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VIBRATION MODES CHARACTERIZED BY RAYLEIGH WAVES
PROPAGATING IN AN ELASTIC LAYER ON A RIGID BASE

By Shigeaki MORICHI*, Tatuso OHMACHI**, Takumi TOSHINA WA***
and Akiyo MIYA**** ‘ ‘ :

Due to fact the that Rayleigh waves are attributed to a kind of natural vibration of a
surface layer, their nature can be understood by vibration experiments using a shaking
table or by vibration mode analysis of a layer of finite length. This has been confirmed
experimentally, analytically and numerically. In the limiting case, where the wave length
approaches infinity, the wave motion is found to be reduced to shear v1brat10n and
longitudinal vibration of the layer.

Keywords . Rayleigh wave, Model experiment, FEM, Quarter wav&length law

1. INTRODUCTION

Prediction of earthquake ground motions has been one of the major subjects in earthquake engineering,
It is of special importance when civil structures or lifeline systems are to be built on a thick sedimentary
layers, because surface waves of large amplitude and long duration are likely to develop in such layers. In
this regard, earthquake records obtained by seismological array observations provide a valuable insight
into the nature of such seismic ground motions?~®,

In the meantime, it is also useful for us to understand the fundamental characteristics of surface motion
by means of physical or numerical experiments in which we can easily control parameters associated with
material properties and geometrical configrations, When we conduct physical experiments on transient
wave propagation using a rather small-scale model, however,' some difficulties arise in both detection of
the surface motion and application of the desired force? 1, This is also the case with a numerical analysis
of a transient wave propagation in which special consideration should be paid to boundary conditions, and
appropriate boundaries such as viscous boundaries!” and transmitting boundaries have been adopted. On
the contrary, vibration experiments in which standing waveforms are observed can be more easily
conducted, and resonant frequencies and vibration shapes resulting from the experiments can be directly
compared with analytically obtained natural modes of vibration. Hence, we can say that the latter
experiments have an advantage over the former if both experiments are equivalent. In this respect, we are
encouraged to recall the similarity between waves and vibrations®,
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From this point of view, the authors have demonstrated experimentally and analytically in their previous
work that shear vibration modes of a surface layer are characterized by Love waves in the same layer'® 19
When one compares the formulation processes of the vibration modes and Love waves, they will readily
become self-evident. On this basis, one can substitute steady-state shear vibration experiments for
transient Love wave experiments, In this paper, a similar viewpoint is applied to characteristics of
Rayleigh waves and the associated vibration modes,

2.  EXPERIMENT

Every specimen used in this series of expeiiments is a model of an elastic layer on a rigid base. ‘As model
materials, acrylamide gel (Poisson’s ratio is (. 5) and aluminium plate were used for the elastic layer and
the base, respectively. For the sake of experimental convenience, both edges of each model were set to be
either free or fixed. Dimensions, boundary conditions and shear wave velocities of models are shown in
Table 1 and Fig. 1. Shear wave velocities were measured by subjecting specimens with the same mixture to
resonant shear-vibration,

Each model was mounted on a shaking table and was excited horizontally by sinusoidal motion of the
table. Various resonant responses produced in the vertical plane of the model were observed while the
exciting frequency was gradually varied. ‘

For models-A and -B, the predominanty induced components of displacement were horizontal in the
lower frequency range and vertical in the higher frequency range. From the stationary waveforms observed
in the vertical plane, nodal planes of horizontal motion were clearly distinguished, increasing in number
with an increases in frequency. The same could be said SRRy
regarding nodal planes of vertical motion. In the case of ¢

model-C, only vertical components of resonant re- e e S -

sponses along the central line in an exciting direction

were observed for the sake of experimental con-

venience. ‘ o (1) F=T.39Hz, k=0.5 (X2 /60 om)

Photo 1 shows some examples of experimental re- ¢

sults on model-A. - Resonant responses shown in A —— - ﬂi“ .

