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DYNAMIC STABILITY OF AN INITIALLY DEFLECTED
RECTANGULAR PLATE UNDER AN
INPLANE DYNAMIC MOMENT

By Kazuo TAKAHASHI*, Yasunori KONISHI**, Ryuta KAWANO***
and Shigeo URAKAWA****

In the following paper, the vibration of an initially deflected rectangular plate under a
sinusoidally time-varying inplane moment is examined from the point of view of dynamic
instability. The equation of motion describing the large deflection of the initially deflected
plate is analyzed by the Galerkin method. The resulting equations for time variables are
integrated by using the Runge-Kutta-Gill method. The dynamic instability regions are
analyzed by the small deflection theory of a thin plate, neglecting nonlinear terms. The
amplitudes of unstable regions are determined by large deflection theory.

Numerical results are presented for various shapes and magnitudes of the initial
deflection. The effect of the initial deflection on natural frequency, dynamic instability and
amplitudes are discussed.

Keywords © dynamic stability, nonlinear vibration, vibration of plate

1. INTRODUCTION

Out-of-plane vibrations of a rectangular plate under a sinusiodally time-varying inplane moment are
known to be caused by dynamic instability. Unstable regions and their amplitudes in out-of-plane vibration
induced by in-plane moment are still not clear analytically. The preceding study by the authors, reference
(1), clarified the existence of unstable regions in the small deflection theory, their mechanisms and the
basic properties of the dynamic instability problem. They are : (1) Unstable regions of combination
resonances are predominant for the present case. This fact is different from unstable regions of a plate
with a uniformly distributed load which has simple parametric resonances only. The unstable regions of the
combination resonance are wide when natural frequencies of the rectangular plate related to unstable
motions are close to each other, independently of the boundary conditions and aspect ratios; (2) The
static moment influences the unstable regions. The widths of simple parametric resonances which are
narrow in the absence of the static moment, grow wide,

Next, the amplitudes of unstable motions were estimated by the large deflection theory of a plate?-?, The
conclusions are as follows : (3) The amplitudes of the out-of-plane vibrations of the rectangular plate
subjected to the inplane dynamic moment are bounded due to the geometric nonlinear terms effect. The
amplitudes of combination resonances are greater than those of simple parametric resonances for the
present case; (4) The effect of the static moment generally increases the amplitude of the unstable
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motions, The amplitudes of the combination resonances whose modal shapes are similar to those of the
buckling mode are greatly affected by the static moment.

These conclusions were obtained for plate with no initial deflection However, it is a well-known
phenomenon that the initial deflection of the plate induces additional out-of-plane deflection under the
action of an inplane moment?. The influence of the initial deflections on the out-of-plane deflection has
already been discussed in connection with the initiation of fatigue cracks by Maeda and Okura®. The
response of the plate subjected to the repeated moment is essentially a vibration problem. Therefore, it is
necessary to consider the dynamic instability of the initially deflected plate.

Based upon this point, Kuranishi et al. 9 studied the dynamic response of an initially deflected web plate
under periodic beam bending. However, the relation between initial deflection and dynamic stability is still
not clear,

This paper shows an analytical approach to the investigation of the dynamic stability of the initially
deflected rectangular plate subjected to an inplane dynamic moment. The equation of motion describing
large deflection of the initially deflected plate is analyzed by the Galerkin method, The resulting coupled
nonlinear Mathieu equations for time variables are integrated by using the Runge-Kutta-Gill method,
Numerical results are shown for various shapes and magnitudes of the initial deflection. Natural
frequencies and unstable regions are obtained by neglecting nonlinear terms and maximum amplitudes are
obtained,

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

A cartesian co-ordinate system(x, y) is introduced as shown in Fig.1. Static moment M, and
sinusoidally time-varying moment M, cos Q¢ act on two edges, x=0 and g and an inplane force N, due to
these moments is given by
-6
=
where b is the length of the loaded edge, and M, and @ are the amplitudes of the sinusoidally time-varying

N, (1“2%>(M0+MzCOSQt) ................................................................................ (1)

moment and the forcing circular frequency respectively.

a

Fig.1 Geometry and coordinate system.

