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MODAL DAMPING OF FLEXURAL OSCILLATION
IN SUSPENDED CABLES

By Hiroki YAMAGUCHI* and Yozo FUJINO**

The modal damping of flexural oscillation of suspended cable models was measured and is
reported in this paper. Numerical analyses of free oscillation of the cables were also made
to calculate natural frequencies, normal modes and additional dynamic strains. It is found
that the additional dynamic strain of each normal mode is the primary cause of modal
damping and that the damping of the first in-plane symmetric mode is much larger than that
of other modes around the ‘crossover’ point of the first and second natural frequencies, The
effects of the span length, the tenmsile rigidity and the chord inclination are also
investigated.

Keywords : cable, modal damping, experiment, flexural oscillation, additional dynamic
strain

1. INTRODUCTION

Cables have been widely used as structural members in transmission lines, telecommunication lines,
cable-stayed bridges, and suspension bridges, Severe oscillations of these cables due to wind, such as
galloping and buffeting, can easily occur because of flexibility, and have been reported frequently,

In order to check the aerodynamic stability of structures, in general, their dynamic characteristics such
as natural frequencies, normal modes and structural dampings, are required to be known. The structural
dampings play an important role in the aerodynamic behavior. The damping of structure, however, is very
difficult to estimate analytically because it is influenced by many factors including connections of members,
supporting systems, masses, etc.” and an ordinary way to estimate the damping of whole structures is
rather empirical and has been by using past experimental data.

The damping of a single cable is much simpler than the damping of a whole structure and several studies
have been made about the damping of single cables?~® Refs. 2) ~4) deal only with the first flexural modal
damping of taut wire ropes with very small sag-to-span ratios, and Ref.5) is concerned with hysteresis
damping of wire ropes during axial oscillation. All of these treat the material damping of ropes and no
research has been reported about the damping of cable as a structure except Ramberg’s one® which
investigated the dynamic characteristics of marine cables. The structural damping of a cable is often
represented by its modal damping which is the structural damping corresponding to each normal mode, The
importance of modal damping is obvious in the sense that the modal damping will be reflected in the modal
selection during self-excited oscillations and in the stationary amplitude of buffeting motion. The results
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of a wind tunnel test”, for example, show that the  Tablel Modal Damping of Telece ication Cable®.
galloping of a telecommunication cable was not excited Cable Weight|Sag  |Span|Mode|Freq. Log

. K . (kg/m) |ratio |(m) (Hz)(*) |decre.
in the first mode of the cable but in the second mode.

; . . . 0.9-100CA|| 2.04 |0.0215| 250/ S1 |0.35(1.5)|0.143
This can be explained partly due to differences in modal (655W) 451 10.47(2.0)|0.0120
dampings. Actually some data of modal damping of Az; g:g:gijg g:gég‘;

. . 8) - . .
telecommunication cables” shown in Table 1 indicate o.0-1000a] 2.21 [0.010a| 260] 51 lo.56(1 5710208
that the first modal damping is one order larger than (655W) A:; g-ggg-g; g-gégg
dampings in other higher modes. ~ As2 |1.24(3.9)]0.0072

In what follows the modal damping characteristics of 0.65-100 || 1.37 |0.0188] 82| s1 |0.75(1.7)|0.161

. . s . . FLA 51 |0.88(2.0)]0.0210
single cables during flexural oscillation are investi- (a55W) s2 1.35%3.1% ooz
gated through free oscillation experiments with model AS2 |1.79(4.1)10.0187

cables. The sag-to-span ratio is chosen as the principal * fli“ii‘:iizimalized by the 1st natural frequency
parameter in testing and it is investigated how modal
dampings change as the sag-to-span ratio changes. In addition, the effects of span length, tensile rigidity
and chord inclination on modal dampings of cable will be also discussed. Free oscillation analysis of cable is
also made to calculate the additional tensions during each modal oscillation. -Relation of the additional
dynamic strain to modal dampings will be discussed.

