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BIFURCATION BEHAVIOR OF AN OCTAGONAL
TRUSS DOME WITH IMPERFECTIONS

By Kiyohiro IKEDA* and Kunio TORII**

This paper offers a group theoretic study of the influence of imperfections on bifurcation
buckling behavior of an octagonal, reticulated truss dome structure. The dome exhibited
diversified bifurcation behavior in association with vérious imperfection modes chosen to
be covariant with subgroups of a dihedral group. Such variations in bifurcation behavior
nonetheless did not alter greatly the buckling capacities of the dome, In addition, . the -
concept of symmetry preservmg bifuraction is introduced as a potential cause of bifurcation
buckling phenomena,
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1. INTRODUCTION

Symmetry exerts a great influence on various physical phenomena,‘ A number of minimum (or maximum)
principles indicate that the optimum state is achieved usually by the highest symmetry. Naturally, dome
structures are often constructed to hold point and line symmetric stiffness distributions and geometric
configurations, Such symmetric construction reflects the common underlying belief that symmetric
structures exhibit excellent appearances, while realizing efficient stiffness distributions against external
loads. However, as dome structures tend to be slender in association with the progress in'structural
engineering, bifurcation buckling type collapes has drawn great concern: i

Mathematical studies conducted from a group theoretic standpoint” have revealed interrelationships
between symmetry and bifurcation behavior. Extending these studies,  the authors?» applied them to the
deseription of bifurcation‘ behavior of a series of reticulated, polygoh&héhaped, truss-dome structures.
Potential bifurcation modes of the domes were obtained by investigating subgroups of dihedral groups.

This research is undertaken in order to evaluate the influence of symmetry of domes on their bifurcation
buckling behavior, For this purpose, the bifurcation behavior of a reticulated, octagonal truss dome was
investigated for various imperfection modes chosen through a group theoretic viewpoint. An emphasis is
placed,k on identifyihg the diffences in qualitative and quantitative aspects of the behavior.

2. INFLUENCE OF GEOMETRIC SYMMETRY ON BIFURCATION BEHAVIOR

In order to investigate the effects of symmetry on bifurcation buckling behavior, case studies are
performed on the octagonal, reticulated truss dome shown in Fig. 1 by employing its configuration as a
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parameter, As reported in Ref. 3, bifurcation modes of this dome under symmetric vertical loadings can be
represented by the following seven sugroups of a dihedral group Dj :

Ds/»={01, 03, 05, 07, TO, T4, T0s, TOy)

DY =< a1, 05, T021-1, TO2j15 Di=(a, o5, 103, 00+ Jj=lor2 . | (1)
D%j—?:@lﬁ, T0%;-1) . k i DV =<0y, to0pp j=1,2,3 or 4
C,={a, o . E=(ov

where ¢, denotes the point symmetry regarding a 45-(j—1) degrée rotation and z¢; does the line symmetry
in the straight line intersecting with the y-axis at the origin at an angle of —45/2+(j—1) degrees. The level
of symmetry of these groups can be represented by ‘orders’ (see Table 1), which represent the number of
élemehts of a group?. As can be seen from this table, these groups possess greater orders and higher
symmetry in the sequence advanced in Table 1. ‘ ;

The configuration of the dome was altered by introducing z-directional 1mtxal imperfections of nodes 1
through 8 in such a manner that each configuration was represented by one of the subgroups. Table 1
contains these imperfections, which were scaled by a constant value of (.01 cm,

Table | Initial Imperfection Modes. £(x103EA)

Node Number

Type | Order -~
1.2 3 4 5 3] 7 8
Dgsa 8 1 -1 -1 1 -1 1 -1

I

pE| 4 -t a1 1 1 1111
g 3 .
p¥ .| 4 Jo.1 0. -1 0. 4 0
pEl 2 ez 1 a1 22 112
p¢ | 2 ot 2z 1 0 1 2 1
o free node (oA 2 2z 1.-2 -1 2 1 -2 -1
Yl ¢ fixed node 5 i 1 0 -1 05 0 -0.5 05 -05

©_ g X —
Iﬁ‘lﬁ- ; ~0.5 ~
© . . S Crown vertlcal
: l o Da\“:f“““"' Uez’\ —Df \ displacement (cm)
) : !

‘ Dose Ce Fig.3 Equilibrium Paths of
4 N . o - 9.3 quilibrium Paths o

. 2 Cp DY Re ular Oct 1
Fig.1 Octagonal Dome (unit in cm). Dz n g clagona

Fig.2 Inter-group Relationships of D,. Dome.

