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UPDATING FIRST-AND SECOND-ORDER RELIABILITY
ESTIMATES BY IMPORTANCE SAMPLING

By Munehisa FUJITA* and Rudiger RACKWITZ**

First- and second-order reliability methods have turned out to be efficient practical tools
in structural reliability for direct probabilistic design or for the development of
probability-based design codes. These methods are approximate but certain Monte Carlo
techniques with importance sampling can make reliability estimates arbitrarily accurate.
Three different methods are presented and tested at a suitable example with respect to
their numerical efficiency. It is found that a method which also uses curvature information
in the so-called most likely failure point usually is preferable to the alternatives if an
update of first- or second-order estimates is necessary. However, that method becomes
inadequate for very high problem dimensions and/or large failure probabilities.
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1. INTRODUCTION

One of the crucial problems in structural reliability is the calculation of failure probability integrals of
the type

sz P(Fx):/; dpz(ﬁ) .............................................................................................. ( 1 )
where Fy(x) is the joint distribution function of the random vector X=(X;, ---, X,) and Fe={x © h(x)<0}

the failure domain. In recent years powerful methods have been developed to approximate that failure
probability. In particular, let a piecewise continuous probability preserving transformation X=T(U), for

example, the Rosenblatt-transformation described in 1), exist, where U=(U,, -+, U,)is an independent,
standard normal vector., Then, the probability in eq. (1) is
PfIP(Fu):-L‘ ¢)n(y)dy-~ @(_lg)c ............................................................................... (2)

where F,={u : h(T(u)=g(u)<0} with g(v) at least twice differentiable in the solution point »* (so-called
f-point) defined by

ﬁzll_@*i§=min}llgll} for {2 : g(_u_)SO} ............................................................................ (3)
®(-) is the standard normal integral and, for convenience, g{0)>0 is assumed. The factor C is a
second-order correction term for the first-order result ¢(—g). It can be given asymptotically correct as

(8 e0)?
Cz:lI:I: (1_,‘97@)“1/2 (ﬁ—»oo) ................................................................ P (4)
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where the y; are the main curvatures of g(y)=0 in u*?. This correction factor takes account of the
difference between the probability content of an approximating hyperplane and an approximating paraboloid
in the g-point.

Although FORM (first-order reliability method) or SORM (second-order reliability method) estimates
are considered as sufficient in many applications there have been repeated doubts about the validity and
attempts to improve these results or at least quantify the error. The most promising approach appears to
be a combination of first-or second-order concepts with certain Monte Carlo techniques with importance
sampling. In the context of structural reliability these techniques have first been proposed by Shinozuka?®
and Harbitz? and have further been developed by Hohenbichler”-® Melchers?, Ditlevsen et al. ®  Harbitz®
and, recently, by Bjerager”. The various methods differ especially with respect to the amount of
information which is used from first-or second-order reliability (FORM or SORM) concepts. The
methods in 8) and 1() use spherical sampling techniques which are not discussed here. In this study three
alternative methods are briefly described and tested at a suitably chosen example in order to judge their

efficiency.
2. IMPORTANCE SAMPLING

(1) Direct method ’
Based on Shinozuka® and Rubinstein'’, Melchers” proposed the following failure probability estimate

(l}'_i)

. Palu) 1 & @nl
Pf__f lﬂy}m wn(ﬂ)dy_Nﬁfg lg'ﬂ“m ................................................................. (5)

where [, is the indicator function, such as

louny=0 © g(u)=0

Loy =1 % 9(u,)<0
and

UnU)= a5 *, D) +vveemeeesmmre oo (6)
the sampling distribution with y* the mean of U and D a diagonal matrix which is usually set equal to I It
is clear that the estimation in eq. (5) has much smaller variance than the usual crude Monte Carlo
estimator,

N
pj_flw% Ydu~ N_;Z .................................................................................... (7)

with the components of 1, sampled independently from the standard normal distribution. The specific
choice of ¥,(y) in eq. (6) ensures that there are sufficiently many points where the indicator function is
non-zero, i.e. in roughly 50 % of the simulation points, whereas much more sample points usually have to
be generated in eq. (7) in order to find points in the failure region. The only information on the important
sampling region used in eq. (5) is the location of the B-point. Simple g-function calls are necessary for
each simulated point,

(2) Methods for estimating a correction factor

The next two methods rest on the idea that it is more efficient to estimate a correction factor for an
approximate probability result, e g obtained by FORM or SORM, rather than to replace it by an
importance sampling alternative as before.

