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LLOCAL STRESSES AT CROSS BEAM CONNECTIONS OF
PLATE GIRDER BRIDGES

By Ichiro OKURA*, Masao YUBISUI**, Hiroshi HIRANO***
and Yuhshi FUKUMOTQO****

Tt has been reported that fatigue cracks were often initiated at the connections of cross
beams to main girders in plate girder bridges. In this paper, the relation between the local
stresses which induced the fatigue cracks and the three-dimensional behavior of plate
girder bridges is formulated by the results of the stress measurement of an actual plate
girder bridge and its three-dimensional finite element analysis. The obtained equation
reveals the influential factors for the occurrence of the local stresses.
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1. INTRODUCTION

Recently, it has been reported in Japan and abroad that many welded steel bridges have fatigue cracks at
the connections of secondary members to main members?~®_ In the case of plate girder bridges, as shown in
Fig.1, four types of fatigue cracks occur at the connections of cross beams to main girders®.

Type 1 fatigue crack : This is initiated either on the bead or at the toe at the end of the fillet weld

between the connection plate and the top flange of the main girder.

Type 2 fatigue crack : This is initiated at the upper scallop of the connection plate, and grows diagonally

through the comnection plate itself,

Type 3 fatigue crack : This is initiated at the toe at the end of the fillet weld connecting the connection

plate to the main girder web, and grows downward along the toe on the connection

plate side.

Type 4 fatigue crack : This is initiated and grows along Top flmge of
the toe on the web side of the ype 1 \mfm
fillet weld between the top e sty B

ype
flange and the web of the main = = =
. . Top flange of
girder. cross besm
The order of initiation of the fatigue cracks among four

types is not clear. The investigation of the cause of Fig.1 Fatigue cracks at cross beam connection.
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initiation of the fatigue cracks and the development of repair methods for them are now under way at
various research institutes’~”. However, comprehensive results are not yet given,

The difference in vertical displacement between main girders and the deformation of a concrete slab are
pointed out as the main causes of the fatigue cracks® 9. However, it is not made clear how these factors are
related to the local stresses which induce the fatigue cracks.

We carried out the stress measurement of an actual plate girder bridge, and examined in depth the stress
state at the connections of the cross beam to the main girders to show the local stresses governing the
initiation of the fatigue cracks'”. The object of this paper is to obtain the relation between the local
stresses and the three-dimensional behavior of the plate girder bridge. First, alinear equation is assumed
among the local stresses, the rotations and horizontal displacements of the slab and cross beam. Secondly,
using the results of the stress measurement of the plate girder bridge and of its three-dimensional finite
element analysis, the undetermined coefficients in the equation are determined by the least squares
method. Lastly, the influential factors for the occurrence of the local stresses are revealed by the
equation,

2. EQUATION TO ESTIMATE LOCAL STRESSES AT CROSS BEAM CONNECTION

(1) Model to estimate local stresses

It was shown from the stress measurement of an actual plate girder bridge that the membrane stress gy,
and the plate-bending stress ¢,,, as illustrated in Fig. 2, were the governing stresses for the initiation of
Types 1 and 4 fatigue cracks, respectively!. They would be caused by the respective rotations about the
bridge-axis of the concrete slab and cross beam at the connection of the cross beam to the main girder and
by their respective horizontal displacements in the direction perpendicular to the bridge-axis. Referring to
Fig. 3, let us assume that the membrane stress gy, or the plate-bending stress Oy has a linear relation with
these factors, as expressed by the following equation.

Os
{ G’my}_[ km Fms kma] P ( ] )
Opy ko kbz Ko :

where Aug=wus—1u, 6;and y,are, respectively, the rotation and the horizontal displacement defined on
the middle surface of the slab, 6, and u, are, respectively, the rotation and the horizontal displacement
defined at the neutral axis of the cross beam, and i~ ks, ko~ ks are coefficients,

As given by the following equation, the rotation @, of the slab can be divided into the rotation G50 due to
the plate~bending deformation of the slab under the condition that the main girders do not deflect vertically
and the rotation §, produced by the vertical displacements of the main girders.

