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SHAKEDOWN ANALYSES OF TWO-SPAN BEAMS AND SYMMETRIC
THREE-SPAN BEAMS WITH CONSIDERATION
OF BENDING AND SHEAR

By Rong-Wen HWANG*, Tsutomu TANIHIRA** and Keiichiro SONODA***

This paper presents an easily comprehensive method of shakedown analysis of two-span
beams and symmetric three-span beams with a moving load when taking account of bending
and shear. The original problem to be dealt with is a nonlinear mathematical programming
due to a nonlinear interaction of bending moment and shearing force on the ultimate strength
of cross section, Adoption of Mises yield condition reduces this problem to a quadratic
programming. Well-known conception of quadratic inequality is introduced to find the
analytical solution of the problem. Numerical results for the beams with various
span-ratios, loading conditions and strengths of cross sections clarify the shakedown
characteristics, particularly the influence of shearing force on shakedown loads,
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1. INTRODUCTION

Problems of determining the ultimate loading capacity of girder bridges have become increasingly
important as the limit state design method is adopted for bridge structures. The perfectly plastic theory
may be accepted in practice for steel girder bridges with compact section. However most bridge design
codes restrict the method of structural analysis within elastic theory, One of the reasons of this restriction
may be attributed to the uncertainty of limit behaviour under complex loading conditions such as
combinations of traffic loads, wind loads and own weight loads.

Significance of shakedown problems has been well known for bridge structures subjected to moving
loads?., However, classical shakedown problems have almost been confined within bending theory. In
consequence, it has been said that the shakedown load of statically indeterminate girder bridge is only
slightly lower than the static collapse load under the extreme loading condition and the shakedown problem
is not so severe for bridge structures, But actual girder bridges are subjected to various kinds of forces
such as bending moment, shearing force, axial force and twisting moment. Even at present, shakedown
problems considering both the effects of bending and shear remain unclear. In particular, the effect of
shear must be severer for reinforced concrete bridges.

This paper is intended for revealing the shakedown characteristics of multi-span girder bridges. It is
well known that shakedown problems within the scope of bending theory can be solved by a linear

programming” where a shakedown load multiplier is objective function, residual moments or reactive
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forces are state variables and plasticity condition gives inequality constraints in a functional type of state
variables, On the other hand, consideration of both bending and shear reduces the inequality constraints to
nonlinearity, and the problems of determining a shakedown load are reduced to a nonlinear mathematical
programming, Literature on the studies of shakedown problem by a nonlinear programming are seen for
elastoplastic arches”, grids® and plates?® In these studies, nonlinearity due to cross sectional yield
conditions were dealt with graphically for arches and piecewise linearly for grids and plates. For
structures with moving loads, the shakedown problem becomes further complex, because resultant forces
at the cross section are given by a nonlinear function of the position of load. Generally speaking, to solve
analytically a nonlinear programming of such a type of structure is impossible. But in the case of two-span
beams or symmetric three-span beams, the unknown variables are only two of shakedown load multiplier
and one residual reactive force. In this case the adoption of Mises yield condition reduces the problems to a
quadratic programming to be able to solve analytically.

2. SHAKEDOWN ANALYSIS

(1) General formulation for multi-span beams

A m-span continuous beam shown in Fig. 1 is considered here. Since the beam has m —1 degrees of
statical indeterminancy, elastic bending moment M., and elastic shearing force S, at any point of the beam
can be expressed with unknown reactive forces X, (k=1, 2, 3---, m—1) at intermediate supports as follows

noy — !
Mez=Moz+ Px(1—€)— H.P (x—§L>+§ XM ke, M,azx(l—-f)—ﬂk(x—la

L
L

where M, and S, are bending moment and shearing force due to a fixed load ¢, which are easily obtained

Sex=80x+P(1——-$)~—H¢P+:Z;]:X,Em, Sp=1—2 g,

by static conditions as a simple beam with span I, and H, and H, are Heaviside’s step functions defined as

follows :
. IO, O0sx<éL .
= ; —
Lél=x=L | (2) O-——gLﬁP , o
- 0, 0=x<lIy v y s o
1, hksx<L Lz e, Lzm,{
The unknown reactive forces, X, can be determined by the L i
principle of least work well known in the elementary structural Fig.1 m-span beam,

mechanics,
On the other hand, residual moments M,, and residual shearing forces S,, at any point of the beam,
which are induced by partial plasticization of the beam, can be expressed with residual reactive forces X,,