We write
A L S
P=PA) 5 PA) =P(4)C (8)
with 4 an approximation (linear or quadratic) to F. Then,
1 N
o 2 oo (9)

in which C, is the probability ratio in eq. (8) and which is estimated by simulation, It is clear that the
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simplest choice of an approximation to F is the plane going through y* with gradient g=—a. ¢ is the unit
normal vector of y*. If g(u) is differentiable in y*, this plane corresponds to the tangent plane used in
FORM. In this case

1 & O(—Nu*+bel) :

CNW ,:21 W .......................................................................................... (10)

b, is the root of g(u;+ b;a)=0. It must be found by a suitable algorithm. The distance of a plane with
gradient — g through the solution point is |u*+ b,all. The sampling points u; can be generated in two
different ways which yield very similar results. The first alternative is by eq. (6 ). The second alternative
generates n— | standard normal variables on the plane a”(y— u*)=0. The last variable is found by ful-
filling that equation.

The estimate eq. (10) should have smaller variance than the ones discussed before because part of the
integral is evaluated analytically (in the direction of ¢) and only the remaining dimensions are handled by
Monte Carlo simulation, It should become exact with N — oo because the variance of C then vanishes and
the probability for the linearized surface is exact, i.e. :

P(A)= @(”‘ﬂ) ........................................................................................................... (11)
If, on the other hand, a quadratic expansion

qw=(u—u*"Glu—u*+29u—u*=0
with G the Hessian matrix and § the gradient of g(u) in u*, respectively, is used it is easy to see that

1 & O(—Nu*+bel)

7 e R 12)
where now the root of g(u;+ c;a)=0 with respect to ¢; must also be found. Unfortunately, exact results
for the probability content of general quadratic forms in standard normal variates are difficult to obtain™®,
The most promising computation scheme has recently been proposed by Rice™¥ and Helstrom'? based on the
inversion of the characteristic function of the distribution of a quadratic form, For convenience, those
results are summarized in the appendix, For sufficiently small (or large) domain probabilities one may use
the asymptotic approximation eq. (A-3) given in the appendix. Note that g(u)=0 needs not to be a
quadratic Taylor expansion but can also be produced as a quadratic interpolation or even regression
surface!

A variant of the quadratic expansion discussed before has been outlined in 6) . It is based on the principal
form of the fitting paraboleid of g(u) in u* which is also used for the derivation of the asymptotic
correction factor eq. (4) for eq. (2). In the same reference it is shown that the corresponding correction
factor for the probability of the fitting paraboloid

P(A4)~0(~8)TL (1= 6(— ) /*

1S
@(f(l))) ¢n—1('U) 1 N ¢ (f(vz)) * 1 ! S I I
( —/‘T_.)_ 1(—) U’ 1(v)d vV~ izl‘.._(._._ —)exp J—— 0(._/3) E ) HiUgg | rrrrmeemrree s ( 3)

where (—B8)=¢(—pB)/ &(—B)~ 8, x; the main curvatures of g(u) in u* and the y;; the components of the
i-th sampling point. These components are independently, normally distributed with mean zero and
standard deviation (1—6(—B)x,)""/*. v,=f(v) is the solution of g(v, v,)=0 with y=(v,, *»*, ¥n-))inanew
coordinate system (v, v,)obtained by an orthogonal transformation such that in the new coordinate systems
the g-point lies on the negative y,-axis and all mixed derivatives of g(v, v,)=0 in v*=(0, ---, 0, —8)
vanish. Note that in contrast to the method setting out from a linearization of g(y)=0 in 4* and where the
probability content P(A) is exact, no easily evaluated exact probability can be used for the quadratic
approximation., (see, however, eq. (A-2)) Because additional curvature information is now used, that

method is expected to be more efficient than the method using only gradient information.
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3. EXAMPLE

It is not easy to construct test examples which have not only exact solutions but deviate significantly from
plane or quadratic surfaces so that the merits of alternatives and/or the necessity of the proposed updates
of FORM or SORM can be judged objectively. As an extreme example already used in 6) we take F,={g(X)
= Z, X,F C<0} where the X, are independently and identically exponentially distributed with parameter

A Applymg the necessary probability transformation produces a highly non-linear domain boundary, i. e,

Fu=[g( )=F %é &(— )?CSO] ...................................................... (14)

The exact result of eq. (14) is known to be Pr=F, (C; n, A) with F, the Gamma (Erlang) distribution
function, The negative sign in eq. (14) corresponds to the lower tail of F, and the positive sign to the
upper tail of Fg, respectively.