Gsm= Bgpt Gy - v v vt v e ( 2 )
Substituting Eq. (2) into Eq. (1), the following equation is obtained.

Bso
[ Umy:’_[ kni kmi Fme kms:, s
L EBa ke ke ke

Opy

Omy \crack

il

Fig.2 Fatigue crack types and local stresses. Fig.3 Notation,
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InEq. (3), the first term on the right side gives the local stress component produced by the plate-bending
deformation of the slab, and the second to fourth terms give the local stress components due to the
three-dimensional behavior of the bridge.

(2) Formulation of @

As mentioned in the preceding section, @, is the rotation of a slab due to its plate-bending deformation
under the condition that main girders do not deflect vertically. As shown in Fig. 4, when a concentrated
load P acts at the arbitrary point (x, y) on an infinitely long plate which is simply supported on two
opposite edges, the rotations about the y-axisat the points 1 and 2 are given by the following equations',

_ Pa ¢ 1 mrX malyl\ omme e

G(x, ¥) 22D ,{?‘] ;sin—/ <1+ o )e (4)
_Pa s (=" A 4z Lyl —mmer

bualz, ¥) 2D n5n m? sm—, (1 a )e (5)

where 6,, and §,, are the rotations about the y-axis at the points 1 and 2, respectively, D is the flexural
rigidity of the plate, @ is the interval between the supporting edges, and m is integer. 4

Taking a cross beam on the x-axis in Fig. 4, the equation to estimate @5, for plate girder bridges
supported by two main girders with a spacing of g is given by Eqs. (4) and (5). The variation of 4, as
the load is away along x==a/2 from the cross beam is shown in Fig. 5. It can be seen from the figure that 8,
is almost zero when the load is away from the cross beam by more than 2 g. Accordingly, when the load is
away from the cross beam by more than two times the main girder spacing, the influence of the load on G
can be neglected,

Next, let us consider the equation to estimate 6, for plate girder bridges with more than two main
girders. A continuous plate which is simply supported on five lines is shown in Fig. 6. Letting the rotations
at the points 1, 2 and 3 on the supporting lines be denoted by feo1, Osoz and fys, Tespectively, they are given
by the following equations by examining the ratios of the rotations at these points obtained from the finite
element analysis to the ones given by Egs. (4) and (5).

a) When the concentrated load P is between the supporting lines of G, and G,

Baos = ralon Tz, ) ++eeeeeeremsemem e (6)
B0z = ¢21@y2(x12’ y) ..................................................................................................... ( 7 )
where ¢1,=—0.475 x1,/a+1.034, $=0.030 X1,/ a-+0. 470, and x,, is the distance from the supporting

line G;.

b) When the concentrated load P is between the supporting lines of G, and G,

Bs0s= ¢230y1(x23’ y) ...................................................................................................... (8 )
Bsoz= ¢326y2(x23, y) ...................................................................................................... ( 9 )
where ¢, =—0.237 Zzs/a+0.533, ¢:.=0. 228 %25/ a-+0. 289, and 1x,, is the distance from the supporting
line G,. A comparison of the results from Eq. (7) with the ones from the finite element analysis is shown
in Fig. 7. It can be seen that Eq. (7) approximates very well the values from the finite element analysis.

The variation of g, as the concentrated load moves on the x-axis toward the supporting line G, from G,

8y1(a/2,y/a)
yi(a/2, 0)

{ i ] i
0.5 1.0 1.5 2.0 2.5 3.0 y/a

Fig.4 Simply supported infinitely
long plate. Fig.5 Variation of 6. Fig.6 Four span continuous plate.
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Fig.7 Comparison between the results of Fig.8 Variation of gy, Fig.9 Comparison between f,,, and
Eq. (7) and of the finite element — Osp.

analysis,

is shown in Fig.8. Equation (6) approximates very well the values from the finite element analysis
between the supporting lines of G, and G,. The values of 0501 when the load is between the supporting lines
of G, and G, are much smaller than those when it is between the supporting lines of G, and G,.