It should be mentioned that the investigation of modal dampings of cable gains more importance,
particularly in recent years, in view of the discussion about the so-called system-damping of cable-stayed

bridges? and cables used for a cable-stayed damper of suspension bridge towers during erection®,
2. FREE OSCILLATION EXPERIMENTS WITH MODEL CABLES

The model cables employed in the experiments are 7—wire strand ropes to which lead weights
(15.1 g/weight), available as sinker in the market, were attached at interval of about 9 cm distances in
order to adjust the weights, Their model specifications are listed in Table 2. Each cable was wound with
several turns around a horizontal bar-steel, which was connected rigidly to a steel rigid support, and then
mounted in the support through a turnbuckle (Fig.1). The end condition of cable was accordingly
considered to be completely fixed but, as is mentioned later on, it was slightly movable in the direction
perpendicular to the cable axis in the case of out-of-plane motions of the short-spanned cable with small
sag. The sag of cable was adjusted by the turnbuckle. ‘ '

The test cable set up with required sag-to-span ratio was forced to oscillate at each natural frequency by
using a dynamic jack which was connected to a point of the cable through a thread (Fig.1). The thread was
cut after stationary oscillation was attained, and the subsequent decay of free vibration was recorded, The
cable was excited vertically (or transversely) in order to obtain in-plane (or out-of-plane) oscillation, The
excitation point was changed such that the mode concerned was purely excited. The dynamic displacements
were measured by means of the target of an electro-optical displacement follower, attached to the cable at
an appropriate point (quarter-span, mid-span, etc.) ; the amplitude decay was recorded on a strip chart
pen-recorder in order to compute the natural frequencies and logarithmic decrements, It was found that the

rigid support ——
position
bar- 7| sensor
Table2 Cable Model Specifications and Test Conditions, steel carget
Cable || Type Tensile |Bresk Weight |Span |Chord
(Dia.of) rigidity [tension lengthlincli- model cable =
wire EA(xg) ~ |Tg(kg) |w(kg/m)| o(m nation (ihclined
. 8(deg.) turn- thread cable |4
buckled
CABLET || SWR1x7 | 3.97x10° 55 0.17 '} 2.05 0 e excitation g
(0.2mm) . 30 bar- .| dynamic
steel s jack )
CABLEZ2 {| SWR1x7 2.45x10 4 280 0.17 2.05 0 7 L A Lt e A L el
(0.5mm) 7.35 Fig.1 Schematic diagram for experiment set-up,
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logarithmic decrements depended on the amplitude (as is mentioned in detail below), so that the damping
was measured at the peak amplitude of the mode shape nearly equal to 0. 24 % of span length | (5 mm for |
©=2.05m and 18 mm for [=7.35m), Logarithmic decrements for that modal amplitude are discussed in
this paper. The measuring point did not always coincide with the point of peak amplitude of the mode shape
and in that case the modal amplitude was calculated by using the analyzed mode shape. ;
In most instances the free damped oscillation of desired mode could be obtained by changing the
excitation point and the initial condition, i.e., the cut timing of the excitation thread, while the coupling of
in-plane and out-of-plane motions'” occurred for certain sag-to-span ratios and the higher modes were
sometimes superimposed in the desired in-plane symmetric mode owing to abrupt cutting of the thread.

3. FREE OSCILLATION ANALYSIS BY FINITE ELEMENT METHOD

Two kinds of analytical procedures are available to calculate the natural frequencies, normal modes and
the additional tensions of suspended cables; one is Galerkin’s method with the trial function of Fourier
series'V? and another is the finite element method®. Preliminary analyses were conducted in order to
compare these two methods and it was found that there was no significant difference in natural frequencies,
normal modes and additional dynamic strains. The finite element method was employed in this study since it
can calculate nonlinear dynamic strain from the nonlinear relation between strains and displacements, We
used the 3-node quadratic element with the shape functions of quadratic polynomial, and the element
matrices such as the mass and elastogeometric matrices which are shown in Ref, 13) were applied. The
static equilibrium configuration due to the self weight was analyzed first, and next the eigenvalue problem
was solved for small oscillations about the nonlinear equilibrium position by evaluating the tangential
stiffness matrix. Using the obtained mode vectors which are normalized relative to the maximum
displacement value, the additional dynamic strain at the internal node of each element is then calculated by

Aef={xf"[N'T'[Nl{g2 4, ~ (1)
where A¢? is the dynamic strain at the internal node for the j-th normal mode ;{x¢ and {¢§ are element
components of the initial configuration vector and the ;-th normal mode vector, respectively; A is the modal
amplitude as was mentioned in the previous section; [N’] in Eq. (1) is the first derivative of shape
function evaluated at the internal node, and for the parabolic displacement field it is written as

] —1 0 000O0T1O00
[N]=5] 0 =1 0000010 : o (2)
0 0 -1 000001
Eq. (1) is derived by linearizing the elemental equation of nonlinear strain-displacement relation;
e =1 (2 INTINVad—1), | ; (3)
where [x9 is the position vector, i.e., configuration vector in the deformed geometry and e° is the
associated Lagrangian strain, We can use Eq. (4) based on Eq. (3) in order to evaluate the additional
dynamic strain for each normal mode from the non-linear strain-displacement relation,

Act=1 s+ AT INTIN Vi + Agfi—D—1 (e INT [N T efi-D), (4)

where the second term in the right side signifies the initial strain. The accuracy of analysis based on the
nonlinear evaluation of dynamic strain, Eq. (4), however, is difficult to check, so the additional strain
calculated mainly from Eq. (1) is discussed in this paper. The nonlinear equation (4 ) is adopted only for
one case for reference.

