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NONLINEAR DISCRETE STRUCTURAL OPTIMIZATION

By Hossain M. AMIR* and Takashi HASEGAWA**

Structural design optimization will be more convenient to formulate the design problem
with discrete variable than it would be if the variables were assumed to be continuous. In
order to solve a structural design problem with discrete variable only, two completely
different techniques, 1) Integer gradient direction, which is later supported by
subsequential search interval technique and 2) Modified Rosenbrocks orthognalization
techniques have hybridized. Rosenbrocks original procedure is a well established method
to solve continuous variable optimization problem ; but to suit to discrete variable problem
solution some modifications are needed and reported here. By this hybridizing most of the
practical difficulties, usually, encountered in the discrete optimization can be overcome,
Details of the techniques are discussed and by their combination a solution code has been
generated. A constrained problem is first converted into a sequence of unconstrained
problem by use of interior penalty function and then solved by the generated code. The
efficiency of the generated code is revealed by solving several test problems.
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1. INTRODUCTION

A shortcoming of much structural optimization work has been the concentration on continuous variable
problems. Frequently structural engineers in civil practice are confronted with only a limited set of
discrete alternatives, Rolled steel beams are generally available in standard sizes, as are reinforcing
bars, and both are used only in integral numbers. One popular approach to nonlinear discrete value
programming problems in practice has been to treat the variables as continuous. Once the continuous
optimum has been determined by some means, the usual practice is to select a feasible set of discrete
variable values near the continuous optimum point, It is well known that this procedure can lead to a point
which may or may not represent the discrete optimum ; also feasibility of the solution may be destroyed.
Thus from a practical stand point it is more convenient to formulate the design problem with discrete
variable than it would be if the variables were assumed to be continuous. .

Several researchers have attempted to develop methods for discrete optimization of structures. Reiter”
used modified gradient method for discrete variable problems where both the objective function and
constraints are quadratic, Gisvold and Moe? adopted the continuous penalty function method by using the
discretized penalty functions with modified weighting factors; Weinstein and Yu® also developed a
generalized Lagrange multiplier approach using dynamic programming. Toakley? formulated the optimal
plastic design of frame structures as a discrete problem in which the solution space consisted of the
available standard sections and solved it by using a mixed integer-continuous programming algorithm. Lai
and Achenbach? developed a direct search technique to solve discrete nonlinear optimization problems.
Grierson et al.® solved discrete optimization problem by an iterative procedure using the generalized
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optimality criteria technique. In which a sensitivity analysis technique is employed at a given design to
approximate the service and ultimate performance constraints as linear functions of the member sizing
variable, Glankwhamdee” developed a method to solve unconstrained nonlinear discrete variable
optimization problems using the concepts of integer gradient method. Liebman et al.®~9 later used
Glankwhamdee’s method to solve the discrete structural optimization problems,

A reliable discrete search technique is not easily devised due to resolution ridge difficulties, and no
identical procedure demonstrated to be reasonably reliable has appeared in the literature., A discrete
variable optimization code must have the following properties : i ) Each search direction contains discrete
points in addition to the base point ; ii) When the first discrete point in the direction of movement starting
from the base point overshoots the optimum, the search must be able to recover ; iii) The method must be
able to identify a principal resolution valley in order to move away from a false local optimum or from a
discrete local optimum to a better point,

To meet the all three requirements, the method presented here is divided into two main parts, namely,
1) Integer Gradient Direction method, IGD, which is supported by Subsequential Search Interval
technique, SSI, (these two techniques are developed in ref. 7)), specially design to meet the i ) and ii)
requirements narrated before. These are reasonably efficient and is convenient, since it utilizes concepts
developed for problems with continuous variables to solve problems with discrete variable. 3) Modified
Rosenbrocks orthogonalization procedure, choose to meet the iii) requirements, In the following sections
all three techniques are presented with three example problems.

2. SOME BASIC DEFINITIONS AND DESCRIPTIONS OF DIFFERENT TECHNIQUES

Following basic definitions will conveniently be employed throughout the paper, A discrete point, X, is
defined as a node of the lattice of the existing values of independent variables, The problem functional
values, F(X), exist only at the discrete points, A principal axis is a coordinate axis. Resolution in the x,
direction is represented by Ax,, which is the shortest distance between two discrete points on a line
parallel to x; axis. A unit neighborhood, NI(X), of the discrete point, X, contains all points that differ
from X, (X=ux,, i=1, 2, 3, -, n) by no more than + Ax,. The principle neighborhood, NP(X), of X,
contains all points in the intersection of the unit neighborhood with the axes parallel to the coordinate axes,
and centered at x. The normalized form of the search direction vector V, defines the unit direction
vector, S, i.e., S=V/IVI. A relative direction vector, DR=(dr; i=1,2, -, n) is an n-
dimensional vector representing relative movement in each coordinate direction in which the smallest non
zero movement is set to unity and the other elements are scaled accordingly. An integer gradient direction,
GM, is defined as GM=(gm,, i=1, 2, 3, ---, n), where gm, is the nearest integer value of dr,.

(1) The integer gradient direction, IGD

Due to the discrete nature of the optimization problem, the objective function exists only at discrete
points, The gradient of the function at any discrete points must be approximated by evaluating the functions
at the discrete points in the principal neighborhood. Calculation of the approximated gradient at any
discrete point (X), produces an n-dimensional vector V representing a search direction. The normalized
form of V defines the unit direction vector, S§. For minimization take S=—§.