The three methods, namely method A (eq. (5), (6)), method B (eq. (8), (10)) and method C (eq
(8), (13)), are applied to eq. (14) in order to compare their results in terms of the equivalent safety
index B;=— @ '[P(F)] and the coefficient of variation (COV) of the probability estimates. The
comparison is performed for three different probability levels (P,=107% 107 107°) corresponding to the

Table1 B and COV for upper tail of F,, (Sample size : N=50).

By n 2 5 10 20
Ay (FORM) 2.541 2.889 3.239 3.709
By (SORM) 2.242 2.101 1.899 1.485
8 2.638 2.335 2.492 2.791
A
cov(xy| 27.23 30.16 27.25 31.41
2.327
e 2.388 2.397 2.390 2.434
B
covix)| 12.25 16.82 14.25 13.24
8 2.339 2.295 2.323 2.303
c
COV{%) 6.08 7077 10.86 14.12
B,  (FORM) 3.918 4.255 4.601 5.069
By (SORM) 3.654 3.546 3.400 3.126
B 4.000 3.667 3.948 4.146
A
cov(%)| 35.47 45.69 29.93 39.03
3.722 s 3.789 3.816 3.828 3.884
B
cov(%)| 16.99 23.68 19.24 17.86
P 3.727 3.692 3.715 3.701
c
COoV (%) 6.61 8.74 12.58 16.56
By (FORM) 4.942 5.270 5.612 6.078
Byy (SORM) 4.698 4.605 4.480 4.254
B 5.013 4.894 4.964 5.233
A
1.756 covix)| 41.36 33.16 33.48 43.60
y 4.829 4.872 1.897 4.963
B
cov(%)| 19.11 27.12 22.09 20.51
s 4.760 4.729 4.749 4.737
c
Cov (%) 6.88 9.32 13.67 18.29
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target safety indices §,=2.327, 3.722, 4.756 and four different dimensions of X (n=2, 5, 10, 20). For
comparison, the sample size in all three methods is 50 and A=]1.0.

The results are shown in Table 1 for the case of the upper tail of F, and in Table 2 for the case of the
lower tail of F,, respectively. In the tables the safety indices calculated according to FORM and SORM
are also shown for comparison.

As expected the results according to FORM and SORM become worse with decreasing target safety
index and increasing dimension n. As it should be, SORM produces almost exact results for large target
safety indices, Method A produces the largest coefficient of variation. Because method A only needs the
location of the @-point and only simple function calls during simulation, it must, nevertheless, be
considered a rather robust method. Roughly half of that coefficient of variation is observed for method B
which can be explained by the fact that it uses the precise locations of the failure surface for the simulation
points, Because the corresponding probability P(4) is exact and the variability of the correction factor
vanishes as N — oo, it also reproduces the exact probability for any failure domain, Method C has the
smallest coefficient of variation because it further uses curvature information of the failure surface in the
S-point. Because P(A) in eq. (13) is only accurate for g — +-oo, it is especially suited for large or small
probability domains.

A comparison of these methods should further be carried out with regard to the numerical effort. A

Table2 B and COV for lower tail of F,, (Sample size : N=50).