The additional dynamic strain, which has a different value for each internal node of element, is obtained
as a dynamic strain mode, and the root mean square of dynamic strains Ae is taken as the representative
value for each normal mode, The numbers of elements and nodes in the numerical analysis were taken to be
21 and 43, respectively.
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4. RESULTS AND DISCUSSIONS

(1) Characteristics of natural frequencies, normal modes and modal dampings

‘Fig, 2 shows the relation between natural frequency f and sag-to-span ratio y for 2. 05 m span cable.
The experimentally measured values are plotted with theoretical curves for the in-plane first symmetric
mode (S 1), the in-plane first asymmetric mode (AS 1) and the out-of-plane first symmetric mode (QUT
S1). Fig.?2 indicates that the experimental results fairly coincide with the theoretical ones and high
accuracy of the experiment is confirmed, :

A distinct feature in Fig. 2 is the in-plane first symmetric mode, that is, one can recognize the existence
of so-called modal crossovers! in certain region of sag-to-span ratio where the mode shape changes into
the higher symmetric mode with two additional nodes while increasing the natural frequency. The
experimentally measured values of corresponding modal damping represented by log decrements are shown
in Fig.3 for the model cable, CABLE 2. It can be seen in Fig. 3 that the damping of in-plane first
symmetric mode is larger than other modal damping in the modal transition region, especially for the
sag-to-span ratio around the modal crossover point, The modal dampings of telecommunication cables
shown in Table 1 are those for the sag-to-span ratios close to the first modal crossover, judging from the
corresponding natural frequencies, For this reason, it is quite natural to understand the fact that the first
modal dampings are one order larger than other modal dampings in Table 1. It can be also recognized in
Fig. 3 that the dampings for the in-plane first asymmetric mode and for the out-of-plane first symmetric
mode have small and almost constant value over a wide range of the sag-to-span ratio,

Fig. 4 and Fig. 5 are for 7. 35 m span cable of CABLE 2. In these figures the results for the in-plane
second symmetric (S 2), second asymmetric (AS 2) and out-of-plane first asymmetric (OUT AS 1) modes
are also plotted. The characteristic of the modal damping does not change qualitatively when the span
length of cable becomes long. The modal crossover of the in-plane second symmetric mode occurs in the
sag-to-span ratio larger than that of the first modal crossover (Fig.4) and the corresponding modal
‘dampings have a peak at larger sag-to-span ratio (Fig.5). One can also see the tendency that the
out-of-plane modal dampings are somewhat smaller than the in-plane asymmetric modal dampings and that
those dampings become large when the sag-to-span ratio increases.

(2) Dependence of modal damping on amplitude
The dependence of each modal damping on amplitude is shown in Fig. 6, where the results for the 2. 05 m

span cable of CABLE 2 with three sag-to-span ratios (y=0.02, 0.03 and (. 05) are plotted. As can be
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seen from Fig. 6, every modal damping becomes smaller for the smaller amplitude and the dependence on
amplitude is remarkable for large dampings; the dependence of the in-plane first symmetric modal dampings
on amplitude is outstanding for y=0. 02 but is relatively low for y=0. 05. The in-plane asymmetric and
out-of-plane modal dampings, which take very small values, hardly depend upon the amplitude.

(3) Relationship between additional dynamic strain and modal damping

The internal damping due to the hysteresis energy is expected to be one primary source of cable damping.
This hysteresis energy is related to the additional dynamic strain; the experimental study® on damping of
wire ropes concludes that the hysteresis energy is proportional to square of dynamic strain, Fig, 7 is the
plots of the experimentally measured values of the in-plane first symmetric modal damping taken from
Fig.3 and Fig,5, and of the analytically calculated value of corresponding dynamic strain, versus the
sag-to-span ratio. It can be seen from Fig, 7 that the change of modal damping with respect to the
sag-to-span ratio is very similar to that of dynamic strain, The calculated dynamic strain of the first
asymmetric mode, which is also shown in Fig,7, is very small in comparison with that of the first
symmetric mode, and the dynamic strain of out-of-plane mode is zero in the linear theory . This accounts
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for the fact that the modal dampings of asymmetric mode and out-of-plane mode are small.