Since the components of S are not in general integer valued, it is necessary to transform these vector
elements to the integer valued. In this respect, 2nd part of Weighted Perpendicular method (WP) used by
Reiter” can be used and it is as follows :

let s*=(min | s;|, i=1, 2, -*-, n); (where s* is the-non zero minimum of | g;| -+ oroeerenvee (1)
Calculate the relative gradient direction vector at (X),

DR(X)=dr(xi)=% FI=1, 2, eve, Tueverererseronestiniienieit ettt ea ettt sttt b s e (2)

The IGD vector at (X),
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[dr{x)+0.5] if dr{x,)=0
[dr(x)+0.5] if dr(x)<0
where [ ] denotes the largest integer not exceeding w. GM(X), generated is the approximated steepest
descent direction in a discrete design space, and any improve point (XT) along GM(X) can be generated
from the Eq. (4), where Ax is a diagonal matrix of discrete step sizes in which the ith diagonal component
is the step sizes of the ith design variable, A is the optimal step length along GM(X).

(XT)Z(X)‘FA‘A(L"GM(X) .......................................................................................... (4)

It is possible to modify most of the one dimensional search techniques designed for continuous variable
problem to find out A of Eq. (4). There are very few points inside the interval of interest along GM (X),
therefore, any of the established method of one dimensional search will be burden some instead. Hence, a

GM(X)=gm(xz)=( (l—':l, 2, =, n) ........................................ (3)

modified one dimensional search is used which is very simple in nature and as follows.

Taking successively the values A=1, 2, 3, ---, test the corresponding (XT) of Eq. (4), necessarily a
discrete point for feasibility of (XT) and improvement of the objective function, F(X). Eventually, either
locate a improved feasible point or not. The ‘A’value where unimprovement or non feasibility noted, stop
the one dimensional search and take the just previous A value as the optimal step length.

(2) The subsequential search interval, SSI

The Integer Gradient Direction, GM(X), is an approximated steepest descent direction in a discrete
design space, therefore, may deviate from the true steepest descent direction. This could possibly cause a
premature termination of search at a non optimal point or may overshoot the optimum, especially in the near
optimum region, To over come this difficulty, The SSI, d>scribed by Glankwhamdee” in his Ph.D
dissertation can be used. Physically, the SSI means a technique that can handle the points in the vicinity of
(X) and the direction GM(X) that do not fall precisely on the line of search. The SSIin a n-dimensional
space, for (X) with respect to the ‘IGD vector’, GM(X), is defined as an interval exclusively bounded by
XL and XU,

where XU=X+AX.GM(X) and XL=X—AX.GM(X)---rrrrreerrsmrcenrmemsn (5)
let GM(X) in its component formis GM(X)=(gm,, =1, 2, 3‘, .-+, 1), the number of points, K, inside the
subsequential search interval is determined by

K=2[max| gm,|, i=1, 2, 3, -, Q)] 2ersrorrrerosmmsssst st (6)
X(k)i=Xi—I<(K/2—k+1)dn/dx> for ;=1, 2, -, n; k=1, 2, -, K /2 mmreeremeenaneninen. (7)
Xk),=X—I{k—K/2)dr:/dxy for i=1, 2, -, n; k=K/2+1, K/2+42, -, K --oooveereeee (8)
where dx=max(|dr;|, i=1, 2, -+, n). Recall that (X)=(x;, i
=1, 2, -+, ), the points of interest, i.e., points inside the SSI * upper half (X5

are X(k)=[X(k)], i=1, 2, -, n; k=1, 2, 3, -, K, and can be
computed by Eq. (7) for the lower half of the interval and Eq. (8)
for the upper half. Where I<-> denotes the nearest integer value
of the arguments, The SSI in a two dimensional search space is
illustrated in Fig. 1, in which points X(1) and X(2) are in the lower
half and X(3) and X(4) are in the upper half of the interval. Use
only the upper half of the interval if GM(X) is irreversible ; use Fig.1 The subsequential search interval.
the entire interval if reversible. (after Glankwhamdee)

(3) Modified rosenbrocks orthogonalization procedure, ROP

In Rosenbrocks method”?, the coordinate system is rotated in each stage of minimization in such a manner
that the first axis is oriented towards the locally estimated direction of the valley and all other axes are
made mutually orthogonal and normal to first one. This criteria made the process to follow curved and
steep valleys when encounter in a search process in the n-dimensional space. To suit to discrete variable
problem, it needs some modifications and are described below for a function of n variables.

a) Thesetof S?, S§, ---, S¥ and the base point are known at the beginning of the j-th stage (usually,
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the coordinate direction, and the base point is the point extracted through IGD and SSI) .

A step of length A,=1 is taken in the directions SY from the known base point. If the step is successful,
A, is multiplied by an integer constant o (usually ¢=2), the new point is retained, and a success is
recorded. If the step is a failure, J, is multiplied by —8, an integer parameter, chosen in such a way that
A will be —1, 2, —2, 3, —3, -+ in the successive cycles of the j-th stage. In this way, up to a certain
distances, all points in both positive and negative sides of S’ can be inspected. A failure is recorded.