As can be seen from Fig, 9, when the concentrated load is between the supporting lines of G, and G,, the
variation of @y, is almost symmetrical with that of — Bso3 about x,,=0.5 @. That is to say, the rotations
60> and G, are mainly influenced by the adjoining spans on both sides of the G,~G, span and not influenced
by the G,-G; span,

From the above-mentioned consideration, as the equation to estimate g, for plate girder bridges with
more than two main girders, Eqs. (6) and (7) will be used when wheel loads are on the slab on exterior
spans, and Egs. (8) and (9) used when they are on the slab on interior spans,

(3) Relation between 8, and vertical displacements of main girders

The rotation 4, of the cross beam at the connection of the cross beam to the main girder can be expressed
by the vertical displacements of the main girders from the theory of structures. In the case of five main
girders, it is given by

bon —-71 90 —24 6 —1][®
b2 ) —26 —12 48 —12 2 Vs
Bos :%-a_ 7 —A42 0 42 —7 Blg et e e e (10)
Oou —2 12 —48 12 26 || g,
Bys 1 =6 24 —90 71 ||,

where §,~ 6,5 are the rotations of the cross beam at the connections of the cross beam to the main girders,
and p,~y; are the displacements of the main girders with the downward direction positive,

3. DETERMINATION OF COEFFICIENTS kmi~kms, ku~kn IN EQ,(3)

(1) General view of plate girder bridge™”

The plate girder bridge on which the stress measurement was carried out is shown in Fig, 10. It is a
simply-supported composite plate girder bridge with a span length of 28.4 m and total width of 17.6 m,
which was designed by the Japanese Specification for Highway Bridges?. The bridge has five main
girders, a cross beam in the middle of the span and six sway bracings, The concrete slab is 180 mm thick.
The bridge was opened to traffic in 1970. Repair and reinforcement works for the slab were done in 1979.
A steel plate 4. 5 mm thick was attached to the bottom surface of the slab, and as shown by dotted lines in
Fig. 10, one stringer between G, and G, girders, two stringers between G, and G, girders, and one stringer
in part between G, and G, girders were installed.

The loading truck and its loading positions are shown in Figs. 11 and 12, respectively. Four cases of 4,
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Fig.10 General view of plate girder bridge. Fig. 12 Loading positions of truck.

B, C and D were taken up according to the intervals between the coping and the center of rear
double-tires on the left side. The static stress measurement was carried out at 11 locations in the
bridge-axis direction for each loading case. 24 one—directional, 214 two-directional and 126
three—directional strain gauges were attached on the cross beam connections at G, and G, girders.

(2) Three-dimensional finite element analysis of plate girder bridge

The three-dimensional behavior of the plate girder bridge on which the stress measurement was carried
out is analysed by the finite element method. The mesh division of each member is as follows.

a) The slab is divided into quadrilateral plate elements®with in-plane and out-of-plane displacements.

b) As for the main girders, end sway bracings and stringers, the top flange is neglected, and the web is
assumed to be jointed rigidly with the slab. The web is divided into quadrilateral plate elements with
in-plane and out-of-plane displacements, while the bottom flange is divided into beam elements'¥ with 6
degrees at each node. ‘

¢) As for the cross beam, the web is divided into quadrilateral plate elements with in-plane and
out-of-plane displacements, and the top and bottom flanges are divided into beam elements with 6 degrees
at each node.

d) The intermediate sway bracings are divided into beam elements with 6 degrees at each node.

To examine the effects of the sway bracings, stringers, steel plate attached to the bottom surface of the
slab and the wall parapets, calculations are carried out for 6 structural models as shown in Table 1. Model
Tis a grid-girder model. In this model, it is assumed that the steel plate attached to the bottom surface of

Table 1 Structural models.