The relation between modal damping and dynamic strain is shown more directly in Fig. 8 where the
abscissa is the additional dynamic strain and the ordinate is the log decrement both on log scales, The data
points plotted lie almost in a straight line of slope 2 in case of the sag-to-span ratios less than the modal
crossover point (y<((.015). This means that the modal damping is in proportion to the square of dynamic
strain, i.e., the hysteresis energy. The straight line in the figure, however, is different for different
span length even for the same cable, and the modal dampings for longer span length is smaller. This is due
to the effect of initial tension of cable as is discussed in the next section. As can be also seen in Fig. 8, the
correspondence of § to A< is poor for large sag-to-span ratios (y>0.015), suggesting that the hysteresis
energy is not necessarily proportional to A¢? for flexural oscillation. Accuracy in the evaluation of Ae for
large-sagged cables remains a possible cause of the poor agreement,

(4) Dependence of modal damping on initial tension ------ effects of span length

The effects of initial tension on the first modal damping have been reported in the past experimental
studies?~* on damping of wire ropes., Those experimental data are arranged in one graph with the abscissa
of initial tension T, nondimensionalized by tensile strength T (Fig.9). In Fig.9, the log decrements are
greatly changed up to T,/ T of the order of 10 % and are larger for lower initial tension, while the log
decrements are almost constant when the initial tension is introduced to a certain degree, for example
20 % of T,/ Ts or more, This may be considered to mean that the frictional force between wires which
compose a cable is changed with the initial tension, and that the friction decreases for the higher initial
tension because the relative movement of each wire is restricted under such a condition,

Fig. 10 shows the plots of the present experimental results on a log-log graph paper for the asymmetric
and out-of-plane modes which are not affected very much by the additional dynamic strain. As can be seen

“from Fig. 10, T,/ T5 is under 10 % in the present experiment, and each modal damping is changed equally
with the initial tension regardless of the span length and the mode. That is the modal damping becomes
small for longer spanned cable because of high initial tension, The differences in the first symmetric modal
dampings for different span length, shown in Fig.8, can be considered to be due to this fact.

(5) Effects of tensile rigidity e

For the model cable of small tensile rigidity (CABLE 1), the changes of modal dampings and additional
dynamic strains are shown in Fig. 11 with respect to the sag-to-span ratio, The corresponding natural
frequencies are indicated as solid line in Fig.2. The first symmetric modal dampings and additional
dynamic strains, as is the same as CABLE 2, are very large in the modal transition region, especially for
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the sag-to-span ratio around the modal crossover point. Fig, 12 shows the relation between the log
decrement and the additional dynamic strain for CABLE 1. It is evident from Fig, 12 that § is not
proportional to Ae? unlike CABLE 2, while there is some functional relation between § and Ae. Therefore
we calculated dynamic strains bx Eq. (4 ); the nonlinear evaluation of dynamic strain was made. The chain
line in Fig. 11 and the symbol O in Fig. 12 represent the calculated nonlinear dynamic strains. In Fig, 11,
the effect of nonlinearity is significant for the symmetric modes of large sagged cable, and for the
asymmetric and out-of-plane modes without regard to the sag-to-span ratio. The correspondence of A to
the modal dampings seems to be better when the dynamic strain evaluated by the nonlinear equation is used.
In fact, the log decrement § is becoming proportional to the square of nonlinear dynamic strain Ae? in
Fig. 12. No general conclusion on this point, however, has been reached till now because the accuracy of
the nonlinear dynamic strain calculated is uncertain and has not been examined.

(6) Effects of chord inclination ,

For the inclined cable of #=30°, the plots of natural frequency versus sag-to-span ratio are shown in
Fig. 13, and the comparison between modal dampings and additional dynamic strains is presented in Fig. 14.
The in-plane symmetric mode changes into the higher asymmetric mode and the asymmetric mode into the
higher symmetric mode for the inclined cable when the sag-to-span ratio becomes larger'” (Fig, 13). The
modal dampings are again large in this modal transition region (Fig.14) but the tendency is somewhat

10
0.12

CABLR1(S1) 5
© 8=0° {. / £
= O (NON-LINEAR) ﬁ o
& o.10.f e 0O
= : .3. & &
& N z NS
5] L
S 0.05 ] E 5
a ® ®®0 g0 (<3

L} g ¢} =

© 3 &=
3 ° g 8 ; 8 1

o - 3 § g (THEORY) -

0.01 F £ IN-PLANE e =0
S=ae? b OUT-OF-PLANE ®wme =0~
) O PRIEE | i n i i
0.005 - i .
h 5 00 g 0.001 0.01 0.1
ADDITIONAL DYNAMIC STRAIN Ae SAG-TO-SPAN RATIO v
Fig. 12 Log decrement versus additional dynamic strain Fig.13 Natural frequency versus sag-to-span ratio
(CABLE1, S1). : : in inclined cable (§=30°).