Assuming that the effects of the longitudinal and rotational inertia forces and transverse shear can be
neglected, then the basic equations for large amplitude free vibrations of a rectangular plate with initial
deflection 2, subjected to an inplane moment can be written using the Marguerre equation as

2 2
9 w+DV‘w—~§—(1~Z%> (My+ M, cos QZ)%—-;;U
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were 1w denotes the plate deflection, p the mass density; d the plate thickness, ¢ the time, D=Ed*/

112 (1 v*)| is the bending stiffness, E Young's modulus, » Poisson’s ratio and I Airy’s stress function.
The following boundary conditions for bending and inplane displacement are considered in the present

analysis :

Simply supported along all edges ! i.e

aZ
= 2—0 (x=0, a), wz_éy_zz() (=0, B) cereerrerermrme (4-a)
All edges immovable in the inplane directions :
[4 a :
f udy=0 (x=0, a), f vdx=0 (y:_—(), DY reveerrrn e (4-b)
0 ¢

where
um [ an= [ (B2 | M 42 (5 o

o= [ 3p = [ (25 25)- P54 (22 o

in which ¢ and v are inplane displacements in the x and y directions, respectively.

3. METHOD OF SOLUTION

Taking these boundary conditions into account, we assume the solution of equation (2) by

w:d,{?‘l Toun(£)* Wignl, 1) = +++eeeseeeeseemeem et (5)

where Tyn(1) is an unknown function of the time variable, and Wy,(x, y) an eigen-function associated with
free vibrations satisfying the geometric boundary conditions of the plate, defined as

Wansjn ng sin ngy .............................................................................................. (6 )

in which M and 7n are half-wave numbers in the x and y directions, respectively. We assume the initial
deflection to satisfy the boundary conditions as follows :

Wo= @o@WenlI, ) -+rereeseremmememe e e (7)
where e, is the nondimensional amplitude of the initial deflection and Wy, the shape function ; G and H are
half-wave numbers in the x and y directions, respectively.

The general solution of stress function F of equation (3) may be expressed in the form :

where F, is the particular solution and F, the complementary solution. By substituting equations (7 ) and
(8) into equation (3), the particular solution F, can be obtained as shown in Appendix A. Let the
complementary solution F. be expressed as in references 4), 5), 6) as

FC=A(t):L'2+B(t)y2 ................................................................................................... (9)
where A(#) and B(#) are functions of time, determined so as to satisfy the inplane boundary condition (4-b)
(Appendix B).
After substituting equations (5), (7) and (8) into equation (2), we apply the Galerkin method to
obtain

90 Fat To T g5 (Mot My €05 Q8) 3 Lugn Tant 5 2 3 Tanrss TunTur Tas
+ 90"2;41 TZ:,‘I IManHpTMnTMT+ e"nz;‘l Tincrp Tyn=0 1oeeermmeses et (10)

where Il I%n Iunp and Iy, are integrations that appear in the process of the Galerkin method (Appendix
C) and p=1, 2, -~
Using nondimensional notations, we obtain the following differential equation for the time variable :
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- My 2 RN —
Furt (2 ) Tugt- (Mot M, 005 @7) T AuonTunt 53 5 5 Bunreo Tun Tar T

n=1r=1 $=1

+ e, Z Z CManHpTMnTMT+ e?)nz:; DMnGHpTMn::O ............................................................. (11)