Structural | Sway Stringers Steel plate| Wall
model bracings under slab | parapets

I N N C N

jis N N N N

I o3 N N N

iv C C N N

v C C c N

VI C C C C

Note C: Considered
N: Not considered

Table 2 Material constants,

. Young's modulus . f .
Material (MPa) Poisson's ratio
Steel 0.206%10° 0.3
Reinforced 0.294%10° 1/6

concrete

Fig.13 Mesh division of Model VI
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the slab has a composite action for the main girders. The effective width of the slab complies with the
provision in the Japanese Specification for Highway Bridges”, The structural models from II to VI are
calculated by the aforementioned finite element method, In Models V and VI, the thickness of the steel
plate attached to the bottom surface of the slab is converted into that of the concrete slab with the ratio of
Young’s moduli of both materials, and the former is added to the latter. In the plate girder bridge, a
concrete wall 1 075 mm high and 250 mm thick is used for the parapets. Accordingly, in Model VI, they are
divided into quadrilateral plate elements with in-plane and out-of-plane displacements. The mesh division
of Model VI is shown in Fig. 13. Material constants of steel and reinforced concrete are listed in Table 2.

A comparison of calculated values with measured ones for the bottom flange stress at the middle of the
girder G, is shown in Fig, 14. The maximum value of Model T is .75 times larger than the measured
maximum value. The values plotted in the figure for Model [] ~V are obtained only for the case where the
center of the rear two wheel axles exists just above the cross beam. They are about 1.5 times larger than
the measured maximum value, in spite of the difference among the models. Accordingly, the sway
bracings, stringers and steel plate attached to the bottom surface of the slab do not contribute so much to
load distribution. On the other hand, the maximum value of Model VI, in which the wall parapets are
considered, is 1.(7 times larger than the measured maximum value, It is much closer to the measured
value. Accordingly, in the plate girder bridge, the wall parapets contribute greatly to the overall stiffness
of the bridge.

The relation between the measured and analytical values may be expressed by the following linear form,
O™ @OarF B #+# "+ + e eeem ettt (11)
where gexp and gg,, are the measured and analytical values, respectively, and ¢ and 8 are coefficients, The
values of o, 8 and correlation coefficient  determined by the least squares method are listed in Table 3
for Model I and V]. It can be seen that there are good correlations between the measured and analytical

values,

(3) Effects of wall parapets on 4,

Let us examine the effects of the wall parapets on the rotation s which is due to the plate-bending
deformation of the slab and which does not depend on vertical displacements of the main girders. As shown
in Fig. 15, the wall parapets and slab of the plate girder bridge are divided into quadrilateral plate elements
with in-plane and out-of-plane displacements. This

finite element model is simply supported at the Table 3 Values of o, g in Eq. (11) and correlation
locations where the main girders exist. When a coefficient 7.
concentrated l()ad iS between the Supporting Hnes Main Loading | Structural model (1) | Structural model )
irder cas: a x S(MPZ; 5 r a B(MPa) r
. . 0.62] -1.2 .987
of G, and G., the rotations at the points 1 and 2 on . B 0.618| -0.989 | 0.991 | 0.958 | -1.488 | 0.991
. . . 1 C 0.615} -0.405 { 0,998 0.940 | -0.012 { 0.992
the supporting lines are smaller than those esti- A——-0:795] ~0-803 1059 | 1.040) -0.515 | 0.997
. -1.342 1 0.964
T N > B 0.781] -1.265 { 0.986 1.047 | ~1.838 [ 0.989
mated by Eqs, (6) and (7 ). Multiplying Egs. (6 ) G2 c 0.687| -0.427 { 0.965 | 0.891 | ~0.372 | 0.967
D 0.700] ~0.519 | 0,990 0.853 | ~0.684 [ 6.990

and (7) by reduction factors ¢, the rotations at

& Model I
& Model I -V
@ Model VI
O Measured

Of g (MPa)

40~

30k Loading case (B)

20~

104

Wall parapet

] ] i i
o 5 10 15 20 y(m) Gs

Fig. 14 Variation of flange stress of G, girder, Fig.15 Mesh division for wall parapets and slab,
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the points 1 and 2 are given as follows.
Baonp™ BpraBsgn -+ (12)

B5020= Pom Blggpe e eemer et (13)
where g, and g, are, respectively, the rotations at the points 1 and 2 due to the plate-bending

deformation of the slab including the effects of the wall parapets, ¢,;=0. 097 212/ a+0.518, and ¢pp=
0. 334 212/ a+0.702.
As can be seen from Eq. (12), the rotation due to the plate-bending deformation of the slab at the exterior
main girder is reduced by half by the effects of the wall parapets.