=]1,2,3,-=-, m—1) at intermediate supports as follows :
m—1 P— m—1 pa—
M= kgl XM 1s, Spp= )EZ;‘I KprS i w ot e r e me e ( 3 )

Let the beam considered be made of perfectly plastic material. Interaction on plastic strength of the beam
section under the actions of both bending moment M, and shearing force S, generally depends on the shape
of cross section, but alower bound interaction curve with a good approximation irrespective of any shape of
cross section can be given by the following simple expression” :

(%)2.;_(%3)2: ..................................................................................................... (4)

where M, and S, mean the fully plastic moment and the fully plastic shearing force, respectively.
Now let the beam be subjected to any combination of a cyclically reapeated moving load P and a fixed load
g, which may be a typical problem in girder bridges. Melan’s theory says that the problem of determining
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the shakedown moving load P is reduced to the following mathematical programming :
P,=maximize P

Mex;oer >2+( Sez:gl‘oer >2§1

The above problem is a nonlinear programming with the variables, x, &, P and X, If we transform this

subjected to <

problem into a convex programming, which may be solved numerically, the variables, x and ¢ must be
replaced by a large number of known constants x; and §(i=1,2, - , n) which are specified by the
divided points with a small spacing L/n for the whole length of beam. In consequence, Prob. (5) becomes
a convex programming with quadratic inequality constraints of n? in number. Furthermore, if we desire to
make a linearization of quadratic inequalities replacing the circular interaction curve by an inscribed
polygon with a large number of sides as shown in Fig, 2 (such a technique of linearization is used in the
literature?~9), we obtain a linear programming with linear constraints of sn’ in number where g is the
number of sides of the inscribed polygon. However, in order to obtain the solution of Prob. (5) witha
good accuracy, we need to increase both 1 and s to a large number and consequently must deal with a linear
programming of large size.

Therefore, this study attempts to devise a semi-analytical method for obtaining the direct solution of
nonlinear problem (5). For the sake of this, problems dealt with here are confined with only two-span
beams and symmetric three-span beams, but they are expected to have an essential characteristics of
shakedown of multi-span beams.

(2) Two-span beams

A two-span beam to be dealt with herein is shown in Fig, 3. Denoting the elastic bending moments and
shearing forces at any cross section ; under the unit moving load P=1 at the position x=_¢L (L=total
span length) and the unit uniform load g=1 by M, (¢), S,i(6), Mg, Sa, respectively, the domain of
elastic stress variation can be expressed as follows :

R.=IM,, S.| Mg:PMpi(§)+ qﬁqi, Singpi(g)—'_ ngi} ..................................................... (6)
where 0= ¢<1.

Shakedown of a statically indeterminate beam means the phenomenon that after a finite number of
repetition of moving load, the beam behaves elastically and the residual forces remain constant. Since a
two-span beam has one degree of statical indeterminancy, the residual moments M,; and the residual
shearing force S, can be expressed by the residual reactive force X at the intermediate support. Namely,

Mﬁzfjﬁx’ Sri=8pX -eereer e et ee et aaeeeee e e (7)
where M, and §,i means the bending moment and shear force at cross section ; due to unit residual reactive
force.

Introducing the nondimensional quantities ; A=PL/M,, a=ql}/M,, p=XL/M,, Tp=M (8 /L, Sp=
ﬂgm(f) s —mqi‘_—ﬁqi/ A, §q1:ﬂ§qi/ b, “’fﬁn:M‘n‘/ L, §ri:l@§rﬁ and =M,/ (S,h), Prob. (5) for

determining the shakedown load multiplier A, of moving load is reduced to the following mathematical

\ od i =

\ 900, N 3
1.0

/ MX/MO E%Ejlz_-é‘_zl.—-l

/, T i

o Fig.3 Two-span beam.

Fig.2 Lower bound interaction curve and piecewise linearization.
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programming .