Photo1-(1), -(4) and -(5) are quite similar to the

i i and boundary conditions of models, . .
Table1 Dimensions y (2) f=10.4Hz, k=15 (X2 /60 om)
. Height Length Width =~ Shear wave velocity . Q
Model ' (mm) (mm) () (em/s)
(8.C.) (8.C.) ' ‘ B ot Sl Sl dtatets Sttt DA sl
A 80 600 80 2.1 % 107 ; k
(Fixed) {Free)
B 100 600 100 2.1 % 102
(Fixed) (Free) :
o 80 600 600 2.2 % 10*

(Fixed) (Fixed) e i
Hz, k=5.0.(X2 n/60 ¢m)

6.2

(3) f=1

AR Section 600 S Q

m-‘,—-,-:“. e, A A ~7~—

{

i
et
i

i
4

8

Fig.1 Dimensions of model-C. : Photo1  Experimental results,

- 166s



Vibration Modes Characterized by Rayleigh Waves Propagating in an Elastic Layer on a Rigid Base 193

responses caused by the shear vibration modes, and the vertical nodes of horizontal motion increase in
number as the frequency increases. In addition, one antinodal plane of horizontal motion can be seen on the
center line of Photo 1- (1), namely its wave number k is 0.5 (X2 7/60 cm) . According to Photo 1-(2),
there are three antinodal planes of the horizontal component, and k becomes 1.5 (X2 /60 cm). Photo 1~
(3) indicates that there are ten antinodes of the vertical component in the horizontal direction, that s, k
=5.0 (X2 /60 cm). S V

For each observation, the phase velocity (C) of vertical or horizontal motion was calculated by
multiplying frequency (f) and wave-length (}) in the horizontal direction. Ratios of the phase velocity to the
shear wave velocity (C/ V) and the wave length to the model height (A/H) are shown in Table 2. Relations
between C/V, and A/H are plotted in Fig. 2, in which Rayleigh wave dispersion curves are also drawn;
The reasonable accordance between experimental observation and theory shows that the observed resonant
responses are characterized by Rayleigh waves, k

Table 2 Experimental results,

Dimensionless Dimensionless

Model s No. Frequency Wave number © Wave length Phase ‘velocity Wave length Phase velocity
£(Hz) k{x2n/60cm) X (em) C = f x x(em/s) X /R c/v
A 1 7.39 0.3(H)* 1.2 x 10% 8.9 x 10° I5 4.2
(H = 8.0cm) 2 10.4 1.5(H) 4.0 x 10 4.2 x 107 : 5.0 2.0
3 11.8 3.0(V) *% 2.0 % 10 2.4 x 102 2.5 Iy
4 14.0 4.0(V) 1.5 x 10 2.1 x 102 1.9 1.0
5 16.2 5.0(0) 1.2 x 10 1.9 x 102 1.5 0.90
6 17.9 0.5(H) 1.2 x 102 2.1 x 10° 15 0
7 18.2 6.0(V) 1.0 x 10 1.8 x 1072 1.3 0.86
8 29.6 0.5(1) 1.2 x 10% 3.6 x 10? . 15 17
B 1 6.85 0.5(1) L7 x 102 7.9 x 102 12 3.8
H = 10.cm) 2 9.20 1.5(H) 4.0 x 10 3.7 x 107 4.0 1.8
3 10.2 3.0(v) 2,0 x 10 2.0 x 10? 2.0 0.95
3 12.9 4.0(V) 1.5 x 10 1:9 x 10% 1.5 0.90
5 14.6 0.5(H) 1.2 x 102 1.8 x 10° 12 8.6
6 14.6 5.0(V) 1.2 x 10 1.8 x 102 1.2 0.86
7 17.9 6.0(V) 1.0 x 10 1.8 x 107 1.0 0.86
8 23.9 0.5(H) 1.2 x 102 2.9 x 103 12 14
9 33.3 0.5(H) 1.2 x 102 4.0 x 10® 12 19 -
i 13.3 2.0(V) 3.0 x 102 4.0 x 102 3.8 1.8
2 15.4 3.0(V) - 2.0 x 102 3.1 x 102 2.5 1.4
3 17.2 4.0(V) 1.5 x 102 2.6 x 102 1.9 1.2
4 19.5 5.0(7) 1.2 x 102 2.3 x 103 1.5 1.0
5 22.7 6.0(V) 1.0 x 102 2.3 x 102 1.3 1.0
6 30.5 5.0(V) 1.2 x 107 3.7 x 102 1.5 . 1.7
*(H) Horizontal displacement,**(V) Vertical displacement
3
20 1
o Model A
o Model B hd
=
g
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o
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mode: 2
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i =
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s
=
=
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Fig.2 Experimental results and Rayleigh wave dispersion curves,
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Z