(4) Relation between Au,, and 6,

In the finite element model V[, let us examine the variation of 7 defined by the following equation as the
loading truck moves in the bridge-axis direction. i

= Alligg/ B+ eeesees e (14)
It can be seen from Fig, 16 that y shows small variance for each loading position of B, C and D.
Substituting 7 into Eq. (3), the following equation is obtained for oy and guy.

Os
[ Omy ]_[ kmi km Emet KnsY :1 P) ’
koo kw  Eutksy *

Opy

2

(5) Relation between 4, and §,

8 is the rotation of a slab produced by the vertical displacements of main girders. The rotation of the
slab on the main girders given by the finite element analysis contains the rotation both due to the
plate-bending deformation of the slab and due to the vertical displacement of the main girders. In the mesh
division for the finite element analysis, the slab is divided into four elements between the main girders.
Since the mesh division of such a degree is not enough to express the plate-bending deformation of the slab,
the rotation given by the finite element analysis is not accurate to estimate §,.

The vertical displacements of the cross beam and slab are equal at each cross beam connection.
Regarding the slab as a continuous beam with a certain effective width just above the cross beam, the
rotation of the slab produced by the vertical displacements of the main girders becomes equal to that of the
cross beam given by Eq. (10). Accordingly, 6 will take a value close to 6,. Then, as shown by the
following equation, let us assume that 4, is equal to 4,

oy ==y - +vveen e AP (16)
Substituting Eq. (16) into Eq. (15), the following equation is obtained.

B e w0

Oby B koo Kol 7= Kvizs) [
where kpi=— (km1+km2)/km3 and fyp=— (kbl_l_kbz)/kbs

(6) Relation between local stresses and three-dimensional behavior of bridge

By applying the least squares method to the following equation, the coefficients kni, Kms, Kmizs, ko1, Ko
and %y in Eq. (17) are determined.

{ Gmy}_‘[ Em kms()"“kmns)”: gsoil 4 [ Cm] (18)
Oby ko kbs()'_kmzs) g Cy

where ¢, and ¢, are constants.
33 measured values obtained at the loading positions of B, C and D are used for gy OT 0vy. On the other
hand, @y and 4, are calculated as follows,

a) For O

Calculating the rotation of the slab from Egs. (12) and (13) for each wheel load of the loading truck, the
sum of the rotations produced by 6 wheel loads is used for 6. The plate thickness in the flexural rigidity D
of the concrete slab in Eq. (12) and (13) is 180 mm, neglecting the composite action of the steel plate
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attached to the bottom surface of the slab.

b) For 4,

The rotation g, is calculated by the first or the second equation in Eq. (10), using the vertical
displacements of the main girders at the cross beam connections which are obtained from the finite element
analysis for Model VI,

As for 7, the values shown in Fig. 16 are used for each of the loading positions of B, C and D.

After an arbitrary value has been assumed for the coefficient kizsin Eq. (18), the least squares method
is applied to Eq. (18). The variations of the multiple correlation coefficient 7 and the constant ¢ against
the coefficient f,,; are shown in Fig, 17. The value of k125 when the multiple correlation coefficient 7 is
close to one, and when the constant ¢ is zero, and the values of k. and k; at those conditions are used for
the values of the coefficients in Eq. (17). The obtained values of ki, ks, ki and 7 are listed in Table 4.
It can be seen from Table 4 that the multiple correlation coefficient 7 is very close to one, A comparison of