As=maximize A, subject to (AT o+ M gi+ (M) + (AT pit @S qit S r P oreeerrerermommoninnnnnns, (8)
Since 71, and §,; are a function of both the position of moving load and the space, it is considerably
difficult to find the exact solution of Prob. (8). For this reason, we here try to find an analytical but
approximate solution of Prob. (8) with good accuracy. Generally, the existent domain of (77, S,:) has a
nonconvexity surrounded by the area with soled lines as shown in Fig. 4. However, a domain to be dealt
with in Prob. (8) can be substituted by a convex circumscribed polyhedron about the original domain,
because Prob. (8) is a kind of convex programming. Then, if such a polyhedron has some vertexes (.,
Su), J=1, 2, -, 7; the problem of Prob. (8) can be transformed into

As=maximize ), subject to (X, +a T ot (T + (XS iy @St (S 1 eervveeereecnccin, (9)

i J
Further, dividing the whole length of the beam by 7, points with a small equal spacing and imposing the
inequality constraints on only such points, Prob. (9) is reduced to a typical quadratic programming with
two unknown variables of )\ and 4 and Y7, inequality constraints.

Now we develop the inequality constraints in Prob. (9) into a quadratic form about w as follows :
(miz‘f‘gri) ©+2 {(mijmrt+§zf§ri) At (mqimrz+§q£§ri) a} M
+[( A+ aﬁqi)z-i- ( XS5+ a§q,~)2'— 1] KO v (10)
Considering the characteristics of quadratic inequality about u, we obtain a necessary condition on A to
have a real solution of 4 as

A M+ Sn , Saifri=MaiSri Qe e el (11
TIMiyEr— Syl MySrn—SuMr

Besides, we must limit A to be a positive in view of actual situation. While the existent region of 4 in Eq.
(10) becomes as follows :
max. yp=p<min. yj
Vi 1

Yo Mt sk { — LR it 505 1) At (M oiTl i+ S i) ]

i\/ (mii+§5z)“[(mijgrt“—gij‘mri) A+(mqi§ri_ﬁ7i§qi) a]z } """""""" (12)
As mentioned before, a constant value of residual reactive force exists under a shakedown behaviour.
Therefore, at the shakedown load, the extreme value of 4 must exist as follows :
/‘s:maxih}lize y{j:minlilglize P e (13)

On the other hand, the condition (11) to be satisfied at the whole position of the beam yields the following
expression .

m \ gqiﬁri“ﬁqigri
lmwgri“-g‘wmn‘ | N mijgfi_gijﬁri
Simultaneous satisfaction of both Eqs. (13) and (14) induces the shakedown load multiplier A;. An
iterative method to find As is graphically represented in Fig,5, in which A, is the elastic limit load

0=A=A, A=minimize
LJ

multiplier.
5 07 125,5)
P
. - l : n
Ay, 554 BB BC  BD

z] 12_+_11..’

L =

Fig.4 Vertexes and convex region. Fig.5 Illustrated iterative procedure. Fig.6 Three-span beam.
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(2) Three-span beam

A three-span beam to be analyzed herein is shown in Fig. 6. The beam has a symmetric configuration and
symmetric strength of cross section. The domain R, of elastic stress variation expressed by Eq. (6) is
obtained through a familiar elastic analysis. The beam is statically indeterminate of two degrees, but for
symmetry of the beam, residual reactive forces at two intermediate supports are equal to each other when
the beam shakes down. Therefore, a shakedown problem of the beam has only two unknown variables of A
and g, (u,=p,), where 4, and y, are nondimensional residual reactive forces at the intermediate supports.
This problem can be easily solved through a similar procedure to Egs. (6)-(14).

3. NUMERICAL RESULTS

(1) Two-span beams with equal span length

Fig. 7 demonstrates the variations of A,, A,, and y about a nondimensional parameter 8= M,/ (S.l).
The results in the figure are for the beams subjected to only a moving load. Elastic limit load multiplier A,
and static collapse load multiplier being 5. 83 which was determined by the method of limit analysis are also
included for comparison. From this figure, it may be found that in the range of g greater than (. 25, A;and
). take almost identical values, while in the range of 8 less than (.03, the effect of shear disappears and
then A, almost coincides with the shakedown load multiplier considering bending only, which takes 5.72.
Therefore, we can conclude for the beams that the shakedown problems considering both the effects of
bending and shear are significant only in the range of .03<£<0.25.
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Fig.7 Bending-shear interacted A, A, u,vs. @ and corresponding ; N N *
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static collapse load multiplier.
Fig.9 P, vs. I, for two-equal-span beams of H-shaped

6 steels listed in Table 1.
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and the variation of static collapse load multiplier. steels listed in Table 1.
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Table1 Some typical H-shaped steels?.