=1 T=1

where M,=M,/ M., is the nondimensional static moment, M,=M,/M., the nondimensional dynamic
moment, Mc,=Ac,7°D/6 the buckling moment, A., the eigen-value of the buckling moment =0/} the
nondimensional forcing circular frequency, Ql=qalr?/ b v/'D7pd the first natural circular frequency of the
unloaded plate, ¢} the first eigen-value of vibration, r=0!# the non-dimensional time, and ) the p-th
natural circular frequency with the half-wave number M. A,,, and Biurspy being given in Appendix D, As
can be seen in equation (11), the second order of the intial deflection (e?) is included in the linear terms,
The first order of the initial deflection (e,) is included in the nonlinear terms. It is assumed that the initial
deflection is much more important in the nonlinear case. The parameters in equation (11) are the modes
(G, H) (half-wave numbers, G and H) and magnitude (e,) of the initial deflection, static moment M.,
amplitude M, of the dynamic moment and the forcing circular frequency . The stability of the rectangular
plate with the particular value of G, H, e, and M, will have unstable solutions for some combinations of
M, and w.

4. METHOD OF TIME RESPONSE ANALYSIS

Time variable T, of equation (11) will be integrated numerically by using the Runge-Kutta-Gill method.
From the results of the preceding papers”-?, a summing type combination resonance near frequency H=
(wi+ o)/ k (k=1, 2, -+) is predominant and the simple parametric resonance near frequency =2 ¥/ k
through coupling terms is not important in the present case (see page 181 of reference 1). The notation ¢
is a nodimensional natural frequency of the plate defined as 2%/ Q! where Q" is the natural frequency with
the mode (M, i) of the initially deflected plate, M is the half-wave number in the x direction and j or jis
the half-wave number in the y direction. The combination resonance is a coupling of vibrations with two
different modes, (M, i) and (M, j). The two degree-of-freedom approach by using two modes which
induce unstable motions is adopted to obtain a time response analysis, The purpose of the present analysis
is to obtain the unstable regions which occur under the assumptions of the small deflection theory and to
determine the amplitude of the unstable motions. Therefore, the initial conditions for the time variable are
set equal to Ty,= T}y,=0.01 and T ,= T ,,;=0. 0 to satisfy the small amplitude vibration, Poisson’s ratio y
of the plate is assumed to be (.3 and the effect of the static moment }M, is not considered here.

5. NATURAL FREQUENCY T T P
- i - +
———————— + 1 - -
Unstable motions occur near forcing fre- * R | I " t
quency ¢ such as 2 olf/k and (el + wﬁf')/k. —(1,1) e (1,2)  —— I(2,1) ——(2,2)  ———(2,3)
Therefore, it is necessary to clarify the effect (M= Nodal lines of the square plate.
of the initial deflection on the natural frequen- 1.0

]
~

cy of the rectangular plate. By neglecting o
nonlinear terms in equation (11) and putting o

M=0.0 and M,=0. 0, the free vibrations of 0.6 b
the initially deflected plate can be obtained. By

T
1

.\T
1

using this equation, the natural frequencies of
the initially deflected plate are obtained for the 0.2
mode (G, H) of the initial deflection and its

magnitude e,. 0 o 100
The natural frequencies of the square plate Fig.2 Magnitude e, of the intial deflection vs natural frequency
with half-wave numbers M equal to ] and 2 in 7 for the case of M==1.
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the x direction are illustreted for various 1.0
modes (G, H) of the initial deflection in <o
Figs. 2 and 3. In these figures, the ordinate ¢, 0
shows the magnitude of the initial deflection 0.6
normalized for the plate thickness, while the

; !
abscissa 7=0"/Q} stands for the natural °-* / / ; /
- . . !
frequency of the initially deflected plate nor- , ;- %M,s) ' 4
malized for the lowest natural frequency. The 7(2,1) (2,2) 1 (2:’3) l ;
1 i 1 ]
corresponding mode of vibration is shown by 0 2.0 4.0 5.0 8.0 - 10,0

notation (M7 S) for various modes (G, H) of Fig.3 Magnitude e, of the intial deflection vs natural frequency
the initial imperfection. In general, natural 7 for the case of M=2.

frequencies grow larger with increase of the

magnitude of the initial deflection. The amount of increase is significant for cases in which the numbers

(M, s) of half-waves of the mode of vibration coincide with those of the modes (G, H) of the initial

deflection.