b) Continue the search sequentially along the directions S¥, S, .-, Wy, S@eee 8P 8Y) ... until
at least one step has been successful and one step has been failed in each of the 5 directions,

c) Compute the new set of directions SY*%, SY*V ... SY*Y for use in the next or (j+1) th stage of
minimization by using the Gram-Schmidt orthogonalization procedure. For this,

i) Compute a set of independent directions P,, P, -, P, as

vV,
v v 0

(Pm:[Pl’ P,, -, PJ=[S?, ( X(z:) e, Y] .2 T (9)
Vo Vo Vo, — V,dom

where V , is the algebraic sum of all the successful step lengths in the corresponding directions, S
Set Qi=P:; and ngH): Qx/”Qx” .................................................................................. (10)
Compute Qu1= Py 33 [PT. S4ISE™ (i=1,2, -, n—1)
O e 11
o G+1) 4 e
Wlth Si _-“Qz.” (I'_ly 21 s n)

ii) The new search directions, SY*" §§*V ... S§Y*V which are mutually orthogonal to each other are
transformed to the integer directions by the same procedure described in section 2(1).

d) Take the point obtained in the j-th stage as the base point for the (j+1)-th stage, set the new
iteration number as (j+1), and repeat the procedure from step a) onwards,

e) Assume convergence either after completing a specified number of stages or after satisfying the
conditions V=0 for all ;for discrete variable problem V, is either zero or a integer value,

Unlike continuous variable problem, any of Vv, in discrete variable problem may become zero, which
implemented any two of P, of Eq. (9) to be identical. As a result, the process described above failed to
provide orthogonal directions. To prevent this, the following procedure is used,

1) Suppose that in the j-th stage of Rosenbrocks method ¥ »and V. are zero, then the order of the
unit directions is rearranged from

S, 8P, wer, SY we 8P wee GY it (12)
to,

S e S S G e (13)

ii) Also change the (V, i=1, 2, ---, n) arrangement of Eq. (9) accordingly,

iii) Orthogonalization operation and transformation to integer direction carried out as usual

iv) The new unit directions which are in the order of

SYFDGYHY e GEHD L GUAD QUL e (14)
rearranged back to the original order, )
S(lf“)‘ S(sz), e Sgﬂ)’ “ee S{’{H)‘ e S(njﬂ) ...................................................................... (15)

By the nature of the orthogonalization procedure, the directions S4*?, and S¥*" are the same as SY and
S and the first n—2 directions generated are mutually orthonormal with no component in the directions
S9*Y and SY*"; therefore, the new search directions remain orthonormal,
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3. DESCRIPTION OF THE OPTIMIZATION PROBLEM

In general, a constrained structural optimization problem subject to the behavior (stresses,
displacements, etc.) constraints and side constraints can be expressed as :

Minimize F(X) .......................................................................................................... (16)
Subject to gL(X)go L:]., 2’ e I reeeeeeeenseeeeenes R L e R (17)
D =T BT LR T AR R LR AR R R LR EERLALR (18)

where, X= the p-dimensional independent design variable vector; g,(X) are the constraints imposed
upon the structural behavior and F(X) is the objective function. Present paper aims to the discrete
optimization, therefore, F(X) and all constraint functions exist only at discrete points.

If the constraints g,(X) are explicit functions of the variables, x;, itis possible to make a transformation
of the independent variables such that the constraints are automatically satisfied. One way, by which
constrained problems can be solved is converting them in to a sequence of unconstrained problems by use of
interior penalty function, The problem formulation given in Eq. (16) through Eq. (18) becomes

Min F(X, 7)=F(X) A TG(X) -veerrvreermremeseeessss it (19)
where, F(X, r)=parametric objective function, called penalty function ; r=a positive constant known as
the penalty parameter ; G(X)=some function of the constraints g(X). The second term in the right hand
side of Eq. (19) is called the penalty term. There are many popular form of G(X), but the one initially
introduced by Carroll® and frequently used by others is as follows :

- A 1 ........................................................................................................
GX=3 1% (20)

It is necessary for the penalty function approach to reach a locally optimal solution, the penalty
parameter, 7, in Eq. (19) must assume a monotonicaly decreasing sequence of positive numbers,
approaching zero in the limit, i.e., if 7, is the initial value, the subsequent value 7., will be

g g oo e e s e e L e (21)
Subsequent values of 7 are chosen according to the relation
Psa == Cor g e es oo e s (22)

where C<1.0. Usually, C=0.1 or (.25 were found satisfactory for smaller and larger problems,
respectively.

4. STRUCTURAL DESIGN

Proposed algorithm is applied to the design of steel building frames in which the beams and columns are
prismatic and are made of standard sections. The constraints limit the maximum stresses due to the
combination of bending moments and axial forces, Slenderness of the members can conveniently be taken
into account but this has discarded in this paper, Structural analysis is carried out by the well known
Stiffness Method'.

(1) Objective function

The objective function which is minimized is taken to be the weight of the structures and is given by

where the subscript ‘7’ denotes the group number ; g; is the weight density ; 4, is the cross sectional area, I;
is the sum of lengths of all elements belonging to group {; NG is the total number of groups.

(2) Constraint functions

The constraint functions are formulated for a typical beam and column under different loading conditions
in accordance with the AISC specifications®®, There is one stress constraint for each member for each
load ; thus g,(x) indicates the stress constraint corresponding to the j-th member subjected to i-th loading
conditions, A typical beam of a steel building frame subjected to a particular load conditions has three joint
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forces at each end of the beam, namely, axial force, P, vertical or shear force, P,, and the bending
moment, M. The governing moment (Muay);; is the largest of the three moments (My);;, (M,);; and
(Mpn);; s where, 1, 2 and m indicate the left end, right end and mid of the beam, respectively. The j-th
constraints for the beam (neglecting axial forces) can be expressed as follows :

o (Muax)y;
gﬁ(x)=1- (Fb),-z,- D L TP (24)
in which z,=the section modulus of beam j. For column, considering axial forces too
o  (folse (fass
Ax)=1— — 0.0 When 2200 (015 +ovvvrermeemnneennr et
9@ =1 =1E, ~ (), 200 when Ty <0.15 (25)
or
— (f(l)ii Cm(fb).it . (fa)jt (fb)ji . (fa)ji
gulaZmin] 17525 (1 08 F, (R, [2005 when (<015 (26)
(Fe); /7°
in which

