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DYNAMIC FAILURE OF STRUCTURES WITH STRUCTURAL
INSTABILITY

By Akinori NAKAJIMA*, Shigeru KURANISHI** and Hidehiko ABE ***

The objective of this paper is to discuss analytically the mechanism of dynamic failure of
SDOF systems with structural instability. Furthermore, the effects of natural frequency,
static load, viscous damping, and magnitude and type of dynamic load on the displacement
response and the various energy quantities are also numerically investigated,

As a result, it is revealed that the effective input energy is the most important response
parameter which determines the dynamic ultimate state,

Keywords > dynamic failure, structural instability, effective inpui energy.

1. INTRODUCTION

Failures of structures under dynamic loads are roughly classified into two types according to whether it
is accompanied by the structural instability or not. The former is the case where structures subjected to
static and dynamic loads come up to collapse due to development of the overall or local structural instability
and yielding of material. The latter is the case where the stress of material reaches the ultimate strength
such as tensile strength, or fatigue failure occurs. The failure of structures characterized by dynamic
unstable behavior is considered to be either of those two types. In order to obtain the dynamic failure
criteria of a structure under dynamic load, the type of failure should be first clarified and its dynamic
characteristics must be investigated.

However, further accumulation of results of researches is required to establish the dynamic failure
criteria, This paper deals with the type of dynamic failure of structures with structural instability, such as
columns under axial compression, The structure with structural instability is the one subjected to a static

" load which causes an unstable behavior such as buckling, but is smaller than the critical load.

Recently, a number of studies based on the concept of limit state design have been carried out to
investigate the dynamic ultimate strength or to establish the dynamic failure criteria of structures,

 Housner is one of the pioneers who investigated this problem”-?. He tried to design several aseismic

-

structures on the basis of the energy concept, A further progress in these researches was accomplished by
Kato and Akiyamad¥,
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Subsequently, a number of studies have been carried out to evaluate the earthquake resistance of
structures subjected to the earthquake excitation by comparing the energy absorbed by the inelastic
deformation with the input energy”™. -In these studies, however, the relation between the energy
absorption in a structure and the dynamic failure of the structure seems uncertain, Most of these studies
also deal with a shear vibrating system, but analysis of a flexural vibrating system is required to
investigate the dynamic failure of a structure with structural instability.

The dynamic behaviors of structures with structural instability were investigated by the writers? =19,
These researches indicate that the dynamic failure of columns and arch bridges subjected to periodic
- disturbing forces is affected by the combination of the structural instability and the yielding of materials.
Ishida and Morisako discussed the dynamic failure of a single-degree-of—freedom system with gravity
effect', However, the relationships between this type of dynamic failure and the response parameters of
structures is not sufficiently known,

The objective of this paper is to discuss analytically the mechanism of dynamic failure of a
single-degree-of-freedom system with structural instability. Furthermore, the effects of natural
frequency, static load, viscous damping, and magnitude and type of dynamic load on the displacement
response and various energy quantities which determine the dynamic failure state are numerically

investigated,
2.  ELASTO-PLASTIC RESPONSE OF SDOF SYSTEM WITH STRUCTURAL
INSTABILITY

(1) Equation of motion

A horizontal motion of a single-degree-of-freedom system, consisting of a mass, a rigid bar and a
rotational spring as shown in Fig, 1 is considered here. The flexural vibrating system is subjected to a
static load P. In this figure, m is the mass, k is the rotational spring constant, [ is the length of the rigid
bar, @ is the rotational angle of the bar and f (%) is the horizontal disturding force. If a viscous damping is
not taken into account, the equation of motion for the system is as follows :