6. UNSTABLE REGIONS

The effect of the shape (G, H) and its maginitude e, of initial deflection on the unstable regions where
the out-of-plane vibrations of the plate occur, is clarified in this section. From the results of the dynamic
stability analysis”, it is concluded that combination resonances are predominant for plates subjected to
inplane moment and simple parametric resonance is negligible. In this case, only combination resonances

are considered.

0 2.0 4.0 6.0 8.0 - 10.0

O_.S 0.5
Mt -
Mt
0.4 — — 0.4
0.3+ — 0.3
0.2 — 0.2 I
0.1 . 0.1 |—
0.0 0
3.0 5.5 5.0

Fig.6 Unstable regions of a square plate : wi{-+wj and
e,=0.5.

Fig.5 Unstable regions of a square plate . wj+w; and
e,=0.5.
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Fig. 4 shows unstable regions for the initially deflected square plate with shape (G, H)=(1, 1), e,=
0.5 and M,=0.0. In this figure, the ordinate M.=M,/M,, denotes the amplitude of the periodic force
normalized for the corresponding buckling momemt, while the abscissa w=Q/Q! stands for the exiting
frequency normalized for the lowest natural frequency. Furthermore, the hatched portions represent the
regions of instability where the out-of-plane vibrations of the plate are excited. The notation ¥+ ¥
shows the unstable motion of the combination resonance with two modal shapes (M, i) and (M, j).

(1) Effect of the shape of the initial deflection

Figs. 5 and 6 show the width of the unstable motion wi+4w} (for M=1) and Wi+ i (for M=2) of the
square plate with e,=(. 5 for various shapes (G, H) of the initial deflection. As the natural frequency "
changes depending on the shape (G, H) of the initial deflection, the frequency where the unstable region
occurs moves to the higher frequency range. Therefore, the effect of the initial deflection (G, H) is
different for M=1 and M =2, as can be seen in Figs.5 and 6.

Table 1 shows the upper and lower boundaries of the unstable motion of w?+«? for M,=0.5. The
unstable region becomes narrower with increases in the frequency range where the unstable motions
oceurs,

(2) Effect of the magnitude of the initial deflection

Fig. 7 shows the widths of the unstable motion wi+ i (for M=1) of the square plate with (G, H)=
(2, 2) for various magnitudes e, of the initial deflection. As natural frequency " increases with
increases in the magnitude e, of the initial deflection, the frequency range where the unstable region
occurs moves to the higher frequency range. Table 2 shows the upper and lower boundaries of the unstable
motion !+ i for M,=0.5. The unstable region becomes narrower with increases in the magnitude ¢, of
the initial deflection. The widths of the unstable region are narrow in the presence of the initial deflection.

Table 1 Upper-lower boundaries of the unstable
region ! wi+tw), M,=0.5 and e,=0.5.

6.) | ©iower @apper | width

7 a,n 5.90 ~ 7.25 | 1.3

1,2 6.45 ~ 7.5 | 1.30

- 2,1 7.15 ~ 8.30 1.15
(2,2) 7.60 ~ 875 | 115

0 N

Table 2 Upper-lower boundaries of the unstable
region ! witawl M=~0.5, G=2 and H

ot
TN
s

- =2.
-75 €g W (ower Wupper width
5.0 0.00 5.80 ~ 7.20 1.40
0,25 5.95 ~ 7.35 1.40
Fig.7 Unstable regions of a square plate : w4} 0.50 6.45 ~ 7.75 1.30
G=2 and H=2. 0.75 7,25 ~ 8.40 1.15
1.00 8,20 ~ 8,20 1.00