3. DISCUSSIONS

(1) Theoretical approach : Z
In order to examine the experimental results, discus- L

sion is made on eigenvalue solutions for an elastic layer
L ]

TN

lying on a rigid base with a horizontally infinite length,

Let us assume that, on lines 00" and 11’ shown in Fig. 3, Analytical mode]
Fl16-3

only the vertical displacement is supressed, Fig.3 Analytical model,

Boundary conditions are as follows;
Wlpeo=0, W1 =0,  Ulee=0, “Wleo=0, 0xlocp=0 and 1o ], y=0 - mreremiiene e (1)
where x and z are Cartesian coordinates, y and w are displacements in the x- and z-directions, ¢,

denotes normal stress in the z-direction and r,, is the shearing stress, k
From the eigenvalue analysis associated with the above boundary conditions'¥, normal modes are given
by the following expressions;

u= {C (cosh rz—cosh sz)+ Cz(smh rz—>" .sinh sz)}-cos kx-exp (iwl)

kZ
T . k. . .
w=r { Cl<smh rz———-sinh SZ)+Cz(COSh rZ—cosh sz)}-sm kx-exp (iwt)

s
where
2 rk+sinh vH —(k*+ sz)-—’;--sinh sH
sz . C1 .......................................................... ( 3 )

2 rk-cosh rH—(k*+ s?%)- ;-cosh sH
alternatively k
{(r”—k2)+1~l}2 Yor } cosh rH-——- k*-cosh sH
Ca=r = = 2 Gy e (4)
: {(7‘2—~k”)+*~;- r”}°sinh rH— V -sr-sinh sH

In the above expressions, C,, C,, 7, s and k are coefficients, v means Poisson’s ratio, « denotes

9

circular frequency, 1 is time and j is 4/—1. The relationships between r (or s) and % aré;

7 '"'kz ‘/ __0 s s_.kz_%s___u—o ............... N ( 5 )

where V, and V, denote longltudmal and shear wave velocities, respectively.
From the boundary conditions, % should be;

k:ﬂi”_ (n=1,2, ) s e e e (6)

Taking (5) and (6) into account, circular frequency w is calculated by the following expression, which
is a characteristic equation of the Rayleigh wave,

2 rk-{(ri—k)+1=2 2 )
1-"211
2 2
X[1+ y1—-2 5 -(k ;S + rs-sinh rH-sinh sH — k*-cosh rH -cosh SH)
| (r*=F)+——=r* : ‘
2 2 :
_k +ZQ~(rs*cosh rH-cosh sH—k*sinh rH-sinh SH)}ZO ................ TR (7)

For the plane stress condition, (4) and (7) could be obtained by replacing y with ——
account of (5).

1 + and takmg

Supposing that 2 ./ n and w/k are the wave-length and phase velocity, respectively, of the stationary‘
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wave, it becomes clear that the waves have the same dispersion characteristics as Rayleigh waves. The
boundary conditions adopted in the experiments are slightly different from those in the theoretical
approach; 'However, reasonable accordance between the experimental and theoretical results suggests that
the difference in boundary conditions has less effect upon the wave characteristics.

Let us extend this discussion to an extreme condition, In the case of infinite wave-length, k—0, the
expression in the second parenthesis of (7) becomes

COSI TH *COSI SH o we-rnnrrrresssssse ettt eeiiiinii (8)
and the following are obtained by using (5), ‘ ‘

=i T et o i e oy (9)
s=1i _V‘L’s. ................ s s LR e e (10)
Using (8) and (9), the frequency f or circular frequency w is reduced to

fn:gﬁn{-‘"@f%ﬁ"vﬂ (n%:(),l,z,-*-)-{ .......................................... s a1)
o= g"’; @ Z”I’;l) Vo (Lm0, 1,2, -+ ereeeeseisemmnss s SRR RTERN 12)

~According to (11) and (12), Rayleigh waves seem to have the same characteristics as longitudinal or
shear vibrations of the layer, and are subject to the so-called quarter wave- -length law at k£ — 0.
Evidently, the frequency fp for m =0 always gives the fundamental frequency of a wave of infinite length.
However, as for the higher order frequencies, we cannot tell which of f,(n=0)and f, (m=1)in (11) and
(12) becomes smaller, because it depends on Poisson’s ratio.