Inter-group relationships of D, shown in Fig, 2, are used here to describe bifurcation behavior of these
altered configurations. The symbol ‘S — T’ in this figure indicates that group T is a subgroup of group
S ; every group always has itself as its subgroup. The inter-group relationship of the group D, includes all
the subgroups ; however, that for C, does only C‘2 and.E. Subgroups with greater orders, in this manner,
possessed not only higher symmetry but more subgroups and more‘éomplex inter-group relationships.
Drastic variations among the relationships imply that these configurations will dlsplay diversified
bifurcation phenomena. . - :

Bifurcation path tracing analyses were conducted on thls dome by means of a fmlte displacement analysis
technique? for truss structures, We consndered symmetric vertical loading pattern applied to each node
with the same intensity; except for the center node, for which a load with the half intensity was applied.
Figure 3 shows equilibrium paths obtained for the perfect conﬁguratlon whereas Fig. 4 does those for
altered configurations. Various kinds of Imes denote the types of paths ; symbols (@) and (O) express
bifurcation point types.. Only a~b1furcat10n path is obtaind for each asymmetric bifurcation pomt for
simplicity. : : e : ~ :

Equxhbrmm paths obtamed for the 1mperfect10n modes assoc:ated with groups £ and DY~ both had only -
one bifurcation path represented by group E, thus exhibiting very simple behavior. Paths relevant with
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Fig.4  Equilibrium Paths Obtained for Various Configurations of Octagonal Dome.

group D¥ were slightly more complex owing to the pres‘ence‘ of bifurcation paths représented by group E or
D¥. Paths for groups D3,
the presence of a series of branchmg paths. The paths for all these altered conflguratlons nonetheless were

D3 and Dy, had much more complex bifurcation path frameworks because of

significantly simpler than those for the regular octagonal dome, : T

As we have séen, slight variations in the dome’s configuration greatly altered subgroup structures, -
thereby leading to completely different bifurcation behavior. Bifurcation behavior of symmetric
structures, in general, 'should be highly sensitive to variations in:their configurations, ~Such a feature
implies difficulties involved in tracing bifurcation behavwr of actual dome structures, greatly influenced
by various factors degrading their symmetry. :

A Fujii's finding regarding bifurcation behavior? says that the symmetry groupof a bifurcation pathisa
‘subgroup’ of the symmetry group of a main path. On the basis of this, the authors succeeded in identifying
main and bifurcation paths?. At the course of this, we tacitly interpreted that the term ‘subgroup’ (of a
group) did not include the group itself. This stronger sense of interpretation of this finding held for most
of the equilibrium paths observed here and in other papers? ¥, Exceptional caéés however, ‘arised for the
equxhbrmm paths for DZJ ¥ C, and E. For example, two paths both represented by group D¥
intersected at the bifurcation point b (see Fig.4(c)). For this case, the term ‘subgroup’ needs to include a
group itself so as to satisfy the finding. This term, to be precise, should be interpreted in this manner.

Note that main and bifurcation paths cannot be identified for these two paths, with the same level of
symmetry. Two paths with the same type were connected by a bifurcation point. Fujii called such
phenomena the symmetry ‘préserving’ bifurcation behavior. This case does not agree with the concept of
symmetry breaking?-?, for which a main path and a bifurcation point possess the same level of symmetry but
bifurcation paths do the lower one. The symmetry preserving bifurcation phenomena, nonetheless, existed
solely for imperfect systems, which are covariant with the (real) subgroups of a dihedral group. It remains
to be settled in the future to investigate if such phenomena can exist in bifurcation phenomena covariant
with dihedral groups. : ' ; ;

In order to investigate a quantltatxve influence of symmetry, buckhng capacities of the dome were
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obtained for those imperfection modes by varying scale constants of Maxsmum Imperfect[on :
the modes in such a.manner ;that the maximum va‘luek of imperfections & =001.cm
equals-either (.01 or (.1 cm. FigUreE shows the interrelationship ) U *_*_":_*“*\*
between these scale constants and buckling capacities normalized with § o O\./ L O

- respect to Py,, where P, denotes the bifurcation bucklmg capacity of § N \
the regular dome determined by the bifurcation point a, As can be @ O1cm
seen, variations in configurations, which altered drastically ‘both g ®
bifurcation path structures and bifurcation phenomena, exerted mo‘s IR .
relatively weak influence on buckling capacities. At the least for this Dy.D3'DZ DD} ¢, E
reticurated truss dome, the bifurcation behavior varied continuously Types of Imperfections

regarding a quantitative aspect but changed discontinuously regarding ~ Fig.5 Effects of Dome’s Configuration
a qualitative aspect. One may need to deal with these two aspects of on Its Buckling Capacity.
bifurcation behavior separately. k

As the magnitudes of initial imperfections decreased and as the configuration became closer to that of the
regular dome, buckling capacities converged on P,, from downward. The regular dome with the most
symmetric configuration, accordingly, -achieved the highest load bearing capacity (P,,) and loss in
symmetry degraded buckling capacity. For this case, the perfect system combined both strength and
symmetry. The configuration associated with grouip Ds/;, by contrast, had the lowest capacity and
represented the most critical case against the loading pattern‘u‘sed: herein, Undesirable geometric
imperfection modes against external loads should be identified much'more systematically in the design of

dome structures so as to realize the most critical situation against them,
3. CONCLUDING REMARKS
This investigation offered case studies on an octagonal, reticulated truss dome performed by varying its
geometric configuration, Such variations did not exert a great influence on its buckling capacities. A
reduction in the level of geometric symmetry, by contrast, significantly simplified the bifurcation
behavior, thus greatly reducing the tasks in the analytical tracing of the behavior. The most symmetric
configuration achieved the highest load bearing capacity in spite of the complexity of relevant bifurcation
~behavier. These facts implied that one may need to deal with quantitative and qualitative characteristics of

bifurcation behavior separately. In addition, the concept of symmetry ‘preserving’ bifurcation was
introduced as a potential cause of bifurcation buckling phenomena. ‘
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