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GEOMETRIC MATRIX FOR THIN-WALLED MEMBERS UNDER
CONSTANT AXIAL FORCE AND LINEARLY VARIABLE |
BIAXIAL BENDING AND TWISTING MOMENTS

By Sivagu%u KULENDRAN* and Fumio NISHINO**

This technical note presents a geometric matrix for thin-walled members derived using
distribution of linearly varying bending and twisting moments inside an element.” The
accuracy of the matrix is improved compared with similar matrices derived in the past
under the uniform distribution of moments, A numerical example of a simpiy supported
beam is presented. in which the critical moments to' cause lateral-torsional buckling are
compared with the results utilizing the matrix available in literature and the matrix derived
in this note to show the better accuracy of the latter,
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1. INTRODUCTION

The stiffness matrices of a thin-walled member subjected to biaxial bending moments, warping moment
and axial force are presented in Ref. | including geometric matrix. These were calculated on the basis that
the various moment distributions within an element are uniform, Accuracy of finite element analysis could
be improved by considering moment gradiénts within an element; In contrast to the geometric matrix, the
stiffness matrix corresponding to that of small displacement theory is not altered by this change from
uniform to’ linearly varying distributions of moments. Hence, this technical note.presents only the
geometric matrix for thm—walled members under the above mentloned general loading condition,

2. THEORETICAL DEVELOPMENT

The derivation of the st;ffness matrlces mcludmg the geometrlc matrix is the same as that of Ref.- 1 -
except for the modifications made with regard to the moment gradients. Stress resultants M, ¢ and
M, are assumed to be constant in the expressions in Eq. 7 of Ref. 1. In the following development the same
notations as defined in Ref, | are used unless otherwise stated, When linearly varying moment distributions
are assumed within an element, )M s are replaced by the following expressions '

M= M5t (M~ M3/ Ly MO= MM~ M%)/ Ly M= Mo+ (Mo M/ L (1-a~—0)
where thesubscrlpts 1 and 2 denote values at. the ends 1 and 2 of an element, -respectively,

Substltutmg Eqs 4-b and 6 of Ref, 1, and Eqs, 1+ a~c of this note into Eq,‘13~ of Ref, 1, +and

* M. Eng. , Research Assocxate Division of Structural Engmeermg and Constructlon A51an Inst;tute of Technology, Bangkok
Thailand.

** Member of JSCE, Ph.D. Professor, Department of Civil Engineering, University of Tokyo, Bunkyo-ku,” Tokyo, 113 JAPAN
(Formerly, Professor and Vice President for Academic Affairs, Asian Institute of Technology, Bangkok, Thailand).

229s



256 - S, KULENDRAN and F, ‘NisHINO

employing the same interpolation functions for the displacements, the stiffness equation can be obtained in
a form similar to that of Eq. 19 of Ref. 1. The terms K,;, K, and K;; are identical to Ref. 1, ‘and the terms
K.,, K,; and K,, are changed as follows

__f[N"zs T4 zl_}.( °, 2 x/ LB )(B") T omemeeremenens friEeenst s (z.a)k

K“:fo[_.‘Noys(B/)(Bg)r_{ oyl+< yz;’Myl)x/L}B)(BI{)T}dx ............ ST PTRR S g (2-b)
Ku= [ (ELud BB+ GI(BYBY+(Nri+Mo+ (M~ Minx/ LIg,
M+ (M — M)x/ LB+ MY+ (M % — M)x/ LB ]dx(Zc)

where the underlined parts are the additional terms appeared due to 1inearly varying moment distributions.
Performing integration on Eqgs.2 - a~c, the modified K’s can be expressed as

K. Jz{stz A_JLZI K.+ {(MG ozl)/L}Kd ........................ (33)
K4s=" T yus L”‘ K,— {(M?,r 2;)/L}K4 ................................................................ (3-b)
. Elww ¢ wi
K= JE K+ GJ Kz (N Mw Byt Igz M. .Bw) Kz ;
+[iMe,— zl; /LLBZ_H wz;' un)/L}ﬂw'*‘KMyz“ yl)/Lfﬂy]Ks ............ (3-¢)

where, again the underlined terms are those different from Ref. 1 and the new matrices K and K; are given
as ; ; ;