In the dispersion curve in Fig. 2, the gradient of a line linking the orgin and an arbitrary point on the
curve is H / V, times the frequency of the wave. Therefore, the lines with gradients H / V, times f,in (11)
and f, in (12) give asymptotes of the dispersion curve of each mode, respectively.

The phase velocity (C,) of a Love wave propagating in an elastic layer on a rigid base is

CL,-: VS,\/I+<2"2+1..§_)% T T T AT R AL LA - (13)
As A/H — o, '

C k ;
fa=—2 AL_ZT}}"l.VS ................................................................................................. (14)

According to the above, asymptotes of Rayleigh wave dispersion curves concerning fj, in (12) are found to
give ones of Love wave dispersion curves,

In addition to the frequency characteristics of the Raylelgh waves at k— (), it is also interesting to
examine the natural mode shape in (2). The first examination is for the case where the frequency is
determined by (12). Using (2) and (3), and neglecting higher orders of % in comparison with k itself
lead to the following amplitude ratio between |yl and |wl.

; s 27 sinh rH\ _.
lul_ cosh rz—cosh sz+tanh 8H-<1 s “sinh sH sH) sinh sz l ..................... 5)
lwl

‘ %-sinh rz

Taking into account (10) and (12), at k— 0, sinh sz and tanh sH approach i-sin{2m+1)z/2 H}
and i-tan |2 m+1)z/2}, respectively. Although the denominator also approaches infinity at k— 0, the
munerator approaches it more rapidly than the denominator, giving lul>lwl. Thus, the mode shape in
this case is found to approach that of shear vibration of the layer. The second examination is in the case
where the frequency is determined by (11). Slmllarly to the above, from (2) and ( 4 ), an amplitude ratio
between | w] and |u| results in;
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1—2v s sinh sH .
1wl _ | osh sz—cosh rettanh rif- (1 SR S ) sinh re | (16)
ful s ~ :
[ k-smh sz

Using (9) and (11) and considering rapidity of convergence lead to | w|> | | and a harmonic variation
of w in the vertical direction, which indicates that the mode shape in this case approaches that of
Iongitudinal vibration of the layer.

Table3 shows the lowest three mode

shapes calculated in the vertical direction for Table3 Mode shape in a vertical direction (A/H=15).
- « . Fundamental mod First mode Second de
v=(.5, and /\/H=15 and mflnlty. It can be Horizontal  Vertical Horizontal Vercical Horisontel Vertical
. Surface o 1.000 0.274 -1.000 0.076 1.000 0.051
seen that the horizontal component for \/H rc (1.000) "(0,000)  (-1.000)  (0.000) (17000) (0 000)
: . . 0.994 0.222 -G.835 0,126 0.561 0.007
=15 resembles the shear vibration mode ! (0.981)  (0.000) . (-0832) - (0000 - (0.556) * (0.000)
d E 2 0.946 0.171 =0.403 0.159 -0.373 0.001
—0 K] (0.924) {0.000) (~0.383) {0.000) {~0.383) {0.000)
Shape represented by that for I\/H 4 an o 3 0.858 0.123 0,154 0,166 ~0.976 0.040
s : T : 3 (0.832) {0.000) {0.195) {0.000) (=0.981) {0.000)
that the nodes in the vertical direction 3 G e wan o e
= . . bl {0.707) (0.000) (0.707) (0.000) ";'0.707) {0.000)
increase in number for higher modes., These S s oss0 o0ar 0.925 o101 0175 o104