7. MAXIMUM AMPLITUDES

The nonlinear response of the unstable motion can be obtained by using numerical integrations of
equation (11). The nonlinear time response for the combination resonance -« is shown in Fig, 8. The
quadratic nonlinear terms are included in the equation of motion in conjunction with the initial deflection.
As the quadratic nonlinear terms have non-symmetric restoring force properties, the maximum amplitudes
with positive and negative signs are not the same. This result shows that the maximum deflection becomes
large when the plate experiences initial deflection.
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Fig.8 Time history of the combination resonance : wi+wi, €,=0.4, G=2, H=I, M,=0.3 and @=7.35.

.0 T T T T 1.0 T T T T
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0 0.05 0.10 0.15 O.ZOMtO.ZS 0 0.05 0.10 0.15 U'ZOMt 0.25
Fig.9 Maximum amplitudes of unstable motions : wi+w} Fig. 10 Maximum amplitudes of unstable motions ! i+ w}
and e,=0.2. and "e,=0. 2.
1.0 T T T T 1.0 T T T T
A A
0.8 b - 6.8 b _///_
eo=0.4 7
0.6 - 0.6 / —
. / ‘/

0.2 I~
.
”,
7
1 i ! 1 1 Il | L
0 0.05 0.10 0.15 0.20:0.25 0 0.05 0.10 0.15 0.205.0.25
Fig. 11 Maximum amplitudes of unstable motions ! wi4 w2, Fig.12 Maximum amplitudes of unstable motions | w?+ w?,

G=1 and H=2. G=2 and H=2.

(1) Effect of the mode of initial deflection

Figs. 9 and 10 show the amplitudes of the unstable motions wi-+w; (for M=1) and i+ o} (for M=2) of
the square plate with e,=0. 2 for various shapes (G, H) of the initial deflection. In these figures, the
abscissa M, shows the nondimensional moment and the ordinate A indicates the maximum amplitude which is
nondimensionalized by the plate thickness ¢. The maximum amplitudes are affected by the shape (G, H) of
the initial deflection, The amplitudes of unstable motion become large when the half-wave number M in the
x direction coincides with that of the initial deflection G asin M =1 and G=1 in Fig.9 and M =2 and G=2

in Fig.10.
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(2) Effect of the magnitude of initial deflection

Figs. 11 and 12 show the maximum amplitude A of the unstable motion ¢?-+ o} of a square plate with the
shapes (G, H)=(1, 2) and (2, 2) of the initial deflection. The amplitudes of the initially deflected plate
with (G, H)= (1, 2) almost coincide with those of plates with no initial deflection as in Fig, 11. That is,
the amplitude of the unstable motion is not affected by the initial deflection when the half-wave number J is
not equal to that of the initial deflection G. On the other hand, when M is equal to G, the maximum
amplitude is greatly affected by the shape (G, H) of the initial deflection as shown in Fig, 12. From these
results, it is clear that the maximum amplitude is dependent on the combination of the shape of the initial
deflection and the mode of vibration. When M is equal to G, the effect of the second order of nonlinear
terms becomes significant. The nonlinear time response in this case is similar to that of Fig.8. The
difference between plus and minus amplitudes becomes large and the maximum amplitude A increases with
the increase of the magnitude e,. On the other hand, when M is not equal to G, the effect of the quadratic
nonlinear terms is not significant, The time response in the present case is similar to that of a plate with no
initial deflection as shown in Fig. 4 in reference 3,

8. CONCLUSIONS

The present paper shows the dynamic instability of a rectangular plate with an initial deflection
subjected to a dynamic inplane moment. The dynamic instability is clarified for various shapes and
amplitudes of the initial deflection., The main results obtained may be summarized as follows :

(1) The natural frequency of a rectangular plate with initial deflection increases with the increase of
the amplitude of the initial deflection. Its magnitude depends on the modal shape of the initial deflection and
is the largest when the wave number of the mode of vibration in the x direction coincides with that of the
initial deflection,

