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AN ELASTIC POST-BUCKLING BEHAVIOUR OF
PROPPED-CANTILEVER COLUMN

By Akio HASEGAWA*, Taweep CHAISOMPHOB** and ‘Tetsdo IWAKUMA***

This paper preseﬁts the elastic post-buckling behaviour of propped~cantilevér column
* predicted within the framework of FEM procedure, and the result is compared with that by
the analytical elliptic-integral solution. Discussed in conjunction with the particular
boundary conditions is a characteristic of deformation of this structure which is comple{ely
different from that of a cantilever column. :
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1. INTRODUCTION

It is well-known through the elliptic integrals?~® or the nonlinear FEM analysis that an elastic straight
cantilever column of uniform section always has the stable equilibrium path even after the buckling, and the
load can monotonically increase as the displacement becomes larger. Although itis also well-known that the
buckling load is strongly affected by the boundary conditions, the post-buckling behaviour has not been
extensively examined for so many types of boundary conditions. Ascan be seen later, the column with one
end fixed and the other hinged, as called the propped-cantilever column here, shows unstable behaviour
after the buckling unlike the cantilever column. Although the stable equilibrium right after the bifurcation
has been examined in Ref. 2), the report of the unstable state afterwards has not been found in literatures
available. This paper is intended to present the result of an elastic finite displacement FEM analysis of the
straight propped-cantilever column with uniform section, and to discuss its characteristics in comparison
with the cantilever column. Finally, the FEM result is compared with the analytical solution utilizing the
elliptic integrals, which solves one kind of moving boundary problems (contact problems) with an unknown
position of the inflection point between two domains of the different sign of curvature in the column.

2. NUMERICAL RESULTS AND DISCUSSIONS OF FEM SOLUTIONS

A’ propped-cantilever column illustrated in Fig.1 is analyed by the FEM updated-Lagrangian
formulation® of plane been element, It is noted that a disturbing moment of the small magnitude of
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P..L/1000 {(where P,.,=20.19 EI/L?=an elastic buckling of this column) is applied at the top to avoid

bifurcation, By using the non-dimensionalized quantities of load, P/P,,, vertical displacement 3,/ and
- slope angle o at the top, and horizontal displacement p/I, in the middle of the column, the
Ioadk—displacement curves of the propped-cantilever column are plotted in Fig.2. Fig. 3 illustrates the
deformed configuration of the column at the various equilibrium states indicated by the corresponding
encircled numeral in Fig, 2. ; ;

Although the bifurcated path right after the buckling point shows the stable deformation with the positive
slopes in Fig.2?, there exists an unstable region between (2) and (4) unlike the ordinary cantilever
column. This is because of the particular boundary condition, which forces the column to deform with
double curvature from the beginning to the state (4). Hence there exists one inflection point, where the
resisting moment vanishes as shown in Fig.5 (a). This double curvature deformation with a moving
inflection point and the horizontal reaction force at the top explain the unstable behaviour of the
-propped-cantilever column, The ordinary cantilever column resists the increase of the load by the
monotonically increasing single curvature. Whether this column is stable (from the beginning to (2)) or
not (from (2) to (4)) can be examined by the stability condition of a hinged-hinged column of its length
equal to that of the portion of negative curvature in Fig.5 (a), once the position of the inflection point and
the horizontal reaction force at the top, R, are known as in Fig. 4. It is also noted that the equilibrium is
stable after the point (4) where the load can increase monotonically due to the continuously increasing

single curvature,

3. ANALYTICAL SOLUTIONS

Unlike the elliptic-integral solution of a -cantilever column"~¥, the analytical procedure for this
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propped-cantilever column has to account for the movmg inflection point; and thus becomes one kind of the
moving boundary problems with the elliptic mtegrals When the column deforms with double curvature
(from (1) to (4) in Fig.2), the domain of integration must be divided into two parts at the unknown
inflection point, Iin Fig.5 (a). Thenin each domain, the usual procedure of elliptic-integral solution of a
column can be applied. The deformation after (4) in Fig. 2 can be analysed by the ordinary procedure,
because there exists no inflection point in the domain. The analytical process of solving this problem is
summarized below,

(1) Double Curvature Solutions :

Fig.5 (a) defines the coordinate system s1mllar to that in Ref. 1) . The eqmllbrlum equation in terms of
curvature, x= =df§/ds, can be given by :
 EIx=—Py+Rx ‘
Differentiating the above equation leads to

d?0/ds*=—P/EI (sin 6—R/P cos ) oo I IR R (1)
where ‘ ‘ : ‘ ‘ ‘
dy/dsEsin 4, dx/dS=COS G irevrereens ................ (2)
Integration of Eq. (1) yields ‘ ~
(d0/ds)/2=P/EI(cos §+R/Psin )+ Coroovrerrerinn e e ()
Let o denote the slope at the top and 8 that at the inflection point, I in Fig.5 (a). Then Eq. (3) results in
dﬁ/d8=iﬁk{cos(ﬁ—é)-—cosﬁ}‘/2/\/E>s_§_~~--~-~-~ ............................................... (4)
and ; : ~ : ; :
R/P=HaDm £ veereeeerneio b i B T O I P S PR (5)
in which EER : ~ :
kZEP/EI,fE(a+/9)/2,77-=-(a~,8)/2 .......... N PP R B RN P TN (6)