Imi+R (0)-—Px= lf(t) ............................................................................................. ( 1 )
in which R (6) is the restoring moment of the spring and within the elastic range, R (4)is expressed as k6.
Furthermore, in Eq. (1), the angle of rotation of the spring is assumed to be so small that the geometrical
nonlinearity is not taken into account, Therefore, substituting an approximate relationship §=2yx// into
Eq. (1), the following equation is obtained :

mx+k(1~a)x/12:f(t) ............................................................................................. (2)
in which the static load P is defined by
P — ak / l ................................................................................................................. ( 3 )
In this expression, if ¢=1, the static load becomes the critical one, so ¢ represents the ratio of the
R(x)
k
R(®) K1-apol- DA Hx-ax)
Ry|- R AE
| | |
| | 1
O, D X
| T
k' ! 0 Xm=2Xy Xy Xm Xer
9)‘ em k
Tz'(1-@)
; > 1Rz
Fig.1 SDOF system with structural Fig.2 Restoring characteristics of Fig.3 Restoring characteristics of system,
instability, rotational spring. )
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applied static load to the critical load (the static load ratio), According to Eq. (2), the stiffness of the
system becomes smaller and then the natural frequency decreases with increasing ¢ in the range 0<a<{1.

(2) Elasto-plastic response

If the restoring characteristics of the rotational spring of the system shown in Fig. 1is ideal
elasto-plastic as shown in Fig. 2 and the spring yields in the positive direction, the restoring moment of the
spring R (4) for the unloading path becomes

R(O)=Ry—k(Bp— ) sereeeeemmmmnni PERTRERAE S SO N N (4)
in which R, is the yield restoring moment and 4, is the angle of rotation of the spring at the point where
unloading occurs in the plastic range. In this analysis, the effect of local buckling behavior on the above
restoring characteristics is not taken into account. Substituting Eq. (4) into Eq. (1), the equation of
motion is : . )

mj+(k/lz){xy-:chr(l—a)x}:f(t) .............................................................................. (5) :
The second term of this equation represents the restoring force of the system for the unloading path and
Fig. 3 shows its characteristics, In this figure, gz, is the yield displacement and x, is the plastic
displacement of the mass corresponding to @, and they have the following relationships :

Ty=16, ANA == [Gprveorveveenssmesssmes e e (6)
Referring to Fig, 3, it is noted that the restoring force decreases gradually as the displacement increases
beyond the yield displacement. For the elastic unloading path BC, the restoring force R} at the point B,
where the displacement x=ux,, is ‘

RI=(h/ N1 @)y — (T — Tl e+ e eem et (7)
On the other hand, the restoring force R; at the point C, where the rotational spring yields in the opposite
direction, is ~

Ri=—(k/ 1= )@yt a(@m—y) - eveerveremeesmmeeennes e L e i e (8)

From Egs, (7) and (8), the following inequality is given : )
t R;‘ > ' R;t .............................................................................................................. ( 9 )

This expresses that for the elastic path BC in Fig. 3, the negative yield restoring force is greater than the
positive one. Thus, the elastic strain energy represented by the hatched area () is also greater than the
one represented by the hatched area (D) as shown in Fig, 3. The difference of the strain energy E, between
(D and (@ becomes ‘

Ey=2k/ 1)a(0m— 1) 2y =4a(2n— 00y g/ Ty -+ = +rermeeressmsssansssssse sttt (10)
in which E, is the elastic strain energy up to the yielding of the spring (£6;/2). Thus, if the input energy
exerted by the disturbing force per a half cycle is constant, the fact that the elastic strain energy (2 is
greater than (D) as shown in Fig. 3 indicates that the mass of the system easily moves to the direction where
the spring has yielded, According to Eq. (10), E, increases as the plastic displacement x, and/or the
static load ratio ¢ increase,

Here, the case where the response of the system subjected to the following harmonic disturbing force is
considered :

f(t)=——stincut .................................................................................................... (11) ‘

in which 7 is the acceleration amplitude and  is assumed as equal to the natural circular frequency as

follows :

W=/ WL @)/ I oo ommmsee e 12)
If the displacement of the mass is assumed as the following stationary form :

DEmLmCOS Wl +vvremserre e et e (13)
then, the velocity response is

T WS IILET < rvrverrrr e (14)

In this condition, the input energy E, exerted by the disturbing force in a half cycle is written as

353s



138 A, NakasiMa, S, KURANISHI and H, ABE

: T/2
sz.[ stinmt*wxmsinwtdt=anxm/2 ............................................................... (15)

in which T is the natural period of the system and is given by T=2n/w. Defining the yield strength
coefficient y as R,/(Zlm), the acceleration amplitude of the disturbing force is expressed by

Z= R/ (FUIM) -+ veevmeno oot (16)
and substituting Eq. (16) into Eq. (15), the input energy E., reduces to
Ew= :rRyxm/(Zyl) ...................................................................................................... (17)

