PARAMETRIC ANALYSES OF NATURAL FREQUENCIES OF LOWER VIBRATION MODES OF SUSPENSION BRIDGES By Masahiro YONEDA* and Manabu ITO** It is well known that lower modes of vibration are predominant in the dynamic response of suspension bridges to moving vehicles or wind. Therefore, it is needed to know their characterisics, in particular the corresponding natural frequencies. In this brief paper, natural frequencies of lower vibration modes of suspension bridges are numerically examined, mainly with respect to a side to center span ratio besides nondimensional characteristic parameters introduced in the previous paper 2). It is found from these results that the characteristics of symmetric natural frequencies of suspension bridges associated with lower modes depend significantly on the values of the side to center span ratio. Keywords: suspension bridge, natural frequency, aerodynamic stability #### 1 INTRODUCTION Lower modes of vibration are predominant in the dynamic response of a suspension bridge to moving vehicles or wind. The second author of this paper¹⁾ once investigated the characteristics of the corresponding natural frequencies of lower vertical modes by introducing some nondimensional characteristic parameters and applied the results to the dynamic response analysis to the moving vehicles. Recently, the authors²⁾ conducted a series of parametric analysis for the natural frequencies of lower vertical and torsional modes of the suspension bridges with a side to center span ratio of 0.3 in order to investigate the effects of dead weight on the aerodynamic stability. The characteristics of the lower mode shapes and the corresponding natural frequencies of a suspension bridge may be dependent on the side to center span ratio. Although Komatsu and Nishimura³⁾ discussed this span ratio aiming at finding the effects of shear deformation on higher modes of vibration, it seems that parametric studies observing the side to center span ratio have not been sufficiently available from aerodynamic viewpoint. Hence, in this note, mainly with respect to a side to center span ratio besides nondimensional characteristic parameters introduced in reference 2), the natural frequencies of lower vibration modes of suspension bridges are parametrically analyzed in order to make up the previous paper 2) and discussed from aerodynamic viewpoint. ## 2. NONDIMENSIONAL CHARACTERISTIC PARAMETERS The analytical method used here is based on the linerized deflection theory where horizontal cable ^{*} Member of JSCE, M. Eng., Kawada Industries Inc. (Kita-ku, Tokyo) ^{**} Member of JSCE, Dr. Eng., Prof. of Civil Eng., Univ. of Tokyo (Bunkyo-ku, Tokyo) tension is assumed constant, and the flexibility of towers as well as the influence of hanger inclination are neglected. This treatment may be justified in preliminary calculation. The nondimensionalized circular frequencies of asymmetric vertical and torsional modes in the center span of a suspension bridge can be expressed by Eqs. (1) and (2), respectively. For Asymmetric vertical modes: $$\omega_{n,n}\sqrt{\frac{wl^4}{gEI}} = (n\pi)^2\sqrt{1+\left\{l\sqrt{\frac{H_w}{EI}}\right\}^2\frac{1}{(n\pi)^2}}$$(1) For Asymmetric torsional modes: $$\omega_{n,\varphi} \sqrt{\frac{I_{\theta}l^2}{GJ}} = (n\pi)^2 \sqrt{\frac{1}{(n\pi)^2} + \left[\frac{H_w\left(\frac{b}{2}\right)^2}{GJ}\right] \frac{1}{(n\pi)^2}} \dots (2)$$ $$(2)$$ where $\omega_{n,n}$ =natural circular frequency of vertical mode; $\omega_{n,o}$ =natural circular frequency of torsional modes; w=dead weight of the bridge per unit length; l=length of center span; H_w =horizontal component of the cable tension; EI=flexural rigidity of the stiffening frame; I_o =polar moment of inertia of the suspension bridge per unit length; GJ=torsional rigidity of the stiffening frame; b=distance of the cables; g=gravity acceleration. From the above formula, it is observed that the asymmetric modes of vertical and torsional vibration are respectively dependent on the parameter $P_{1,v} = l\sqrt{\frac{H_w}{EI}}$ and $P_{1,\tau} = \frac{H_w}{GJ} \left(\frac{b}{2}\right)^2$ introduced in reference 2). On the other hand, the nondimensional characteristic parameter $P_2 = \frac{E_c A_c}{L_E} \frac{f^2}{H_w l}$, $P_3 = \frac{l_1}{l}$, $P_4 = \frac{w_1}{w}$ and $P_5 = \frac{I_1}{I}$ defined in reference 2) appear in the frequency equations for symmetric modes. Furthermore in this paper, the following two nondimensional characteristic parameters concerned with the