H M So MO/SO

B 1, t A W Yy fo}
No. (mm) (mm) (md) (ok) (en®) (kg/m) (kg/en?) (10Pkg cm)  (10%g)  (em)

1 100 50 5 7 11.85 9.3 2400 0.100308  0.0164198 6.11
2 150 150 7 10 40.14  31.5 2400 0.574980 0.0556196  10.34
3 250 250 9 14 92.18  72.4 2400 2.248534  0.1275898  17.62
4 400 400 13 21 218.7 172 2400 8.640319  0.3030396 28.51
5 588 300 12 20 192.5 1531 2400 10.341389  0.2667358  38.77

In the case of beams subjected to both a moving load and a uniform dead load, the changes of As with
combinations of § and o (=¢[?/M,) are graphed as Fig, 8. As ¢ becomes larger, the uniform dead load
increasingly plays an important role for the shakedown problems. As mentioned before, the effect of shear
disappears when g is less then (.03. In this range of g, though in Fig. 8 only the case of £==0.001 is
shown, the shakedown load becomes closer and closer to the static collapse load as ¢ increases, While, in
the range of @ greater than (.03 a similar tendency is found in the relation between A, and q.

In order to explain an application on actual girder bridges, five typical kinds of H-shaped steels? listed
in Table 1 are taken into computation. Fig, 9 exhibits the variations of shakedown load P, with respect to
span length for each H-shaped steel with consideration of dead load. It may be realized that the magnitudes
of shakedown loads of H-shaped steel girders depend mainly upon their ratios of fully plastic moment to
fully plastic shearing force of cross sections. In Fig. 10, we also give the relationship between span length
and the ratio of bending-shear interacted shakedown load, P, to bending shakedown load, P’ From this
figure, we learn how much effect of shear will bring on in the shakedown problems of girder bridges.

(2) Three-span beams

First, we performed computations on three-span beams without uniform dead load in four cases of L/
=1.0, 1.2, 1.5and 1. 8, using an analogous procedure to two-span beams. The results obtained are shown
in Fig. 11. This figure corresponds to Fig. 7 for two-span beams, but the effect of the ratio of mid span
length to side span length is included in the figure. From this figure we know that at the same value of £ the
beam with a smaller ratio of [,//, has larger A, but such difference of As about [,/ ], disappears as £
increases,

On the other hand, we also applied the five kinds of H-shaped steels as listed in Table 1 on three-span
beams with equal span length. Fig. 12 and 13 show the results obtained. From the comparison of Fig, 9 and

1000
Lg/ly= T
6n.0 il \§\
:‘I:‘: i -h.\ 100 '\\‘
N —
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Fig.11 A, vs. @ for symmetric three-span beams with Fig.12 P vs. [, for three-equal-span beams of H-shaped
different span ratio. steels listed in Table 1.
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beams with span ratio 1.5 and »=0.5, 0.7 and 1.0,

respectively.

a

Fig.15 Ps/P, vs. o of different 8 for symmetric three-span

Fig. 12, we can conclude that two-span beam and three-span beam have almost the same magnitude of
shakedown load if they have the same span length. Further Fig. 14 shows the variation of P/ P for the
three-span beams with unequal span ratios of [,/ ;=1.0, 1.2, 1.5and 1. 8. Appreciable differences in the
shear effect are seen among the different span ratios.