. . (0:556) (0.000) (0.981)  (0.000) (0.195)  (0.000)
can be Conf!rmed mn PhOtO ]— ( l ) , ( 4 ) and 6 0.400 0.021 0.881 0.053 0.903 0.073
, (0.383) - (0.000) 0.924)  (0.000) . (0.924)  (0.000)
- i i i i 7 0.204 0.005 0.536 0.015 0.882 0.023
(5) of the experiments in which Poisson’s @15 @00 @136 @0 08 (ol
. : Bottom - 8 0.000 0,000 0.000  0.000 0.000 0.000
ratio y was (.5, When it comes to the orton (0.000)  (0.000) (0.000)  (0.000) 0.000)  (0.000)
experimental results shown in Table 2 or Note(l): * U(Z)’?ﬁiﬁﬁfioimﬁmm in a vertical direction e
. . K de sh *x w(z):}‘egv;é?a% component in & vertical direction . L
WY=W(z) sin kx
F‘g' 2) it ShOUId be notlced that mode shapes { yiamplitude, x,z:Cartecian coordinate,kiwave number ®0(2)+

Note(2): ( Jiafli= 0

of shorter wave lengths could be visually

observed only in the fundamental mode, In
Table4 Boundary conditions on model egdes.

other words, mode shapes of longer wave

. . Model Displacements on AA' and BB' Note
lengths only are visually observable in the i Vertical — Horizontal
. . A . a . Fixed Free Al Bf
expeirments., This would indicate that the . free Fixed 50
. . M T600mm BT
response of the elastic layer to the basement c Fixed Fixed R —

motion decreases in amplitude with an in- -
crease in the mode number, as was demonstrated for vibration modes previously characterized by Love
waves', k

(2) Numerical approach

In the experiments both side edges of the models were fixed, while in the theoretical approach they were
vertically fixed and horizontally free, These boundary conditions were selected for the sake of
experimental and theoretical convenience. Therefore, the above comparison is slightly incorrect, strictly
speaking. In order to examine the influence of the difference in boundary conditions, eigenvalue analyses
were conducted by the finite element method, Models and boundary conditions used in the analyses are
shown in Table 4. The height and width of each model are § cm and 60 cm, respectively. Model-a in
Table 4 has the same boundary conditions as that for the theoretical approach. Asshownin (2), 4 lags w
by a phase difference of 90° with respect to kx, then model-b was used as the complement of model-a.
Model-c has same boundary conditions as those of the experimental models (models-A and -B) . Using the
finite element program Isas-]| (Integrated Structural Analysis System 1) natural modes of vibration of
these models were calculated for Poisson’s ratio (), 25 and shear wave velocity of 280 cm/s, as an example.

Fig. 4 shows the numerically obtained mode shape of model-a. The vertical component of the vibration
mode shape is seen to have six nodes in a horizontal direction, and two nodes in a vertical direction. As for
the horizontal component, it has three nodes ina vertical direction, These vibration mode shapes coincide
very well with the theoretical mode shapes of the Rayleigh wayes shown in the upper part of Fig, 4. Such
good accordance could also be seen in most other modes, especially in the lower modes, calculated for
models-a, -b and -c. '
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Theoretical mode

Vertical Horizontal
component component
0.605 1
0.578 0.545
0.292 -0.177
-0.175 0.595
~0.617 -0.406
-0.824 0.206
v 3 -0.712 0.712

-0.373 0.653
! u 0 .0

Fig.4 A numerically obtained mode shape and theoretical mode shape.

Table5 Numerical results.

Wave Wave Phase Dimensionless Dimensionless
No. Mode number Natural frequency Number of number length velocity wave length phase velocity
: . £ (Hz) nodes ko 3 Cc=f(aor b)xr  A/H C/VS
" a b c a b e A B (x27/60cm).  (cm) (em/s)

1 1 - - 8.736 - - 10 0 (H)y** © @ © ©

2 2 1 1 9.538 9.538 9.544 I.o* 0.5(H) 120.0 1145 15.00 4.089

3 3 2 2 11.61 11.61 11.63 1% 1.0(H) 60.00 696.6 7.3500 2.488
4 4 3. 3 14.40 14.40 14.43 L2 1.5(H) 40.00 576.0 5,000 2.057