419s



204 H, YamacucHi, and Y, Fusino

0.1p
QUT~OF-PLANE MODE(S1)
0.10 - 50 . ﬁ
x10-6 i . 8
&  &c (THEORY)
IN-PLARE IST @) wommmmn S a0 E é 8 g §
© 2ND B eenem = B2 o A
2 OUT-OF-PLANE 1ST O A s 2] 8 g' o
Z 30 2 o0.01f o3 % 2
= ) 4 e o F 0 0O A AAK
‘B 0.05F v z g o A b A [ ]
o het Fay
2 [. 20 & ! &
L)
8 S \ a A (CABLEL) :
ol ' A ‘\ 110 < i l=2.05m{0 (CABLE?) ‘
g Oy' ‘. D% 2 =7.35m @
Ol
O INI_." o O 0.001 PR SArwN | 4 i PRI N |
0.001 0.01 0.1 0.1 : 1 10
SAG-TO-SPAN RATIO y INITIAL TENSION RATIO TO/TB(%)
Fig. 14 Comparison of log decrement with additional dynamic Fig.15 Log decrement versus initial tension
strain in inclined cable (§=30°). (Out-of-plane mode).

different from that for the horizontally suspended cable ; even in the modal transition region, the modal
dampings decrease rapidly when the normal mode approaches the asymmetric mode, while the dampings for
the pseudo-symmetric mode are still large, Changes of modal damping and dynamic strain with respect to
the sag-to-span ratio, however, correspond to each very well also for the inclined cable, and the modal
dampings of cable can be again explained by the hysteresis energy (Fig.12 and Fig, 14).

(7) Energy dissipation from support

Fig. 15 shows the change of log decrement with the initial tension for the out-of-plane first symmetric
mode, As can be seen from Fig. 15, the trend is different for each span length ; for the long span cable of ]
=7.35m, the modal damping decreases when the initial tension increases as is the same as before (4. (4)),
whereas the damping increases for the short span cable of /=2, 05 m. It is supposed that the model cable of
high initial tension slipped transversely at the support where the cable was only wound around the bar
steel, and this can be considered the reason why the damping increases with higher initial tension, In any
case the energy dissipation from support has a chance to give large effects on the modal damping. Further
study on this problem must be conducted in future,

5. CONCLUDING REMARKS

The logarithmic decrements of flexural oscillation of suspended cables was measured through the free
oscillation experiment with model cables, The dynamic analysis for free oscillation was also made by the
finite element method in order to investigate natural frequencies, normal modes and additional dynamic
strains, and then the characteristics of modal dampings of cable were discussed. The brief conclusions
obtained through this study are as follows :

(1) The modal dampings of in-plane symmetric modes are larger than other modal dampings in the
modal transition region. Especially for the sag-to-span ratio around the modal crossover point, the
in-plane symmetric modal dampings have a peak.

(2) The modal dampings of cable are closely related to the additional dynamic strains of normal mode
and the primary cause of modal damping is the internal damping due to the hysteresis energy of cable.

(3) The damping of cable is also affected by the initial tension because the cable is an aggregate of
wires, The modal dampings are larger for lower initial tension but almost independent on the initial tension
when the initial tension exceeds a certain level, ;

(4) The modal dampings are smaller for longer span cable for the same sag ratio, This is partly
caused by the effect of initial tension.

(5) For the inclined cable, the characteristics of modal dampings are somewhat different from those
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for the horizontally suspended cable because of the different property of mode transition.

(6) The damping of the in-plane symmtric modes depends on the amplitude of oscillation; smaller
modal damping was observed for smaller amplitude. This amplitude dependence is remarkable around the
modal crossover point. On the other hand, dampings of the asymmetric and out-of-plane modes are very
small and hardly depend upon the amplitude. ’

The characteristics of modal dampings of suspended cables with fixed supports have been demonstrated
in this paper. Cable used as a structural member, however, is usually supported elastically, so that
further study on the effects of support must be conducted.
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