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PARAMETRIC ANALYSES OF NATURAL FREQUENCIES OF
LOWER VIBRATION MODES OF SUSPENSION BRIDGES

By Masahiro YONEDA* and Manabu ITO**

It is well known that lower modes of vibration are predominant in the dynamic response of
suspension bridges to moving vehicles or wind, Therefore, it is needed to know their
characterisics, in particular the corresponding natural frequencies,

In this brief paper, natural frequencies of lower vibration modes of suspension bridges
are numerically examined, mainly with respect to a side to center span ratio besides
nondimernsional characteristic parameters introduced in the previous paper 2).

1t is found from these results that the characteristics of symmetric natural frequencies of
suspension bridges associated with lower modes depend significantly on the values of the
side to center span ratio. )
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1. INTRODUCTION

Lower modes of vibration are predommant in the dynamic response of a suspension bridge to moving
vehicles or wind, The second author of this paper” once investigated the characteristics of the
corresponding natural frequencies of lower vertical modes by introducing some nondimensional
characteristic parameters and applied the results to the dynamic response analysis to the moving vehicles.
Recently, the authors? conducted a series of parametric analysis for the natural frequencies of lower
vertical and torsional modes of the suspension bridges with a side to center span ratio of (. 3 in order to
investigate the effects of dead weight on the aerodynamic stability.

The characteristics of the lower mode shapes and the corresponding natural frequencies of a suspension
bridge may be dependent on the side to center span ratio, Although Komatsu and Nishimura® discussed this
span ratio aiming at finding the effects of shear deformation on higher modes of vibration, it seems that
parametric studies observing the side to center span ratio have not been suff1c1ently avallable from
aerodynamic viewpoint, ;

Hence, in this note, mainly with respect to a side to center span ratio besides nondlmensmnal
characteristic parameters introduced in reference 2), the natural frequencies of lower vibration modes of
suspension bridges are parametrically analyzed in order to make up the previous paper 2) and discussed
from aerodynamic viewpoint. :

2 NONDIMENSIONAL CHARACTERISTIC PARAMETERS

The analytical method used here is based on the linerized deflection theory where horizontal cable
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tension is assumed constant, and the ﬂex1b1hty of towers as well as the influence of hanger mchnatlon are
neglected. This treatment may be justified in preliminary calculation,

The nondimensionalized circular frequencies of asymmetric vertical and torsional modes in the center
span of a suspension bridge can be expressed by Eqs. (1) and (2), respectively.

For AS mn‘ietric Vertical mbdes . .y)_.l.i -—_:(n )Z‘ 1+f l _.I—!E_ ]Z 1 . ................... ( 1 )
Y ’ ) < Wy gEI y4 EI; (naf
: b )2
. : . Iel 2 1.1 ‘
For Asymmetric torsional modes : wpot/ 2+ =(na)h) ——+{—25L |2 (2)

where wm*natural circular frequency of vertlcal mode ; wn_q,—natura} circular frequency of torsional
modes ; w=dead weight of the bridge per unit length ; [==length of center span ; H,=horizontal component
-of the cable tension; ETI=flexural rigidity of the stiffening frame; [,=polar moment of inertia of the
suspension bridge per unit length; GJ=torsional rigidity of the stiffening frame; p=distance of the
cables ; g==gravity acceleration,

From the above formula, it is observed that the asymmetric modes of vertical and torsional vibration

are respectively dependent on the parameter P, ,= E T Y and P1 == G; (3—)2 introduced in reference 2).

Ede f* 1
Ty P Py and

I
P;=— defined in reference 2) appear in the frequency equations for symmetric modes Furthermore in this

“On the other hand, the nondimensional characteristic parameter P,=

paper, the following two nondimensional characteristic parameters concerned with the torsional vibrations
of the suspension bridge with side spans shall be newly introduced in addition to the above-mentioned

parameters,
: Jl IGI
Ps=7, Pv-——:

- where J=torsional constant of the center span, Index “1” represents the quantity at side spans. P, and P,
were taken to be 1.0 in. the previous paper.

3. NUMERICAL ANALYSIS AND DISCUSSION

In what follows the numerical analysis and discussions will be made on the first symmetric and
asymmetric mode of natural vibrations mainly from aerodynamic viewpoint,

(1) Vertical vibration ‘ :

Fig.1 shows the nondimensionalized natural circular frequencies of the single span, two hinged
suspension bridges (P,=0). Figs.2 and 3 show those of the three span, two hinged suspension bridges
with a side to center span ratio P; of (.35 and (. 50, respectively, ‘when P, and P; are taken to be 1.0.
From these figures,‘,it can be seen that for P,, v larger than 10, the first symmetric mode gives the lowest
natural frequency in case of P, larger than about (). 35, whereas the first asymmetric mode gives the lowest
natural freqyuency in case of P; less than about (. 35. Furthermore, it is noticed that according to the
~increase of P;, the effects of P, on the first symmetric vibration are decreased. For simplicity, let us
consider the case that the dead weight g per unit length of a suspension bridge and flexural rigidity EI
change independently. The horizontal component H,, of cable tension is proportional to the dead weight
w. P, does not change much when the dead weight increases, because the sectional area Ac of cable
increases almost in proportion to the magmtude of H,. The ratio Aw /4 Pl, v of the respective change
rates of ¥ (nondimensionalized natural circular frequency of vertical mode) and P,, v is, within the range
of P, less that (). 5, only somewhat smaller than 1.0 for both the symmetric and asymmetric vertical mode
when AP, v is equal to 2. 0. Therefore, it is surmized that the natural frequencies of the first symmetric
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Fig.1 Nondimensionalized Vertical 'Fig.3  Nondimensionalized Vertical
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- 'Fig.2 - Nondimensionalized Vertical
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and asymmetri¢ vertical mode scarcely affected by P;, v, when P, and P, are assumed to be e‘quél t0'1.0.
On the other hand, H,, also increases in inverse proportion to the center span sag f. Therefore, when the
center span sag f is lessened inorder to increase H,, P,becomes small, as can be seen from its definition,
but the frequencies of the first symmetric and asymmetric vertical mode change only slightly because the
dead weight of cable does not remarkably increase. : ‘ ‘