If Eyis smaller than E, which is obtained by Eq. (10), the rotational spring does not yield in the opposite
direction and the following relationship is obtained : :

xm/xyéa/(a—-O.ZS;r/y) ............................................................................................. (18)
That is, if the plastic displacement x, satisfies Eq, (18), the rotational spring does not yield in the
opposite direction. Furthermore, the plastic displacement normalized by the yield displacement is a
function of the static load ratio ¢ and the yield strength coefficient ¥, and is independent of the natural
frequency . However, generally the elasto-plastic response of the system is not a steady-state response
and may be affected by the magnitude of the plastic displacement, and there is also a phase difference
between the disturbing force and the velocity response. Therefore, the input energy in a half cycle for the
system with non-stationary response is smaller than E, and the rotational spring does not always yield in
the opposite direction, even if the plastic displacement does not satisfy Eq. (18).

(3) Discussion of dynamic failure based on energy concept

By multiplying the both sides of Eq. (1) by § and integrating, the energy equation of the system shown in
Fig.1 is as follows :

[%mx} +fR 6)dé—(P/1) [Hx] ff BV E e vreresrrmreereeeee ettt (19)

in which the first term is the kinetic energy E,, both the second and third terms become the elasto-plastic
strain energy E and the hysteretic energy E,, and the right side of Eq. (19) is the input energy E , exerted
by the disturbing force. Thus,
Ek+Es+Eh::‘Ef ...................................................................................................... (20)
For the restoring characteristics shown in Fig, 4, the restoring force becomes zero at the point D,
where the extension of the path AB and the x axis intersect each other. Namely, the elasto-plastic strain
energy E has a maximum value E,, equal to the area OAD, and E, decreases gradually as the mass of the
system moves beyond the point D as shown in Fig. 4. Therefore, if the mass moves beyond the point D, the
response of the system diverges rapidly and the system comes up to collapse, since the decrease of the
strain energy absorption E, and the subsequent input energy is consumed as further plastic deformation
which brings further decrease of E,. As a result, the decrease of E, is consumed as the kinetic energy.
Thus, the displacement corresponding to the point D is the critical one and the displacement x., becomes
Xor™S g/ Qv ovevrorero sttt (21)
According to Eq. (21), x., depends only on the yield displace- R(x)
ment x,, and the static load ratio ¢. Furthermore, z,, coincides
with the displacement which is obtained by equating the moment
caused by the applied static load to the yield restoring moment

of the rotational spring and is equal to R,/ P, as described in
Ref. (11).

The above mentioned E,, is also expressed by AOAD=Esu
Eeu=0.501— )h(xy/ 1/ a=E 1 —a)/ a- - rrroemreeee (22) Bsu=Es+Esr
Thus, the value of E,,, normalized by the elastic strain energy C
up to the yielding of the spring E,, is only a function of the Fig.4 Discussion of restoring characteristics
static load ratio. based on energy concept,
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The system shown in Fig, 1 has the maximum elasto-plastic energy absorption Es,. Then, as mentioned
above, the system will reach the collapse state, when the input energy E, becomes greater than E,,, if the
hysteretic energy E, and the kinetic energy E, is not taken into account,

In a transient state that the displacement of the mass remains smaller than the critical displacement as
shown in Fig. 4, the velocity of the mass is not always zero, that is, the system hasa corresponding kinetic
energy E. If E, is greater than the hatched area E. in Fig.4 (hereafter called the residual strain
energy), the displacement of the mass reaches the critical one and the system collapses dynamically
without any subsequent input energy. This implies that the substantial dynamic ultimate state comes before
the displacement of the mass reaches the critical one, Considering the amount of energy up to the dynamic
ultimate state according to Eq. (20) and Fig. 4, the system will collapse, if the sum of E;and E, that is,
the effective input energy E.,, which is obtained by subtracting the hysteretic energy E, from the input
energy E,, is greater than E,,. Therefore, the transient state in which the effective input energy E.,
exceeds F, first is defined as the dynamic ultimate state and the displacement in this state is defined as the
dynamic ultimate displacement x,. The above mentioned relationship is expressed as follows :

Ea=EstEaSEstEy=E—E,=Esp e e (23)
For the system with viscous damping, the energy dissipated by the damping should be considered in Eq.