torsional vibrations of the suspension bridge with side spans shall be newly introduced in addition to the above-mentioned parameters. $$P_6 = \frac{J_1}{J}, P_7 = \frac{I_{\theta 1}}{I_0}$$ where J=torsional constant of the center span. Index "1" represents the quantity at side spans. P_6 and P_7 were taken to be 1.0 in the previous paper. ### 3. NUMERICAL ANALYSIS AND DISCUSSION In what follows the numerical analysis and discussions will be made on the first symmetric and asymmetric mode of natural vibrations, mainly from aerodynamic viewpoint. #### (1) Vertical vibration Fig. 1 shows the nondimensionalized natural circular frequencies of the single span, two hinged suspension bridges (P_3 =0). Figs. 2 and 3 show those of the three span, two hinged suspension bridges with a side to center span ratio P_3 of 0.35 and 0.50, respectively, when P_4 and P_5 are taken to be 1.0. From these figures, it can be seen that for P_1 , v larger than 10, the first symmetric mode gives the lowest natural frequency in case of P_3 less than about 0.35, whereas the first asymmetric mode gives the lowest natural frequency in case of P_3 less than about 0.35. Furthermore, it is noticed that according to the increase of P_3 , the effects of P_2 on the first symmetric vibration are decreased. For simplicity, let us consider the case that the dead weight w per unit length of a suspension bridge and flexural rigidity EI change independently. The horizontal component H_w of cable tension is proportional to the dead weight w. P_2 does not change much when the dead weight increases, because the sectional area Ac of cable increases almost in proportion to the magnitude of H_w . The ratio $\Delta \omega_2^*/\Delta P_1$, v of the respective change rates of ω_2^* (nondimensionalized natural circular frequency of vertical mode) and P_1 , v is, within the range of P_3 less that 0.5, only somewhat smaller than 1.0 for both the symmetric and asymmetric vertical mode when ΔP_1 , v is equal to 2.0. Therefore, it is surmized that the natural frequencies of the first symmetric $\begin{array}{c} 500 \\ 400 \\ \hline \\ 8 \\ \hline \\ 8 \\ \hline \\ 9 \\ \hline \\ 100 100 \\ \hline 100 \\ \hline 1$ Fig. 1 Nondimensionalized Vertical Frequencies $\left(P_3 = \frac{l_1}{l} = 0\right)$. Fig. 2 Nondimensionalized Vertical Frequencies $\left(P_3 = \frac{l_1}{l} = 0.35\right)$. Fig. 3 Nondimensionalized Vertical Frequencies $\left(P_3 = \frac{l_1}{l} = 0.5\right)$. and asymmetric vertical mode scarcely affected by P_1 , v, when P_4 and P_5 are assumed to be equal to 1.0. On the other hand, H_w also increases in inverse proportion to the center span sag f. Therefore, when the center span sag f is lessened in order to increase H_w , P_2 becomes small, as can be seen from its definition, but the frequencies of the first symmetric and asymmetric vertical mode change only slightly because the dead weight of cable does not remarkably increase. The effects of both P_4 and P_5 on the frequencies of symmetric modes of suspension bridges will be considered next. From the reuslts of calculation, it is found that nondimensionalized natural circular frequencies of the symmetric modes are a little reduced with the increase of P_4 , and little changed with the increase of P_5 . #### (2) Torsional vibration Fig. 4 shows the nondimensionalized natural circular frequencies of the single span, two hinged suspension bridges $(P_3=0)$. Figs. 5 and 6 show those of the three span, two hinged suspension bridges with a side to center span ratio of 0.35 and 0.5, respectively, when P_4 , P_6 and P_7 are taken to be 1.0. From these figures, it can be seen that the first symmetric mode gives the lowest natural frequency when P_3 is more than about 0.35. It is also observed that when P_3 is less than about 0.35, it depends on the value of $P_{1,T}$ and P_2 whether first symmetric or asymmetric mode gives the lowest natural frequency. When both $P_{1,T}$ and P_2 are small, the symmetric mode is the fundamental mode of vibration, and vice versa. Moreover, the nondimensionalized natural circular frequency of the first asymmetric mode increases almost lineraly to the increase of $P_{1,T}$. On the other hand, although the same findings can be applied for the nondimensionalized natural circular frequency of first symmetric mode, the degree of increase in the frequency is larger for the smaller values of $P_{1,T}$. The effects of P_2 on nondimensionalized natural circular frequency of the first