(fa)s and (Fg);=the computed and allowable axial stresses in member j under the loading condition ‘7,
respectively ;
(fo)s: and (F,);=the computed and allowable bending stresses in member ‘;j’ under the loading condition ‘T,
respectively ; There are numerous ways of calculation of F,. Here F,=0.66 F,®
. .. 12 *E
(Fe);=the Eular critical stresses divided by factor of safety; FQ~W
Cn=a coefficient applied to the bending term; C,=0.85;
F,=the yield point stress.
(Fo); and (F,); etc., may be increased one third above the values provided for gravity loads®.
Allowable stresses, (F,) can be calculated by the relations given below, [cf. Ref. 13)] ; also the
effective length factor, K, for buckling, were decided according to ref. 13).

(KAA/y)
l——5—3—|F,
2C; Y (KD
(Fo),= [ o ] when ; S G rrmemremm e e @7
(Fo),= 12 Ilé? when (Kfl)> G veeeem et et (28)
sb\? 7
23 ( )
Y
Kfl Kj‘l 3
_ L5 )
F.S_the factor of Safety_5/3+ 8 C 8 C3 ........................................................ (29)
Cc_—_z HZE/Fg; 7:radius of gyratlon:(I/A)‘% ................................................................ (30)

5. TOTAL PROPOSED ALGORITHM

Total algorithms may be summarized as follows :

1) Transform the original constrained optimization problem into the unconstrained optimization
problem by use of interior penalty function. Select the penalty parameter, 7, (k=1 to start with) , and the
value of C, a parameter that reduce the value of 7, in the successive iteration,

I) Form the n-dimensional design space made up of the available standard sections (cf. Table1) and
select point, XS, let XB=XS.

M) Calculate the gradient approximation at (XB) and produce the IGD vector, GM(XB).

V) Search along GM(XB) using the discrete one dimensional search of section 2(1). If there is an
optimal step length ; produce the improved point (XT) from Eq. 4. Let(XB)=(XT) and go to step [Il. If A=
0 go to step V.

44s



Nonlinear Discrete Structural Optimization 67

V) Apply the SSI technique to locate an improved point. If a new point, (XT), can be located, test
(XT) for optimality, if optimum go to step VI. If not optimum, let(XB)=(XT);and go to step [I.
Otherwise go to step V].

V) Use the modified ROP procedure, and denote the point obtained through ROP as the optimum point
of the function F(X, 7).

V) Change the value of 74 to 74, (75, =Cry); Start the new iteration, and form the new penalty
function F(X, 74.)and go to step [. Terminate the whole process when F(X)=F(X, 75, or after a
predetermined number of iteration.

6. EXAMPLE PROBLEMS

Example problems presented in this section are the specific of several problems designed by this

approach, and three of those are reported. Design data common to all the example problems are as follows
¢ For each element of the frame, the modulus of elasticity, E, the specific weight, o, and the yield point

of stress, F,, are 3X10'ksi, 0.2836 lbs./in?, and 36.0 ksi, respectively. A total of 137 standard W
sections is available to form the solution space and is listed in Table 1. Standard sections of the design
space are numbered in the order of increasing cross sectional area, because objective function is directly
dependent to the cross sectional area. There is no sidesway limitation to these problems and only stress
constraints have been considered.

A computer code has been generated with the proposed algorithm and all calculations have been done on
FACOM M-380/382 at the Data Processing Center, Kyoto University.

(1) Four-bay, one storey plane frame

Fig. 2 represents the dimensions and the loading conditions of the problem., There are three loading
conditions, and nine members, and because of unsymmetrical frame, there will be nine design variables,

Table1 Design space for the test problems.

Desig- |A, in| I, in| %, in Desig- | &, in |I, in | 2, in Desig- | A, in| I, in |2, in

>

mation |inch? | inch? | incn3| x| nation | inch? |inch? | inch3| X |nation | inch?| inch? | inch®