r ey (MPa)
y (em) [ 4
1.0 PN 0
0 |-
2 \ PR 178 r
—e==g
L Loading case (D)
© 0.9} -4-5
100 | Esmem Y e e
o - a8 o e
L o
) 0.8} -10
i i 1 ) L L i
0 H 10 15 20 y(m) 0 50 700 TS0 s (em)
(a) Main girder G (a) Oy 3t main girder G; cp (4Pa)
Y (em) Loading case (D) H 410
100
«©)
75 b
66
29 1.0 0
o (B)
T
0.9} --10
i i i
0 5 0 i35 LT )
(b) Main girder G,
Fig.16 Variation of y. 0-8f i s L 1%
0 50 100 150 1 s tem)

) Opy at main girder G

Table.4 Values of k,, ks, ki in Eq. (17) and multiple

. . Fig.17 Variation of 7 and ¢ against f,,,.
correlation coefficient 7.

Location of ko
local stress | *:(MPa) ks (Pa/cm) {cm) T
1 (omy) -4.011x10" | 3.781x102 | 27 | 0.988
2 (omy) 7.999x10% | 7.603x10% | 23 | 0.996
3 (oby) 3.586x10" [~1.232¢10% | 79 | 0.990 Oy (MPa)
-80 Loading case (D)

4 (oby) 1.831x10"% | -4.284x10% | 109 | 0.995 ’;

== ~70
/ \ -60 @ Measured
N 2 ke o —— Eq.(17)
[ -40

Gy Gz =301

. -0}

Table 5 Comparison of terms_in Eq. (17). ol

. .

Location of {Loading kiBgq | ka(ya1~k123)8g | Total value | Measured (1)/(3) L L
local stress | case (MPa) (MPa) (MPa) value (MPa) (%) 0 5 10 15 20 y(m)
1) @ (3) (4) ) () Ony ac main girder Gz
B -19.8 B 26,5 28,7 74 Oby (Pa)
1 (Omy) [4 -28.9 -8.1 ~37.0 -38.3 78 50
D -29.3 -9.0 -38.3 -35.9 77
B =35.6 =14.2 ~49.8 ~48.9 71 sl
2 (omy) c ~49.0 =144 ~63.4 -65.7 77 ® Measured
D -56.3 ~14.7 ~71.0 -72.2 79 30 —Eq. (17)
B 17.7 -5.9 11.8 10.2 150 r
3 (opy) C 25.9 6.8 32.7 32.3 79
D 26,2 19.2 45.4 43.5 58 204
B =81 =16.8 =18.9 =193 43
4 (opy) ¢ -11.2 -8.1 -19.3 ~18.7 58 ok
D -12.9 ~5.2 -18.1 -18.0 71 e
® 1 L 1 1
0 B 70 [B 20 ym)
‘ (®) Opy at main girder G
2 ]
4 Fig.18 Comparisons between the values of Eq.
[ G2 (17) and the measured ones,
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the values estimated by Eq. (17) with the measured ones is shown in Fig. 18 for the membrane stress gny at
the connection plate of G, girder and the plate-bending stress g,, at the web of G, girder. It can be seen
that Eq. (17) is very close to the measured values.

A comparison of the terms in Eq. (17) is shown in Table 5. The values in the table are shown for the case
where the center of the rear wheel axles exists just above the cross beam. The ratio of the k,6,, value
against the total value of the membrane stress gy, at the connection plate is about 80%, and for the
plate-bending stress g, at the main girder web the ratio is about 60%. Therefore, the rotations of the slab
due to its plate-bending deformation and of the cross beam caused by the different vertical deflections of
the main girders are equally influential for g,, while only the former has a great influence on gy,

4. CONCLUSION

In this paper, the relation between the local stresses which induced fatigue cracks at cross beam
connections and the three-dimensional behavior of plate girder bridges was formulated by the results of the
stress measurement of an actual plate girder bridge and its three-dimensional finite element analysis. The
obtained equation revealed the influential factors for the occurrence of the local stresses.
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