5 11 1t 10 17.54 17.54 17.59 12 2.0(H) 30.00 526.2 3.750 1.879
6 14 14 13 20.84 20.84 20.92 2 2.5 24.00 500.2 3.000 1.786
7 17 17 16 24.20 24.20 24.29 1.2 3.0 20.00 484.0 2.500 1.729
8" 23 22 21 27.52 27.52 27.65 2 3.5 17.14 471.7 2.143 1.685
9 26 25 24 30.74 30.74 30.91 2 4.0 15.00 461.1 1.875 1.647
10 31 30 29 33.77 33.77 33.98 12 4.5 13.33 450.,2 1.667 1.608
11 34 33 32 36.54 36.54 36.79 1. 2 5.0 12.00 438.5 1.500 1.566
12 37 36 35 38.99 38.99 39.23 22 5.5 10.91 425.4 1.364 1.519%
13 43 42 40 41.17 41.17 41.27 22 6.0 10.00 411.7 1.250 1.470
14 - 49 - - 43,14 - 22 6.5 9.231 398.2 1.154 1.422
15 - 7 — - 15.13 - 0 1 0 (N*** o oo @ ©

16 6 5 4 15.09 15.09 15.09 2.1 0.5 120.0 1811 15.00 6.468
17 5 4 5 15.04 15.04 15.11 2 1 1.0 60.00 902.4 7.500 3.223
18 7 6 6 15.12 15.12 15.3% 2. 1 1.5 40.00 604.8 5.000 2.160
19 8 8 7 15.47 15.47 15.75 21 2.0 30.00 464.1 3.750 1.658
20 9 9 8 16.14 16.14 16.47 2 1 2.5 24.00 387.4 3.000 1.384
21 10 10 9 17.11 17.11 17.47 2 1 3.0 20.00 342.2 2.500 1.222
22 120 12 11 18.37 18.37 18.71 21 3.5 17.14 314.9 2,143 1.125
23 13 13 12 19.85 19.85 20.15 2 1 4.0 15.00 297.8 1.875 1.064
2 15 15 14 21.50 21.50 21.76 2t 4.5 13.33 286.6 1.667 1.024
25 16 16 15 23.30 23.30 23.50 2001 5.0 12.00 279.6 1.500 0.9986
26 18 18 17 25,19 25.19 25.32 2 1 5.5 10.91 274.8 1.364 0.9814
27 21 20 19 27.15 27.15 27.24 2.1 6.0 10.00 271.5 1.250 0.9696
28 25 24 23 29.16 29.16 29.22 2 1 6.5 9.231 269.2 1.154 0.9614
29 28 27 26 31.21 31.21 31.27 2 1 7.0 8.571 267.5 1.071 0.9554
30 30 29 28 33.29 33.29 33.36 2.1 7.5 8.000 266.3 1.000 0.9511
3 32 31 30 35.37 35.37 35.46 2 1 8.0 7.500 265.3 0.9375 0.9475
32 35 34 33 37.47 37.47 37.57 21 8.5 7.058 264.5 0.8823 0.9446
33 38 37 36 39.55 39.55 39.69 2 1 9.0 6.667 263.7 0.8334 0.9418
34 46 45 43 41.64 41.64 41.82 2 1 9.5 6.316 263.0 0.7895 0.9393
35 - - 50 e - 44.00 2 10 - - - -
36 19 - - -— 25.87 - - 2.0 0 (H) S © © ©
37 20 19 18 26.25 26.25 26.24 21 0.5(1) 120.0 3150 15.00 11.25
38 22 21 20 27.32 27.32 27.32 21 1.0(H) 60.00 1639 7.500 5.854
39 24 23 22 28.92 28.92 28.96 21 1.5(H) 40.00 1157 5.000 © 40132
40 27 26 25 30.90 30.90 30.95 2.1 2.0(H) 30.00 927.0 3.750 3.311
41 29 28 27 33.14 33.14 33.19 2 1 2.5 ; 24.00 795.4 3.000 2.841
42 33 32 31 35.56 35.56 35.60 2 1 3.0 20.00 711.2 2.500 2.540
43 36 35 34 38.12 38.12 38.13 201 3.5 17.14 653.4 2,143 2.334
(33 39 38 37 40.75 40.75 40,71 201 4.0 15.00 611.3 1.875 2.183
45 = S0 47 - 43.46 43.27 2.1 N} 13.33 579.3 1.667 2.069
46 48 - - 42.02 -— - 3 0 0 (H) © © w ©
47 47 46 44 41.79 41.79 41.83 32 0.5(H) 120.0 5015 15.00 17.91
48 44 43 41 41.38 41.38 41.39 3 2 1.0(H) 60.00 2483 7.500 8.868
49 42 41 39 41.06 41.06 41.05 32 1.5(H) 40.00 1642 5.000 5.864
50 40 39 38 40.93 40.93 41.00 3 2 2.0 30.00 1228 3.750 4,386
51 41 40 - 41.04 41.04 - 3 2 2.5 24.00 985.0 3.000 3.518
52 45 44 — 41.41 41,461 - 3 2 3.0 20.00 828.2 2.500 2.958
53 49 47 = 42.07 42.07 - 3.2 3.5 17.14 721.1: 2.143 2.575
54 50 48 — 43.06 43.06 - 32 4.0 15.00 645.9 1.875 2.307