(23). :

3. RESULTS OF NUMERICAL ANALYSIS

(1) Elasto-plastic response by numerical method and definition of dynamic ultimate state

It is so difficult to obtain analytically the responses in the dynamic ultimate state defined in the previous
section, that it is better to obtain the responses of the system shown in Fig.1 by a numerical method. A
step by step integration, where the modified Newton-Raphson method and the Newmark 8 method (8=
1/4) are combined, is employed”. The restoring characteristics of the rotational spring are also assumed
to be ideal elasto-plastic. For the Newmark g method, the time interval which is equal to 1/128 of the
natural period of the system is chosen,

Here, the natural frequency, the static load, the viscous damping, the yield displacement and the type
and magnitude of the periodic disturbing force are considered to be taken as parameters, Hereafter, unless
otherwise mentioned, the responses of the system with a constant yield displacement and no viscous
damping are investigated, when the system is subjected to a harmonic disturbing force at resonance, Then
the main purpose of the numerical analysis is to investigate the effects of the natural frequency, the static
load and the amplitude of the harmonic disturbing force on the dynamic ultimate state. The static load
refers to the one normalized by the critical load (the static load ratio o) and the amplitude of the disturbing
force refers to the one normalized by the yield restoring force (the yield strength coefficient y), For
example, considering the main compression members of truss bridge, the value of ¢ is taken as (.5, and
other two variations (. 25 and (. 75 are added for examination of the effect of o. Furthermore, since the
natural frequency varies with the magnitude of the static load as given by Eq. (12), the natural frequency
refers to the one without the effect of the static load.

The displacement-time curve C, is shown in Fig. 5, when the

natural frequency n==5Hz, the static load ratio ¢==0.5 and the "”‘YZ n=5Hz
yield strength coefficient y=50. The abscissa shows the time 2t z:g%
normalized by the natural period of the system T and the O- s AN /\ A

ordinate shows the displacement normalized by the yield b v vy \/\/\/\/\/\ P C2
displacement, The rotational spring yields due to the increase _2: o

Co
of the vibrational amplitude at resonance, and the equilibrium R A {16 Tt
position of the vibration shifts to one direction only. Then, the Fig 5 Displacement-time curve under harmonic

displacement increases rapidly and the system comes up to disturbing force.
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collapse. Hereafter, the dynamic ultimate state is defined as the state at the initial time, after which the
displacement diverges and the system collapses without subsequent application of the disturbing force. The
displacement-time curve C, shown in Fig. 5 corresponds to the case where the displacement diverges in the
system subjected to no disturbing force after a specified time 1;. On the other hand, the displacement-time
curve C, corresponds to the case where the displacement does not diverge in the system subjected to no
disturbing force after the time ¢, ,. Therefore, the system comes up to the dynamic ultimate state at the
specified time i, This state is consistent with the one described in the previous section,

It is noted that the displacement shifts gradually to one direction, because the stiffness of the system has
a negative value, such as the path AB shown in Fig. 3, due to yielding of the rotational spring. That is, the
yield restoring force decreases in the yielding direction and increases in the opposite direction, as
discussed previously in Sec. 2. (2). In this case, whether yielding occurs or not in the opposite direction
depends on the amplitude of the disturbing force, Fig. 6 shows the relationship between the yield strength
coefficient y and the plastic displacement x,,, when in the numerical analysis the rotational spring does not
vield consecutively in the opposite direction, The ordinate is the plastic displacement x,, normalized by
the yield displacement and the abscissa is the yield strength coefficient, The open circles, the closed
circles and the triangles correspond to the cases of g=0. 25, 0.5and (.75, respectively. The dashed
curve, the solid curve and the dot-dash curve are also obtained by Eq. (18), for a=0.25, 0.5and (.75,
respectively. Eq. (18) gives a good prediction of the plastic displacement, when the rotational spring does
not yield in the opposite direction, since the most of the numerical results are scattered above the curves
obtained by Eq. (18) regardless of the ratio a. It can been seen numerically that if the static load ratio a is
constant, the plastic displacement described above depend on the amplitude of the harmonic disturbing
force but not on the natural frequency, because the plot for the system with other natural frequencies is
overlapped with that of Fig, 6.