(2) The frequency where unstable motions occur changes depending on the shape and magnitude of the
initial deflection. The frequency moves to the higher frequency range with increases in the amplitude of the
initial deflection and its width becomes narrow in the presence of the initial deflection,

(3) The quadratic nonlinear terms attributed to the initial deflection are included in the equation of
motion, The quadratic nonlinear terms modify the property of restoring forces and the plus and minus
amplitudes are not the same. The maximum amplitudes increase when this term is predominant,

(4) The effect of the initial deflection on the maximum response is conspicuous when its shape along
the loaded direction coincides with the mode of vibration, The maximum amplitudes increase with increase
of the amplitude of the initial deflection,

APPENDIX A : Particular Solution F, of Equation (§)

F,=Ed* 20 25 TnTusF fns+ egEdz,?;l TynE fnon

n=1 8=1
where

Fiins=Atls cos(n—s) an+ Bys cos (n+8) ap+cos 2 Mné {Clls cos(n—s) ap+ Dys cos(n+s) ),
Efncn=cos (M — G) n& {Eqi cos(n—H) an+ F i cos (n+ H) )
+cos (M + G) 7€ {GHS cos (n—H) zn+ H ¥ cos (n+ H) nyl,

v — M’s w__ M's oy = HMAnts)s ¥ — M MAn—s)s
U4 n—sP T T 4 (n+sP T T AWM (n—sPu T T A M+ (n+ sy
MG__ _ﬂZ(MH_nG)Z MG__ ﬂz(MH+nG>2
"M =GP+ (n—HP "M =GP+ (nt+ HP
e 1H(MH+nG) Mo — A MH —nG)
UM AGY+Hn—HPSE T T 4{(MA+ G+ (n+HYAP

where
ANs=0 (n=s), é=x/a. n=y/b, wu=a/b (aspect ratio)

68s



Dynamic Stability of an Initially Deflected Rectangular Plate Under an Inplane Dynamic Moment 91

APPENDIX B : Particular Solution F, of Equation (9)

=Ed* 2 25 TunTusF itnst+ eEd? Z TunE tncn

where

n=1 =1
7*Ons 2 2y g2 2/, 2. 2
Mns=m{(# ns+vM*E+(M?/ i+ vns)n®,
7" OwcOnn 2
hnn™ m{( (£ HnA+ vMG)E +(MG/ 12+ vHn)n?

APPENDIX C . Integrations of the Galerkin Method

L= [ [ Wisdédn,

10171 O* Wy 2 O'Wu O'Wiy
2 =ff <_ D p D

/14 o¢ ?3528772+ an' )WMpdde»

== [ [ =20 255" Wi,

Linrsp=

12 l—u j‘f <8 Furs @ Win _ O Furs O'Wun  0'Fuurs 3" Wi

SE Y At et o oy ) Wedén

12149 f‘f‘ ' Fyrs O'Wou O Fuyrs O°Won N 3" Fyrs 0" Wen
Tunreup=

o6t 2 ofan oton T o8*  on

aZEM'rGH SZWMn_ azEMTGH aZWMn aZEMrGH 82WMn) W d ’
on’ o€’ ofon  ofan + e on e @ A7,
= 1_V o EmG” o’ WG" O’ Eyrcy O Wen ) &' Eurcy 0" Wey
Lurcup= f f ( o&* ofon ofon | By o’ ) WupdEdn
where

FMrs FMrs+ FMTS; EM'rGM EMrGH+EMrGH
APPENDIX D : Coefficients of Equation (11)

Aynp= Ian/{I}Ap(Q’})Z 4}, Bunrsp= /\C%IMnrsp/{I;tlp(a})z ”2},

CMn’I‘GHpZIMn'rGHp/{ Mp(a%)z 4}, Dmcnp:IMrch/u;np(aDZ34}

Qo=

IMp D
p ,Odb4
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