By 2 5 10 20
By (FORM) 2.070 1.684 1.319 0.841
Py (SORM) 2.330 2.299 2.223 2.047
s 2.280 2.381 2.414 2.227
A
cov(%)| 23.16 32.76 43.55 49.40
2.327
s 2.306 2.301 2.319 2.354
B
COoV (%) 8.17 13.45 14.70 15.25
) 2.326 2.329 2.347 2.328
c
OV (%) 0.43 3.11 4.19 5.72
By (FORM) 3.469 3.068 2.692 2.209
By (SORM) 3.731 3.723 3.680 3.567
5 3.724 3.752 3.891 3.965
A
covix) | 27.37 44.31 52.94 69.34
3.722 . I 3.714 3.703 3.741 3.788
cov(%)| 12.05 22.61 21.44 26.47
P 3.719 3.722 3.741 3.727
c
cov(%) 1.54 5.08 4.28 5.85
By (FORM) 4.514 4.103 3.718 3.228
Pyy (SORM) 4.768 4.764 4.744 4.662
P 4.776 4.879 4.905 5.003
A
1.756 cov(x) | 30.23 65.37 56.13 69.40
. p 4.754 4.739 4.816 1.861
cov(%) | 14.75 31.20 26.37 38.35
. P 4.753 4.757 4.777 4.765
cov(%) 2.09 7.04 4.58 6.07
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Table 3 Number of g-function calls (n=5, £,=2.327).

method N g-function B COV(%)
call No,t

FORM o 60 2.889 -

upper SORM o 70 2.101 -
tail A 2100 2160 2.348 7.68
B 200 1260 2.389 7.65
[o] 50 370 2.295 7.77

FORM o 80 1.684 -

lower SORM [ 70 2.299 -
tail - A 7000 7060 2.331 3.06
B 1000 6060 2.305 3.02
C 50 370 2.329 3.11

* Kl = 10, Kz = 3 are assumed.

convenient measure of the effort is the number of g-function calls because these usually are most
time-consuming in practical applications. Let K, be the number of iterations in FORM using a gradient
algorithm and K, the number of iterations for the line search algorithm in method B and C. The numerical
effort, then, is approximately :

FORM  Ki(n+1)

SORM  Kin+1)+n(n—1)/2

Method A © K\(n+1) FN b e (15)
Method B : K\(n+1) +2 NK,
Method C : K,(n+1)+n(n—1)/2+2 NK,

K, typically, is around 10 whereas K, is 2 or 3 depending on the initial solution of the algorithm. The
analysis of the example now shows that the effort of method A and of method B is approximately the same
for the same accuracy of the probability estimate (see Table 3). It can be seen that the number of function
calls for method B is roughly one half of method A for the upper tail and the same for the lower tail. The
numerical effort for method C is in the order of 10 % of the other methods for small dimension n. For very
large problem dimension method C must, however, become inefficient due to its quadratic increase of
function calls which in the other methods is only linear. Table 3 further demonstrates that FORM or
SORM are much less expensive than any importance sampling simulation method,

4. SUMMARY AND CONCLUSIONS

Three importance sampling methods replacing or updating FORM or SORM probability estimates are
‘compared at an extreme example. Method A may be called direct estimation and uses only the location of the
f-point, Method B uses gradient information and involves some direct probability integration, Method C
additionally uses curvature information. It was found that this method is the most efficient for not too
high-dimensional uncertainty vectors and extreme probabilities. Method A or B with slight preference to B
due to its higher efficiency should be applied in very high dimensional problems irrespective of the
magnitude of the probabilities. In any case the updating by simulation requires much more effort than
simple FORM or SORM estimates, so that such updates should only be made if there are serious doubts
about the validity of FORM/SORM results.
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APPENDIX : PROBABILITY CONTENT OF QUADRATIC FORMS

Let a quadratic form be given in its principal form which always can be achieved by suitable orthogonal
transformations®? :

Q= q(y_)z;\;{ Ai(ui_85)2 ............................................................................................ (A-l)
Helstrom™ gave the following formula for the probability P(Q> k) based on Rice® :
PQ> k):_[:w XD [A()/(2 TE)J QU v+ vseereeeenmemeseme e (A-2)
0 for 4*>0 2172 Y] e e
o o] e explatu) (a3
where y* is the (numerical) solution of A’(u)=0 and
h(u):f(u)—-uk——]n Qi S ete et e e aneeeeeee e ettt ettt et (A.4)
with
f(u):% i} (0312 Ud) = 8F—In (1 —2 gA;)]r-rrrerermremrmre s e (A-5)

the cumulant generating function with arg (In 4) =0 at y=c. For solving A’(u)=0, the starti;lg value 4%

should be chosen such that y®<E[Q] for E[Q]<k and 4”>E[Q] otherwise with E[Q]=2] A1+ &)).
i=1

Formula (A-3) is an asymptotic approximation.
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