1| W6x8,5 2,51 14.8 5.1 {47 | wiox66 | 19.40 | 382.0| 73.7| 93 |W27x145| 42.70| 5430.0 | 404.0
2| wex10 2.96 30.8 7.8 |48 | wax67 19,70 | 272.0| 60.4| 94 |W36x150| 44,20 9030.0] 504.0
3| wioxi1.5) 3.39 52.0 | 10.5 {49 | W24x68 | 20.00 | 1820.0 | 153.0| 95 | W33x152| 44.80| 8160.0 | 487.0
4| wex12 3.54 21.7 7.3 |50 | Wi8x70 | 20.60 | 841.0| 129.0| 96 | W14x158| 46.50| 1900.0 | 253.0
5| wBx13 3.83 39.6 9.9 |51 | Wwi6x71 | 20.90 | 841.0| 116.0| 97 | W36x160| 47.10| 9760.0 | 542.0
6] wi2x14 4.12 88.0 | 14.8 |52 wi2x72 | 21.20| 597.0| 97.5| 98 |Wi2x161| 47.40| 1540.0| 222.0
71 Wiox15 4.41 68.9 | 13.8 |53 w21x73 | 21.50 | 1600.0 | 151.0] 99 | W14x167| 49.10| 2020.0| 267.0
8| W6x15.5 | 4.56 30,1 | 10,0 {54 | W14x74 | 21.80 | 797.0| 122.0| 100 | W36x170| 50.00 [10500.0 | 580.0
9| wex16 4.72 31.7 | 10.2 |55 | W24x76 | 22.40 | 2100.0 | 176.0| 101 [ W30x172| 50.70| 7910.0 | 530.0
10| Wi2x16.5| 4.87 | 105.0 | 17.6 |56 | W18x77 | 22.70 | 1290.0 | 142.0 102 | W14x176| 51.70 | 2150.0 | 282.0
11 | Wiox17 4.99 81. 16.2 |57 | W16x78 | 23.00 | 1050.0 | 128.0| 103 | W27x177| 52.20 | 6740.0 | 494.0
12| W5x18.5 | 5.43 25.4 9.9 |58 | W12x79 | 23.20 | 663.0| 107.0| 104 | w36x182| 53.60 {11300.0  622.0
13| Wi2x19 5.59 | 130.0 | 21.3 |59 | w21x82 | 24.20 | 1760.0 | 169.0 105 | Wi4x184| 54.10 | 2270.0 | 296.0
14 | W8x20 5.89 69.4 | 17.0 |60 | w27x80 | 24.80 | 2830.0 | 212.0 | 106 | W30x190| 56.00 | 8850.0 | 587.0
15 | wiox21 6.20 | 107.0 | 21.5 |61 | W18x85 | 25.00 | 1440.0 | 157.0 | 107 | W14x193| 56.70 | 2400.0 | 310.0
16 | W14x22 6.49 | 198.0 | 28.9 |62 | Wi4ax87 | 25.60 | 967.0 | 138.0| 108 | W36x194| 57.20 [12100.0 | 665.0
17 | wex24 7.06 82.5| 20.8 |63 | W16x88 | 25.90 | 1220.0 | 151.0| 109 | W33x200| 58.90 [11100.0 | 671.0
18 | W10x25 7.37 | 133.0| 26.5 |64 |W10x89 | 26.20 | 542.0| 99.7| 110 | W14x202| 59.40 | 2540.0 | 325.0
300.0

19| W16x26 7.67 38.3 |65 | Wi2x92 |27.10| 789.0]125.0| 111 | W30x210| 61.90 | 9890.0 | 651.0
20 | wix27 7,95 | 2040 | 34.2 |66 | w27x94 | 27,70 | 3270.0 | 243.0 | 112 | W14x211} 62.10| 2670.0 | 339.0
21 | Wex28 8.23 97.8 | 24.3 |67 | Wi4x95 | 27.90| 1060.0 | 151.0 | 113 | W14x219| 64.40| 2800.0| 353.0
22 | W10x29 8.54 | 158.0 | 30.8 |68 | W21x96 | 28.30 | 2100.0 | 198.0 | 114 | W33x220| 64.80{12300.0 | 742.0
23 | W14x30 8.83| 290.0 | 41.9 |69 | W30x99 | 29.10| 4000.0 | 270.0 | 115 | W14x228| 67.10| 2940.0 | 368.0
24 | Wi6x31 9.13 | 374.0 | 47.2 |70 | w24x100| 29.50 | 3000.0 | 250.0 | 116 | W36x230| 67.70 {15000.0 | 837.0
25 | W10x33 9.71 | 171.0 | 35.0 |71 | W27x102| 30.00| 3610.0 | 267.0 | 117 | W14x237| 69.70| 3080.0| 382.0
26| W14x34 | 10.00 | 340.0 | 48.6 |72 | W14x103| 30.30 | 3610.0 | 164.0 | 118 | W33x240| 70.6013600.0 | 813.0
27| w18x35 | 10.30 | 513.0 | 57.9 |73 | wi8x105| 30.90| 1850.0 | 202.0 | 119| W36x245| 72.10/16100.0] 894.0
28 | W16x36 | 10.60 | 447.0 | S6.5 |74 | W12x106| 31.20 | 931.0 | 145.0 | 120 | W14x246/ 72.30| 3230.0 | 397.0
29| W14x38 | 11.20 | 386.0 | 54,7 |75 | W30x108| 31.80| 4470.0| 300.0 | 121 | W36x260| 76.50|17300.0| 952.0
30 | W10x39 | 11.50 | 210.0 | 42,2 |76 | W24x100 | 32.50 | 3330.0 | 276.0 | 122 | W14x264| 77.60| 3530.0 | 427.0
31| Wi8x40 | 11.80 | 612.0 | 68.4 |77 | w14x111| 31.70] 1270.0{ 300.0 | 123| W36x280| 82.40118900.0|1030.0
32| W14x43 | 12.60 | 429.0 | 62.7 |78 | W21x112| 33.00 | 2620.0 | 250.0 | 124 | W14x287{ 84.40 | 3910.0{ 465.0
33| w2i1x44 | 13.00 | 843.0| 81.6 |79 | W27x114| 33.60| 4090.0| 300.0| 125| W36x300| 88.30}20300.01110.0
34| W18x45 | 13.20 | 705.0 | 79.0 |80 | W30x116| 34.20 { 3930.0 | 329.0 | 126 | W14x314| 92.30| 4400.0 | 512.0
35| W14x48 | 14.10 | 485.0 | 70.2 |81 | W33x118| 34.80| 5900.0 | 359.0| 127| W14x320{ 94.10| 4140.0| 493.0
36 | W21%49 | 14.40 | 971.0 | 93.3 |82 | W14x119| 35.00 | 1370.0 | 189.0 | 128 | W14x342}101.00 | 4910.0} 559.0
37| WiBx50 | 14.70 | 802.0 | 89.1 |83 | W24x120| 36.00| 650.0| 300.0| 129} W14x370|109.00| 5450.0| 608.0
38| W14x53 | 15.60 | 542.0 | 77.8 |84 | W40x124| 36,50 | 5360.0 | 355.0 | 130 | W14x398|117.00} 6010.,0| 657.0
39| Wiox54 | 15.90 | 306.0 | 60.4 | 85| wW21x127| 37.40| 3020.0 | 284.0| 131| W14x426|125.00} 6610.0| 707.0
40 | W24x55 | 16.20 | 1340.0 | 114.0 |86 | W33x130 | 38.30 | 6710.0 | 406.0 | 132 | W14x455|134.00 | 7220.0 | 758.0
41| wi6x58 | 17.10 | 748.0 | 94.4 |87 | W30x132| 38.90| 5760.0| 380.0 | 133| W14x500|147.00| 8250.0 840.0
42| W18x60 | 17.70 | 986.0 | 108.0 |88 | W12x133 | 39,10 | 1220.0 | 183.0 | 134 | W14x550|162.00 | 9540.0 | 933.0
43 | W24x61 18,00 | 1450.0 | 130.0 | 89 | W36x135] 39.80] 7820.0 | 440.0| 135 W14x605|178.00|10900.0 1040.0
44| W21x62 | 18.30 | 1330.0 | 127.0 |90 | W14x136| 40.00| 1590.0 | 216.0 | 136 | W14x665196.00 |12500.0 [1150.0
45 | W18x64 | 18.90 | 1050.0 | 118.0 | 91 | W33x141| 41.60| 7460.0| 448.0| 137| W14x730|215.00|14400.0 [1280.0
46 | Wi2x65 | 19,10 | 533.0 | 88.0 [92 | W21x142| 41.80| 3410.0| 317.0