(2) Displacement response in dynamic ultimate state ~

The relationship between the dynamic ultimate displacement x,, defined previously in Sec. 3 . (1) and
the yield strength coefficient is shown in Fig. 7. The ordinate shows the ultimate displacement normalized
by the critical one and the abscissa shows the yield strength coefficient y. The open circles, the closed
circles and the triangles correspond to the cases of g=(). 25, 0.5and (.75, respectively, The ultimate
displacement x, approaches x, asymptotically as 7 increases, in the cases of o=(). 25 and (. 5. However,
for a=0. 75, such tendency is not remarkable, but x, approaches x., gradually as ¥ increases in the range
72100. Furthermore, x, normalized by Xcr, neither depend on the natural frequency nor the yield
displacement, but on the static load ratio, because the plot for the system with other natural frequencies
and the yield displacement is also overlapped with that of Fig.7.

(3) Energy responses in dynamic ultimate state

In Fig. 8, the input energy E, exerted by the disturbing force and the effective input energy E,,which is
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Fig.8 Input energy under harmonic disturbing Fig.9 Residual strain energy and kinetic energy in

force. dynamic ultimate state.

obtained by subtracting, the energy dissipated by the hysteresis loop E,, from the input energy are plotted
against the yield strength coefficient y in the dynamic ultimate state. The ordinate shows the input energy
normalized by E, and the abscissa shows the yield strength coefficient. The open circles express the input
energy E ,and the closed circles show the effective input energy E,;, for «==0.25, 0.5and(.75. When E,
is equal to E,,, the open circles are overlapped by the closed circles in the figure. As the difference
between the input energy E, and the effective input energy E,, gets greater, the amount of energy is more
dissipated by the hysteretic damping, Therefore, according to Fig.8, the input energy may be more
dissipated by the hysteretic damping as a decreases, and the tendency of dissipation is more remarkable,

as y decreases, However, it is noted that Ee,; is nearly equal to 1.0, irrespective of values of ¢ and .

Thus, it is confirmed numerically that the system comes up to collapse, when the effective input energy E.,
exceeds Egy.

The residual strain energy Es, (the hatched area shown in Fig. 4) and the kinetic energy E,, estimated
by the velocity of the mass in the ultimate state are shown against the yield strength coefficient 7y in Fig. 9.
The ordinate is the amount of energy normalized by E, and the abscissa is the yield strength coefficient.
The open circles and the closed circles show the kinetic energy E, and the residual strain energy Es,,
respectively, In the dynamic ultimate state, E, is nearly equal toor larger than E,,, independent of values
of ¢ and y. This implies that the displacement of the mass without subsequent application of the disturbing
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Fig; 10 Effect of viscous damping on dynamic ultimate Fig.11 Effect of viscous damping on input energy.

displacement,
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force after the dynamic ultimate state reaches the critical displacement and the system collapses., The
amounts of energy K, and E, approach zero, as o decreases and y increases, Furthermore, referring to
Figs.7 and 9, it can be seen that the ratio of x,, to x., becomes small, when E, is large. In-the figure, the
negative value of energy means that the system comes up to the dynamic ultimate state in the position where
the resforing force has a negative value and the elastic strain energy in the negative direction is greater
than E,, in Fig. 4. The effective input energy and the residual strain energy normalized by E, are also.
independent of the natural frequency and the yield displacement for the same reason as the case of Fig.7.

(4) Effect of viscous damping on responses in dynamic ultimate state

In the previous discussion, the effect of damping is not taken into account in the comparison of the
numerical response with the analytical one. However, because the effect of damping cannot be avoided in
practice, its effect on the responses in the dynamic ultimate state is investigated here, Fig. 10 shows the
relationship between the yield strength coefficient y and the displacement in the dynamic ultimate state X,
when the damping constant A=0, 0.01 and 0. 02, n=5Hz and ¢=0. 5. The open circles, the closed circles
and the triangles correspond to the cases for h=0, 0.0l and 0. 02, respectively. The figure indicates that
the value of damping constant has no influence on x,. The cases of =0, 01 with y==100 and =0, (2 with
7250 are not shown in the figure, because a steady-state vibration occurs before the rotational spring
yields,

The input energy E, and the effective input energy E,, up to the dynamic ultimate state are shown against
the yield strength coefficient y in Fig. 11, when 4=0. 01 and 0. 02. From this figure and Fig, 8, where the
viscous damping is not considered, it is clear that the input energy E, increases as the damping constant
increases. In particular, this tendency is remarkable for large values of y. However, the effective input
energy E., is little affected by the damping, and is nearly equal to E,,.