If the curvature is assumed negative from the point O to I and positive from I to A in Fig.5 (a), the
condition of inextensibility leads to the following expression of the total Iength of this column, L :

L v /2" r-m/2
L=£ ds= C(])ES ¢ {fm (1—ptsin*g)/* d¢-—.[m (1=p? sin 2g)" l/de,} ...................... (7)
where ) ;
Sln¢ Sln(e/z /pl, sin ¢1 Sln(s//z)/ph pl__SIn(n/z) .................................................. (8)

Using Egs. (2), (4), (6) and (8), we can express the kinematical boundary conditions at the top of
this column as follows : ‘

0= fdyd = COS {x/—cosf(cosf —cos p)/?

—siné |2 fm” (1—p?sin’g)? d¢——2f_” 2(1—-p%sinz #)/2ds

“f:r/ 11— p1Sln 24)" 1/2d¢+f 1—pt sm ¢) 1/2d¢H .......... B, ( 9)
and .
%——1 LfL@d —1——co7cs—f—{ﬁsin &(cos §—¢os n?

+cos ¢ {me ﬂk(l—pfsinz (15)’”0195--2_[_”/2 (1—pisin® ¢)/*d¢
_j:/z(l—pfsmz ¢)“1/2d¢+£;: (1—pisin® ) 1/2d¢H ......................................... 10)

After some manipulation, using the commonly used notations for elliptic integrals, one can express the
integral equations (7), (9) and (10) as ‘ ERRIRE
V2 cos & (cos £—cos 7)/?+sin £ {3 F(p)—F(pi, $:)—6 E(p:)+2 E(py, ¢} =00 oeeee - (11)
PL}/EI= (kL) =¢0S 5{3]7(1)1) (ph ¢,!)}2 .................................................................. (12)
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Lo1- C,fLS IVZ sin ¢ (cos £ c0S 7)/?—c0S £13 F(p)—Flps, $)—6 E(p)+2 E(pr, 4

B N T.........;.. (13)

where F(p) and E(p) are the complete elliptic integrals of the first and second kind, and F(p, ¢) and
E(p, ¢) are the incomplete elliptic integrals of the first and second kind, respectively.

('2) Single Curvature Solutions

When there is no inflection point, the curvature is always negative as in Fig.5 (b). Hence the ordinary.
procedure to solve an elastica applies to obtain in place of Egs. (11)-(13)

V2 cos 7 (cos y—cos N/*—sin 7 |F(p,)— F(p, $:)—2 E(po)+2 E(py, go)}=0 oo e (14)
PLZ/EI—"‘—‘(;EL)Z—_—COS ¥ iF(’Pz)_F(pz» ¢2){2 ...... I (15)
%zlf%s-l{—v’z_ sin 7(cos y—cos 1)'/*—cos 7 {F(p.)— F(p,, $:)—2 E(p,)+2 E(p,, ol
et e e e oo (16)
where ; o
sin ¢, =sin (},/2)/1)2, p.=sin (/\/2), tan y=R/P, AT yroreem e (17)

Numerical results can be obtained from Egs. (6), (8), and (11)-(13) [or Egs. (14)-(17)] by assigning
a value for ¢. The manipulation includes the iterative solution of the nonlinear equations for g [or 7].

In Fig.6, these analytical results are compared with the FEM solutions for a column with large
slenderness ratio. Although a good agreement is obtained in the range of this figure, those two solutions
become apart for the larger load, because the inextensibility of an axis is not rigorously taken into account
in the FEM solution, but is approximately satlsfled within the error of the order of magnitude of strains by
using relatively large slenderness ratio.

4. CONCLUDING REMARKS

2 T A A Analytical results
P/P

FEM results

An investigation of an elastic post-buckling be-
haviour of the straight propped-cantilever column of
uniform section is presented. The obtained character-
istics of deformation are significantly different from

those of the ordinary cantilever column. It exhibits the ! ; L ;
snap-through type of behaviour similar to that of an

arch, although their boundary conditions and initial i

geometry are not the same. In the analysis, both the ~ ‘
Fig.6 Comparison of analytical and FEM results of

FEM and the analytical approaches are employed, and propped-cantilever column

the results agree with each other. The latter approach

forms one kind of moving boundary problems with nonlinear equations in terms of the elliptic integrals.
approach forms one kind of moving boundary problems with nonlinear equations in terms of the elliptic
integrals.
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