The effects of both P, and P, on the frequencies of symmetric modes of suspension bridges will be
considered next. From the reuslts of calculation, it is found that nondimensionalized natural circular
frequencies of the symmetric modes area little reduced with the increase of P,, and little changed with the
increase of P;. ; ;

(2) Torsional vibration

Fig. 4 shows the nondimensionalized natural circular frequencies of the single span, two hinged
“suspension bridges (P,=0). Figs.5 and 6 show those of the three span, two hinged suspension bridges
with a side to center span ratio of 0. 35 and (. 5, respectively, when P,, P, and P, are taken to be 1.0.
From these figures, it can be seen that the first symmetric mode gives the lowest natural frequency when
P, is more than about (). 35. It is also observed that when P is less than about 0. 35, it depends on the value
of P,;and P, whether first symmetric or asymmetric mode gives the lowest natural frequency., When both
P, rand P, are small, the symmetric mode is the fundamental mode of vibration, and vice versa. Moreover,
the nondimensionalized natural circular frequency of the first asymmetric mode increases almost lineraly to
On the other hand,
nondimensionalized natural circular frequency of first symmetric mode, the degree of increase in the
frequency is larger for the smaller values of P, . The effects of P, on nondimensionalized natural circular
frequency of the first symmetric mode decreases with the increase of P;,. As mentioned before, the

the  increase of P, ;. although the same findings can be applied for the
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- horizontal cable tension H, increases in proportion to the dead weight w and the sectional area A of the
cable increases almost linerly in proportion to the magnitude of H,. Accordingly, the polar moment of
inertia J, also increases. If the torsional rigidity GJ is augmented, the dead weight and polar moment of
inertia increase to some extent, But, only the effects of the torsional rigidity GJ is considered here for
simplicity. In this connection, calculation of Awh/JAP,r, where Aw¥ and A P, ; are the change rates of
w* (nondimensionalized natural circular frequency of torsional mode) and P, ;, respectively, was made in
order to grasp the characteristics of the torsional vibration when P3 is 0. 35 and P, ; is within the range of
less than about (). 35, it was found that this value was somewhat smaller than 1. () when A P, is equal to
2.0. Furthermore, this value is nearly equal to 1.0 when P, is 0 and P, r is within the same range.
Therefore, it is surmized that the natural frequency of first symmetric torsional mode in the range of both
P, less than about (. 35 and P, ; less than about (). 35 does not drastically affect by parameter P, ; when P,
P; and P, are assumed to be equal to 1. 0. When the center span sag f is lessened in order to increase H,,
P, becomes small, as can be seen from its definition, so that, the frequencies of the first symmetric mode
is expected to be reduced sensitively in the small value of P,.

On the other hand, in case of the asymmetric torsional frequency, the ratio Awl/y/ AP, was about 0. 75
when AP, ; is equal to 2. 0. Therefore, it can be said that the asymmetric torsional frequency sensitively
affects by parameter P, ;. The same findings can be applied for the symmetric torsional frequencies in the
range of about both P, larger than about (). 35 and P, ; larger than about (. 35. )

Finally dealt with are effects of the parameters P, P, and P, on symmetric vibration modes of
suspension bridges. From the results of calculation, it is found that nondimensionalized natural circular
frequencies of symmetric modes are a little reduced with the increase of P,, P; and alittle i increases with
the increase of P;.

4. CONCLUD!NG REMARKS

Main conclusions are summerized as follows,

(1) The first symmetric mode of vertical vibration gives the lowest natural frequency when P, is
larger than about (0. 35. On the other hand, the first asymmetric mode of vertical vibration gives the lowest
natural frequency when P is less than about (. 35. Furthermore, both the frequencies of first symmetric
and asymmetric mode little affect by parameter P,,.

(2)  The first symmetric mode of torsional vibration gives the lowest natural frequency when P; is
larger than about (0. 35. On the other hand, it depends on the values of P, and P, whether first symmetric
or ‘asymmetric mode gives the lowest natural frequency when P, is less than about . 35. Furthermore,
there are ranges of the nondimensional characteristic parameters in which the first symmetric frequency
does not drastically affect by parameter P, .

(3) The effects of P, on both the vertical and torsional frequenc1es of the first symmetric mode
increase with the decrease of P;. Therefore, it is noteworthy from aerodynamic viewpoint that the small
side to center span ratio and the large value of center span sag can raise the first symmetric torsional
frequency. : ‘ ‘

Finally, the authors would like to thank Dr. Ken-ich Maeda, Kawada Industries Inc. , for his valuable
advice,
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