Note: 1 in. = 25.44mm; 1 in?=645mm%; 1 in3 = 16400 mn3; in? = 416200 mm’
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and nine constraints for each of the three loading conditions. Each of the three loading conditions is treated
as the independent alternate loads acting on the frame, therefore, there are total of 27 constraints in this
problem. The effective length factors, K, for all columns of this problem are assumed to be 2.5.

Results : The solution has started from the initial base point given in Eq. (31). The convergence
parameter, C=(. 25 is used to reduce the penalty parameter, 7,, sequentially. The Penalty Function,
PF(X, r), and the objective Function, F(X), values at the initial design is 111 923.687 lbs. and
67 613.01bs., respectively ; with 7,=4 550. 0. Using one sided gradient approximation in calculating the
IGD vector. The optimal solution is reached when r,,=(. 00108, after 12 iterations and PF(X, r)*=
12430.221bs. and F(X)*=12430.01lbs. Total calculation time, CPU==14. 49 sec.

125 W36 X300
X)=| | |= U PO UUOO PO UUR U PPRRIN 31)
125 W36 X300 Jaxs

A summary of the results is given in Table 2, and Fig. 3 shows the profiles of values of penalty function,
PF(X, r) and objective function, F(X), at each iteration of the search.

The optimal solution is alse shown in Fig. 4. In Ref.10), the same problem has also been solved by a
solution code mainly made of IGD and the results reported is 14 375. 0 Ibs. with no mentioned of CPU time.

(2) One-bay, two-storey plane frame

This problem has been taken from Ref. 15) ; and the dimensions and loading conditions are as shown in
Fig.5. The frame has designed under two loading conditions, namely, a) uniformly distributed loads of
0.5 kips/in on elements 2, 4, 5, 7 ; and b) point loads of 45 kips each at node 2 and 3 ; and are treated as the

- CPU Time = 14.49 sec.

2 " \Tnitial PRCY,r) value-111977.9 Ibs. |
i 26000 H with r, =4550.0 & C=0.25
& | Initial F(X) valoe = 67613.0 Ibs.
*~ 24000 \
X
Fuy 22000 Profiles of PF(X,r)
Profil £ F(X
(a) Gravity loads only - 20000 o of FOX)
LS 00 e o e o e B O i
f 18000
I+ 4
Optimal solu.=12430.0
Lol Lol 8 e
(b) Combined gravi ty loads and o 14000
the Wind loads from left A
£ 12000
F A I e e o e e O O O O
10006 .
o 2« ¢ 8 10 iz 14
Iteration number
b J», b . Note: I 1b = 4.45N
Combi . . ) .
(c) Combined Gravity loads and Fig.3 Profiles of PF(X, r) and F(X) function,

the wind loads from right
Note: 1 ft = 0.305ms 1 kip= 4.45kN;
1 kip/ft=14.59 kN/m Table2 Results for 4-bay, 1-storey frame.