symmetric mode decreases with the increase of P_3 . As mentioned before, the Fig. 4 Nondimensionalized Torsional Frequencies $\left(P_3 = \frac{l_1}{l} = 0\right)$. Fig. 5 Nondimensionalized Torsional Frequencies $\left(P_3 = \frac{l_1}{l} = 0.35\right)$. Fig. 6 Nondimensionalized Torsional Frequencies $(P_3 = \frac{l_1}{l} = 0.5)$. horizontal cable tension H_w increases in proportion to the dead weight w and the sectional area A_c of the cable increases almost linerly in proportion to the magnitude of H_w . Accordingly, the polar moment of inertia I_θ also increases. If the torsional rigidity GJ is augmented, the dead weight and polar moment of inertia increase to some extent. But, only the effects of the torsional rigidity GJ is considered here for simplicity. In this connection, calculation of $\Delta \omega_\varphi^*/\sqrt{\Delta P_{1,T}}$, where $\Delta \omega_\varphi^*$ and $\Delta P_{1,T}$ are the change rates of ω_φ^* (nondimensionalized natural circular frequency of torsional mode) and $P_{1,T}$, respectively, was made in order to grasp the characteristics of the torsional vibration when P_3 is 0.35 and $P_{1,T}$ is within the range of less than about 0.35, it was found that this value was somewhat smaller than 1.0 when $\Delta P_{1,T}$ is equal to 2.0. Furthermore, this value is nearly equal to 1.0 when P_3 is 0 and $P_{1,T}$ is within the same range. Therefore, it is surmized that the natural frequency of first symmetric torsional mode in the range of both P_3 less than about 0.35 and $P_{1,T}$ less than about 0.35 does not drastically affect by parameter $P_{1,T}$ when P_4 , P_6 and P_7 are assumed to be equal to 1.0. When the center span sag f is lessened in order to increase H_w , P_2 becomes small, as can be seen from its definition, so that, the frequencies of the first symmetric mode is expected to be reduced sensitively in the small value of P_3 . On the other hand, in case of the asymmetric torsional frequency, the ratio $\Delta \omega_{\varphi}^*/\sqrt{\Delta P_{1,T}}$ was about 0.75 when $\Delta P_{1,T}$ is equal to 2.0. Therefore, it can be said that the asymmetric torsional frequency sensitively affects by parameter $P_{1,T}$. The same findings can be applied for the symmetric torsional frequencies in the range of about both P_3 larger than about 0.35 and $P_{1,T}$ larger than about 0.35. Finally dealt with are effects of the parameters P_4 , P_6 and P_7 on symmetric vibration modes of suspension bridges. From the results of calculation, it is found that nondimensionalized natural circular frequencies of symmetric modes are a little reduced with the increase of P_4 , P_7 and a little increases with the increase of P_6 . # 4. CONCLUDING REMARKS Main conclusions are summerized as follows. - (1) The first symmetric mode of vertical vibration gives the lowest natural frequency when P_3 is larger than about 0.35. On the other hand, the first asymmetric mode of vertical vibration gives the lowest natural frequency when P_3 is less than about 0.35. Furthermore, both the frequencies of first symmetric and asymmetric mode little affect by parameter $P_{1,v}$. - (2) The first symmetric mode of torsional vibration gives the lowest natural frequency when P_3 is larger than about 0.35. On the other hand, it depends on the values of $P_{1,T}$ and P_2 whether first symmetric or asymmetric mode gives the lowest natural frequency when P_3 is less than about 0.35. Furthermore, there are ranges of the nondimensional characteristic parameters in which the first symmetric frequency does not drastically affect by parameter $P_{1,T}$. - (3) The effects of P_2 on both the vertical and torsional frequencies of the first symmetric mode increase with the decrease of P_3 . Therefore, it is noteworthy from aerodynamic viewpoint that the small side to center span ratio and the large value of center span sag can raise the first symmetric torsional frequency. Finally, the authors would like to thank Dr. Ken-ich Maeda, Kawada Industries Inc., for his valuable advice. #### REFERENCES - 1) Ito, M.: Response of Suspension Bridges to Moving Vehicles, Trans. of JSCE, Vol. 149, Jan., 1968. (in Japanese). - Yoneda, M. and Ito, M.: Effects of Dead Weight on Aerodynamic Stability of Long-Span Suspension Bridges, Proc. of JSCE, No. 368/I-5, Apr., 1986. - Komatsu, S. and Nishimura, N.: Effects of Shear Deformation on Free Vibration of Long Span Suspension Bridges, Proc. of JSCE, No. 323, Jul., 1982 (In Japanese). (Received June 24 1986)