(5) Behavior of dynamic failure under random disturbing force

The behavior of the system at the dynamic failure under a harmonic disturbing force is investigated
fundamentally in the preceding sections, Now the case where the system is subjected to a random disturbing
force which has the time duration of about 9 seconds and the dominant frequencies in the region of ( to 10Hz
as shown in Fig, 12 is examined. Fig, 13 shows the normalized Fourier spectrum of the disturbing force.
The displacement-time curve of the system is shown in Fig, 14 in the cases of n=>5Hz, ¢==0.5 and y==3. (.
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After yielding, the displacement shifts to one direction only and grows rapidly. This behavior is similar to
that under the harmonic disturbing force shown in Fig.5, and the behavior at the dynamic failure is not
affected by the type of the disturbing force,

Fig. 15 shows the relationship between the yield strength coefficient y and the displacement x, of the
system subjected to the random disturbing force in the dynamic ultimate state, The displacement x,, tends
to approach the critical displacement x.,, but the tendency is not so remarkable as the case where the
system is subjected to the harmonic disturbing force. Furthermore, the input energy E , and the effective
input energy E,, up to the dynamic ultimate state are shown in Fig. 16 in relation to the yield strength
coefficient v. E,is nearly equal to E,,, because the yielding occurs in one direction only and the restoring
curves does not form a hysteretic loop, and consequently the input energy is not dissipated by the
hysteretic damping, and the effective input energy agrees with Eg,.

From the results of numerical analysis, it can be said conclusively that the effective input energy may be
the most important response parameter which affects the dynamic ultimate state of a vibrating system with
structural instability. This energy is obtained by subtracting the energy dissipated by the hysteretic
damping and the damping from the input energy exerted by the disturbing force, and coincides with the
maximum elasto-plastic energy absorbed up to the critical state.

5. CONCLUSIONS

In order to study the behavior at the dynamic failure of a structure with structural instability, the
dynamic failure of a single-degree-of-freedom system subjected to static and dynamic loads is analytically
and numerically examined, The effects of natural frequency, static load, yield displacement, viscous
damping, and type and magnitude of disturbing force on the behavior at the dynamic failure are
investigated, and the following findings are obtained ;

(1) The dynamic failure of a system with structural instability is characterized by the following
behaviors. That is, after yielding of the rotational spring, the equilibrium position of the vibration shifts
to one direction only and the displacement of the mass grows infinitely. The shift of the vibration occurs,
because the yield restoring force of the system in the yielding direction decreases and the one in the
opposite direction increases after yielding. Furthermore, the dynamic failure due to infinite development
of the displacement response takes place, because the elasto-plastic strain energy absorption excluding the
hysteretic energy has the maximum value and the excessive input energy causes further deformation, which
results in further decrease of the strain energy absorption. ‘

(2) The substantial dynamic ultimate state comes before the displacement of the mass reaches the
critical one, in which the elasto-plastic strain energy has a maximum value. The displacement in the
dynamic ultimate state is smaller than the critical one and asymptotically approaches the critical
displacement as the amplitude of the disturbing force decreases,

(3) Inthe dynamic ultimate state, the kinetic energy is greater than the residual strain energy which
will be absorbed in the system from the dynamic ultimate state to the critical state. Therefore, the
displacement reaches the critical one and the system comes up to collapse.

(4) The effective input energy may be the most important response parameter which determines the
dynamic ultimate state, This energy is obtained by subtracting the energy dissipated by the hysteretic
damping and the damping from the input energy exerted by the disturbing force. When the effective input
energy exceeds the maximum elasto-plastic energy absorption, the system comes up to collapse, It is not
affected by the natural frequency, the normalized magnitude of the static load, damping, the yield
displacement nor the type and normalized magnitude of the disturbing force.
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