Iter~| Value |Starting [Starting |Optimum [Optimum

Fig,2 Four bay, One storey plane frame. :
' ot OF Hppn | rem, | Fe’ |rece
) | Tk in (1b.)} in (Ib.)|in (1b.)in@ib.)
1 |4.55%10°| 67613.0 |111923.7 | 38257.1 |86171.9
2 {1.14x10%| 38257.1 | 50235.8 | 26990.8 |41199.8
3 |2.84x10%| 26990.0 | 30543.0 | 17228.7 |24624.7
4 {7.11:0"| 17228.7 | 19077.7 | 14919.6 |17177.2
w27x94 W18x35 W21x49 W24x55 5 [1.77x10"| 14919.6 | 15484.0 | 13051.3 |13935.2
6 4.44 | 13501.3 | 13277.0 [ 12700.6 [13111.8
<| o ol o @
% K P X S 7 1.11 | 12700.6 | 12803.0 | 12595.9 |12741.3
= = E e 3 =1
5 5 = 5 8 8 [2.77x10"| 12595.9 | 12632.0 | 12489.7 |12536.5

&9}(152 12489.7 | 12501.4 | 12430.0 {12447.9
1.7x10‘2 12430.0 | 12434.5]12430.0 |12434.5
4.34)(10-3 12430.0 | 12431.112430.0 {12431.1
12 1.08}(153 12430.0 | 12430.2 | 12430.0 |12430.2

Fig.4 Optimal solutions. Reduction factor, C=0.25; CPU Time =14.492 sec,
Note: 1 1b. = 4.45N

o w

Optimum weight = 12430.0 1bs.
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independent alternate loads acting on the frame. The frame is considered as a symmetrical one, with
elements 1 &8, 2 &7, 3& 6 and 4 & 5 form the group 1, 2, 3 and 4, respectively. Thus, there are 4 design
variables, one for each groups, and § constraints, one for each elements of the structure under each
loading conditions, Altogether, there are 16 constraints in this problem. K,=2.0, for all columns.

100 W36X170
xh=| i |= ] e e e (32)
100 W36 X170 Jaxs

Results : The solution has started from the initial base point given in Eq. (32). At (X),, the PF(X, r)
and F(X) values are 42 394. 714 Ibs. and 17 015 lbs. , respectively ; with 7,=2 450. 0. The optimal solution
is reached when 7r,=0.000584 after 12 iterations and is PF(X, 7)*=6275.7lbs. and F(X)*=
6275.51 1bs. CPU time=15. 275 sec. Profiles of values of PF(X, r)and F(X), at each iteration is shown
in Fig. 6 ; and a summary of the results is given in Table 3. The optimal solution is also shown in Fig. 7.

In ref. 15, it is solved by using different solution codes namely, CONMIN, OPTDYN, LINRM, M-3,
M-4, M-5, etc., based on different theory and algorithms ; and solved as a continuous variable problem.
Best optimum result reported is 6 460.0 Ibs. with CPU time of 148.0 sec. under M-3 code.

Compare to these results, present code shows sufficient improvements, though there is slight
discrimination in the constraint equations formulation and use of different computer,

(3) Two-bay, six-storey plane frame

The dimensions of the problem is as shown in Fig. 8. This problem has also been taken from Ref. 15) ; and
is designed for two loading conditions : a) Uniformly distributed loads of 4.0 kips/ft on elements
1,7, 11, 17, 21 and 27, and 1. 0 kips/ft on elements 2, 6, 12, 16, 22 and 26 ; b) uniformly distributed loads
of 1kips/ft on elements 1, 2, 6, 7, 11, 12, 16, 17, 21, 22, 26 & 27 and point loads of 9.0 kips each at

0.5k/in
ke JTTTTTITTI N m
o 4

Table 3 Results for 1-bay, 2-storey frame.

Iter-| Value |[Starting| Starting| Optimum | OPtimum
3 o 150 stionl of ppy | rxry| P (FoGr
B3 in (1b.}] 4n (b in (b)) in (1b.)
2.54x10°[17015.9 | 42394.7 | 14994.5 | 41435.2
6.12x10%(14994.5 | 21604.6 | 12707.5 | 20149.6
1.53x102[12707.5 | 14568.1 | 8314.1|11954.3
3.83x10' | 8314.0 | 9224.1 | 7691.2 | 8858.1
9.57 7691.2 | 7982.9 | 7129.7 | 7599.7

2.39 7129.7 7247.2 6745.1 | 6866.2
1

2]
o
_._EE_.

@ (]
120in 120in

SR I T R R NI

5.98x16' | 6745.1 | 6775.4 | 6438.8 | 6508.6

Note: 1 ft =0.305ms; 1 kip=4.45N 1.49x16" | 6438.8 | 6456.3 | 6377.6 | 6392.9

1 kip/ft = 14.59kN/m 9 [3.74x10%| 6377.6 | 6381.4 | 6275.5 | 6638.7

Fig.5 One bay, Two storey plane frame. 10 |9.35x16%| 6275.5 | 6291.3 | 6275.5 | 6291.3

1 ]2.33x1 0-3 6275.5 6279.4 6275.5 | 6279.4
G4

22000 CPU Time = 5.275 sec. 12 |5.84x10°| 6275.5 | 6275.7 | 6275.5 | 6275.7
o \' Initial PF(X,r) values 42394.72 Ibs. | Reduction factor, C=0.25; CPU Time=5.275 sec.
2 jou \  with r;=2450.0 & C=0.25 Note: 1lb. = 4.45N
o Initial F(X) value = 17015.9 1bs.
el
_\l!Wﬂ
=
a0 Profiles of PF(X,r)

» Profiles of F(X)

14000
- ol
s *
ﬁﬂﬂﬂu §
& W18x4S
MNUM Optimal solu. =6275.5 1bsi
. ] I

8000
s [ 3
5 b
g 4000 | E

son0 g PR ] B CRRCET] m

Iteration numbex
Mote : 1 Ib. = 445 Optimum weight =6275.7 Ibs.
Fig.6 Profiles of PF(X, r) and F(X) function. Fig.7 Optimal solutions.
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nodes, 1, 4, 7, 10, 13, and 16.

