite displacement behavior are presented for thin-walled members, It has
been proved through computations that the analysis methods presented in this paper are reliable,
versatile, and easy to handle for practical implementations. It is also worthwhile to note that the treatise
of the linearized finite displacement analysis is very simple, but accurate in the vicinity of buckling point
which seems a primary region of interest for practical applications,
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