% uncertain,**(H) Horizontal component is predominant, **% (V) Vertical component is predominant

In Table 5, the results of the numerical analysis are summarized to compare the modal characteristics of
each model. Numbers in the second through fourth columns of the table indicate the order of each mode
from the lowest one. A and B in the eighth and ninth columns indicate the number of nodes of horizontal and

s



198 i S. MoricHi, T. OHMACHI, T. TOSHINAWA and A, MIval

20 - 4
e No. e No. 7 - 14
o No o.No. 21 - 34
= No = No. 42

i
w
L
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!
~
i

Dimensionless wave velocit
—
ol -
gk\\\\

First mode

Fundamental mode

Dimensionless wave velocity €/V

Fundamental mode

0 T - T T [ T T
0 5 S10 S 15 0 1 2 3
Dimensionless wave length A/H Dimensionless wave Tength A/H

Fig.5 Relation between phase velocity and wavelength of the numerically obtained vibration modes.

vertical components, respectively, counted in the vertical direc-  Table§ Natural frequency of the modes
tion. Notation % in the tenth column means wave number of with infinite wave-length.
horizontal or vertical components measured in the horizontal No. ;’;;ﬂi;;izl gzigzirlﬁve-
direction. In the table, it seems natural that almost all the modal i 8.736 (Hz)  8.750 (iz)
frequencies of model-c should be slightly higher than those of 22 ﬁ;g; Zg?g
models-a and -b because of its displacement restraint at both side 15 15.13 15.16

edges.

Dimensionless quantities in the two far right columns of Table 5 are plotted in Fig. 5 together with
dispersion curves of Rayleigh waves, It is evident in Fig. 5 that every plotted point falls on the dispersion
curves, which shows that the vibration modes are practically characterized by the Rayleigh waves,

The modes described in rows No.1, 36 and 46 of Table5 have only a horizontal component of
displacement without a vertical component, and the number of nodes in the vertical direction increases with
an increase in the frequency.

Meanwhile, the mode in row No. 15 has only a vertical component of displacement. Using V=280 cm/s
and V,=485 cm/s of the model material, frequencies of shear and longitudinal vibration were caluculated
by the quarter wave-length law expressed in (11) and (12), with results shown in Table 6, in which
frequencies. from the numerical analyses are also shown. : :

The fairly good agreement between each pair of frequencies is a statement of the fact that the
numerically obtained modes of vibration are those of the shear and longitudinal vibration, and that they are
characterized by Rayleigh waves even in the limiting case of k=().

4. CONCLUSIONS

The natural modes of vibration of a surface layer lying on a rigid base were evaluated by laboratory
experiments followed by theoretical and numerical analyses, Comparison of the mode shapes and
frequencies were made between them, giving the following conclusions;

(1) Natural modes of vibration of the surface layer of finite length evaluated under the plane strain
conditions are characterized by Rayleigh waves in the layer. The only difference between the modes of
vibration and those of Rayleigh waves is that the former is discrete while the latter is continuous regarding
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thelr frequency, wave number, wave-length and so forth.

(2) In the limiting case where the wave- -length of the Rayleigh wave is infinite, the Raylelgh wave is
reduced to shear or longitudinal vibration of the layer, and its natural frequencies are subjected to the
quarter wave-length law.

(3) For these reasons, vibration experiments on the surface layer can serve as useful means of
deepening our understanding of Rayleigh wave characteristics, because they are adapted to our visual
observation.

(4) - Restraint of displacement at side edges has little effect on the vibration modes, especially on the
lower modes. This permits us to use simple models whose side edges are both fixed in the experiments, in
stead of sophisticated models satisfying boundary conditions associated with the Rayleigh wave,
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