In actual three-span girder bridges, it may be often seen that side span and mid span have different
plastic strengths of cross section, Here, we carried out computations for the beams with the span ratio of
1.5 and »=0.5, 0.7 and 1.0 where y means the ratio of fully plastic moment of side span to that of mid
span, Such a ratio on fully plastic shearing force is assumed to be equal to the ratio on fully plastic moment
for the convenience of numerical computation, Fig. 15 show the results obtained, where Py/P, means the
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Fig.14 P,/P% vs. [, for symmetric three-span beams of H-
shaped steel 3 from Table 1, with different span ratio.
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Table2 Comparative results between Reference? and present method for three-span beams with equal span length considering bending

only,
0t=qZ§/MO 0.0 1.16569 2.33137 3.49706 4.66274 5.82843 6.99411 8.15980 9.32548 10.49117
ULT.LOAD
=5,82843 5.82843 5.24558 4.66274 4.07990 3.49706 2.91421 2.33137 1.74853 1.16569 0.58284
~0.50

*S.D.IOAD(1)  5.70747 5.13785 4.56797 3.99784 3.42746 2.85683 2.28596 1.71483 1.14346 0.57185
*S.D.L0AD(2)  5.71149 5.14082 4.57015 3.99948 3.42882 2.85815 2.28748 1.71681 1.14614 0.57547
.[._@l(.;_)iﬂ% 0.070  0.058 0.048 0.041 0.039 0.046 0.067 0.012 0.234  0.633

*S.D.LOAD=PSZZ/MO ;  (1):Yoshida etc. (2):present method

ratio of bending-shear interacted shakedown load to static collapse load. It is recognizable from these
figures that the uniform dead load much contributes into the reduction of shakedown loads of three-span
beams. We also note some fluctuations in the curves of P,/ P, versus ¢ in Figs. of y=0.5 and (.7. Such
fluctuations may be caused by the variation of static collapse load which is controlled by a collapse
mechanism occurring at whether side span or mid span depending on both v and ¢. Namely, in the ranges of
smaller values of £ and of larger values of ¢ and in the cases of y=0.5 and (. 7, the collapse mechanism
occurs at side span, but in the other ranges at mid span,

In Figs. 16, we also investigate the variations of P,/ P, from another angle. Here g is taken as abscissa
and ¢ issetas(, 0.1, 0.2, 0.3, 0.4 and (. 8 times of the ultimate dead load multiplier which is determined
by the limit analysis considering bending only. From these figures, we also conclude that the uniform dead
load enlarges the effect of shear on the shakedown load.

4. CONCLUDING REMARKS

We have attempted to present a comprehensive analytical method on shakedown problems of two-span
beams or symmetric three-span beams. There is no literature in hand to learn how good accuracy the
present method has. However, we made a comparison on bending shakedown analysis by the present method
(see Appendix) and that of Reference?, Their results are tabulated in Table 2. In order to discuss a
general shakedown characteristics of girder bridge, the effect of distributed live load which was included
in Reference” should be also considered. Such an effect can be easily included in the present method, but it
was excluded in this paper for the convenience of numerical computation, For more actual structures such
as reinforced concrete and prestressed concrete beams, the present method is supposed to have an
applicability, if we have reliable informations on the interaction curves between bending and shear on
plastic strengths of cross section,

APPENDIX
SHAKEDOWN ANALYSIS CONSIDERING BENDING ONLY

For this problem, we drop out the terms including shearing part from Eqs, (1 ) through (14) and follow
the same analytic procedure developed in section 2. However, the number of convex vertexes in the elastic
stress domain of cross section in such a case is reduced to two, namely, maximum and minimum bending
moments, Their constraints and analytic procedure corresponding to Egs. (9), (10) and (12) become as

follows :
As=maximize A, subject to (A7 ;4 @M gy (T ry) 28]+ oorememmrrer et (99
miiﬂh’_ 2 r (;ﬁn—ﬁ_}_ amqi) H+[(/\7ﬁii+ aﬁqi)z—l]é() ..................................................... (10’)
- i, yr Yoo TWRetemy) 1 .
max. y;spsmin, Yiss 7;“ Trs + [—T;i”] (12 )
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In inequality (10"), x is constantly a real value for any given real value of A. Therefore, instead of the

use of the range of constraints (11) and (14), we execute iterative computations with appropriate

increment of A on Eq. (12) until a cross points of curves of maximum 7 and minimum 7y}; appears,

However, there exists the case that there is no cross point of the curves, in another words, the beam

collapses by its own dead load. If so, we may interrupt the computation at a beforehand decided value of A.
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