120 W14X246
X)h=|  |= P (33)
120 W14 X246 Jaxs

All point loads act in the direction of the x, axis. The frame has 30 members and 54 degrees of freedom.
The elements of the structure have been combined into 1§ groups so that the optimum structure is
symmetric. Groups 1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, and 17 consist of the pairs of elements of 1 & 2, 3
&5, 6&7, 8&10, 11&12, 13&15, 16 & 17, 18 & 20, 21 & 22, 23 & 25, 26 & 27, 28 & 30, respectively.
Group 3, 6, 9, 12, 15, and 18 consists of the single elements 4, 9, 14, 19, 24 and 29, respectively. Thus
there are 18 design variables, one for each groups and 30 stress constraints for each of the two loading
conditions, Therefore, altogether there are 60 constraints.

Results : The solution has started from the initial base point, (X),, given in Eq. (33). The PF(X , T
and F(X) value at the base point, (X),, are 164 547.6 Ibs and 112 199. 3 Ibs. , respectively ; with the initial

_penalty parameter, 7,=1550. The optimal solution of this constrained problem is PF(X, r)*=
18537.4 Ibs. ;and F(X)*=18537.215lbs; and is reached after 11 iteration with 7,=0.001478.

A summary of the results is given in Table 4 ; and the profiles of values of PF(X, r) and F(X) at each
iteration is shown in Fig. 9. The optimal solution is also shown in Fig, 10, CPU=181.3 sec. The optimum
results reported in ref. 15 is 22 832 lbs. with CPU time 330.0 sec. under LINRM Code.

Table 4 Results for 2-bay, 6-storey frame.

Iter-| Value [Starting [Starting [Optimum [Optimum
ation; of F®, [Fao, | F@ [P
(k). Tx in (1b.) | in (Ib.)]in (1b.)|in (Ib.)
1 [1.5x10% [112199.3 |164547.6 |56201.6 |112488.6
2 |3.85x102| 56291.6 | 70340.7 |35822.1 | 52865.9
3 |9.68x10 | 35822.1 | 40082.9 [23197.7 | 28822.8
4 |2.42x10 | 23197.7 | 24603.9 [21017.5 | 22740.9
5 16.055 21017.5 | 21448.3 |20176.2 | 20747.5
6

7

8

1.51 20176.2 | 20318.9 |18859.8 | 19010.2
3.78x10"| 18859.8 118897.4 {18655.6 | 18713.9

2

9.46x10%| 18655.6 | 18670.2 |18537.2 | 18551.4

9 2.36x102 18537.2 | 18540.7 |18537.2 | 18540.7

%] 30 144in 10 5.9):103 18537.2 | 18538.0°118537.2 | 18538.0

Eﬁj,' . . Ei 11 1.48)(303 18537.2 | 18537.3 [18537.2 | 18537.4
| 240in | 240in |

Reduction factor, € =0.25; CPU Time=181.0 sec.
Note: 1 1b. = 4.45N

Note: 1 ft =0,305ms 1 kip=4.45N
lkip/ft=14,59kN/m

Fig.8 Two bay, six storey plane frame.

W18x45 W1Bx45
i 3
& w2000 CPU Time = 181.4 sec. E % 3
a vy Initisl PF(X.r) value=l64547.6 lbs. & & 4
. with r = 1550.0 & C= 0.25 5 wem 3 wiewn
5 Initial F(X) value=112199.3 - D "
Ibs. o 5 8
] 8 3 g
x | wisxdo 3 wisxdo =
40000 Profiles of PF(X.r) 2 ° e
< Profiles of F(X) 3 é é
: 3400 ® W16x31 > Wi6x31 *
> H 3 2
32000 3 K 3
f o~ & b
A Ed x| =z
i 28008 W18x35 H18x35
° Optimal solu. = 18537.21 Ibs, % 6 %
© 24000 g § gi
3 W18x35 W1Bx35
@ - @] «
> 20000 ; E 3
unoon 2 4 é [) 10 12 14 s :m b
Iteration number
Note: 1 1b = 4.45N Optimum weight= 18537.4 1bs.
Fig.9 Profiles of PF(X, 7) and F(X) function, Fig.10 Optimal solutions,
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7. CONCLUSIONS

Discrete way of structural optimization described here is robustly worthy. Based on the results
presented above, the followings can be pointed out for the appeal of the proposed code.

a) Results of all three test problems reveal that very good optimal points have been obtained.

b) Deviation of IGD from the true steepest descent directions can mostly be recovered by the addition
of SSI to IGD. Therefore, combination of these two almost produced a true steepest descent direction.

¢) Modified ROP proposed here can also follow curved and steep valleys when encounter in a search
process for the followings.

i) The modified step lengths taken during the one dimensional search along each of the directions of
orthogonal set can claimed to be helpful to follow or move away from the discrete resolution valley to better
points, A discrete resolution valley can be described by a series of discrete local optima. A discrete local
optimum is a local optimum with respect to the unit neighborhood, NI(X).

ii) Like generalized ROP, modified ROP can also change the direction of searches in each stage and
the first direction is oriented towards the locally estimated direction of the valley and all other axes are
made mutually orthogonal and normal to first one.

d) Preparation of discrete design space made it possible to use the designation number of standard
sections as the design variables, and in this way each elements of a structure always has only one design
variable while using all the design properties in the analysis.

e) Coupling of two different techniques with different characteristics made it possible to claim that
prbposed code can be used to solve varieties of problem with reasonable advantages.

Present code can also be applied to mixed discrete variable problems with slight modifications.
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