—-1/16  L/5  1/10 —L/10 3/5 FL/IO —3/5 0

K= 0 ~L*/30 0 L*/30 K= —L/10. L*/30 - L/10 —L*/60
Tl —L/s —11/10 —9L/10 ) Y —3/5 L/10 3/5 0

L/10 0 —L/10 - —L*/10 0 —L*/60 0 L*/10

3. NUMERICAL EXAMPLES

The same example, the simply supported beam as given in Example 1 of Ref. 1, is selected here to show
the improvement of accuracy by utilizing the geometric matrix given in this note, Since the geometric
matrix of this.note and those of Ref. 1 differ only in the terms related to the moments; the difference by the
use of these two matrices is more pronounced for members free of axial force. Because of this, only the
cases where no axial force is present are considered. The loading conditions and other pertinent
information of this example is shown in Fig. 1. To incorporate the effect of moment gradient, the ratio of
external moments applied at both ends C,/C,, is changed from —] to +1 which covers the entire range of
‘moment gradient by selecting, C, as the reference mbment and assuming absolute ‘magnitude of C, is
larger than that of C,.- The critical moment, Cz, so selected as for reference moment in the absence of axial
force is calculated by performing. the eigenvalue analy51s : ~ :

To check the effectiveness of the matrix of this note, the above defined critical reference moment
calculated using both matrices is compared by increasing the number of elements, While using the matrix of
Ref: 1, the average value of moments at both ends of an element is taken as the c‘onstant‘moment in the
element, Fig. 2 shows the accuracy and convergence of the critical moment with increase in the number of
elements obtained using both matrices, the modified matrix and the matrix of Ref. 1. The figure is enlarged
" in the region where the number of elements exceeds 4 to show the convergence pattern more clearly.
N Fig. 2 shows that the modified matrix gives much more accurate results than those of Ref. 1. This
significant improvement of accuracy may be due to the fact that only the cases with linearly varying moment
distributions are analysed, NeVertheless,‘ a significant improvement of acc‘uracy can be expected for a
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beam with variable moment distributions, With the use of geometric matrix of this note, the percentage
error becomes less than 3 % with 3 elements regardless of the ratio of end moments, C,/C,, while the
same error is obtained with 8 elements when the geometric matrix of Ref. 1 is used. Using the matrix of
Ref. 1, the magnitudes of the percentage error increase steadily for the same number of elements in the
negative side when C,/C; moves from —1 approximately to —(. 6 reaching the maximum magnitude of
error, Then, the error reduces when C,/C, moves towards 1.0 and the curves for C,/C,=0.6 and
C,/C,=1.0 almost coincide with each other, Whereas, the error is positive and largest when .C,/C, is
equal to —1. 0 when the geometric matrix of this note is used with a small number of elements, The use of
the proposed matrix and that of Ref. ] gave identical results when C,/C,=1.0 as expected since the
moment is constant along the length of the member for this moment distribution, The use of the proposed
matrix was found to be particularly advantageous for members with significant variation of bending moment
along the length of the element as compared to the use of that of Ref. 1.

Excluding axial forces and boundary conditions which can be incorporated without any difficulty in finite
element analysis; the parameters influencing the lateral-torsional buckling moments are I, I, J and L.
Out of these four parameters, one parameter can be eliminated by using it to nondimensionalise the other
parameters, Because of this; calculations are also made with various combinations of the values of L*/ L,
L*/J and L¢/I,, and for other boundary conditions such as continuous beams, It is found that the errors
for a variety of combinations of these parameters varied from approximately 6 % and 1 9% when the number
of elements exceeds 4 and 20 eléments, respectively, in the method of Ref. 1, while the errors are less than
39 and 1 % in the proposed method even with as few as 3 and 4 elements, respectively.

4. SUMMARY AND CONCLUSIONS

Based on the theory developed in Ref. ], modification is made to incorporate linearly varying moment
distributions in an element, and the resulting geomeétric matrix is obtained and presented in explicit form.
Numerical examples are worked out and compared with the results using the matrix derived in Ref. 1. This
modification is found to result in much more accurate results for the same number of elements when the
moment gradient is linear, Improvement of accuracy is expected for the cases of nonlinearly varying
moment gradient as well, ‘
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