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MECHANICAL PROPERTIES OF SOLIDS CONTAINING A DOUBLY
PERIODIC RECTANGULAR ARRAY OF CRACKS

By Kiertisak SAHASAKMONTRI*, Hideyuki HORII**, Akio HASEGAWA***
| and Fumio NISHINO**** |

In the present study, the problem of an infinitely extended elastic solid containing a
doubly periodic rectangular array of cracks is considered. The analysis is made based on
the method of pseudo-tractions, and a first-order approximate but explicit solution is

* obtained. Thé study reveals the fundamental difficulty of the problems of doubly periodic
¢éracks which gives rise to the discrepancies between the results of the previous works, The

_ stress intensity factors of mode I and mode]l and the overall compliance are derived as
functions of the ¢rack density and geometry of ‘the crack array, The overall compliance of
solids with randomly distributed, unidirectional cracks is evaluated by the self-consistent !

" method. The validity of the self-consistent method is discussed in terms of the results of
the doubly periodic cracks.

Keywords . cracked solids, overall moduli, frdctuie mechanics

1. INTRODUCTION

The behavior of solids containing multiple cracks has long been the subject of interest of numerous
researches, especially those in the field of geomechanics, The mechanical response of the cracked solids
depends not only on the properties of the matrix surrounding the cracks, but also on the size, shape,
orientation, and distribution of the cracks. There have been considerable efforts directed at estimating the
overall response of solids containing cracks of various shapes and arrangements; for example, Walsh?-2,
Vakulenko and Kachanov?, Garbin and Knopoll?, Salganik?, Vavakin and Salganik®, Hudson”, Budiansky
and O’Connell?, Eimer®, Hoenig", Kachanov?, Leguillon and Sanchez-Palencia®, Horii and
" Nemat-Nasser'®, Oda®®  Oda, Suzuki, and Maeshibu'?, ~

In general, it is difficult to establish a boundary value problem if the orientation and the distribution of
cracks are allowed to be arbitrary. Therefore, some restrictions have to be made regarding the
arrangement and the scale of the cracks to render the problem mathematically tractable. The investigation
of the behavior of solids containing multiple cracks is then directed to those special problems concerning
cracks arranged in regular patterns, among which the simplest form is the doubly periodic rectangular
array, Although the problem may lose generalities, such simplified models can disclose, at least, some
general trends, and in fact they may be of some interest on their own account.

In connection with the problem of a doubly periodic array of cracks, Delameter et al.® investigated the
stress intensity factors for a doubly periodic rectangular array of cracks under mode | and mode [
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deformations, Répresenting each crack by a certain distribution of dislocations, they obtained singular
integral equations for the dislocation distribution function through satisfaction of the boundary conditions
at the tractibn-—free crack faces. Extending the work of Delameter et al. ¥, Karihaloo'¥® examined the
stress relaxation process from the tips of the cracks in doubly periodic (rectangular and diamond-shaped)
ari'ays in all modes of deformation. Isida® and Isida et al.  made extensive analyses on a single crack in a
rectangular finite plate by employing the boundary collocation method. By choosing appropriate boundary
cdnditions, they obtained numerical solutions to the problem of ‘doubly periodic rectangular array of cracks
under mode I, The numerical results reported by Isida® and Isida et al. ® are seen to be different from
those given for mode T by Delameter et al. ¥ The inconsistency between these results needs explanation and
it is one of the aims of the present work to make clear what contributes to this difference.
Provided that the stati'stical"distributiqh‘of the cracks is random, use can be made of the so-called
“self-consistent method” to include the interaction effects in estimating the overall properties of the body.
This method was originally proposed for aggregates of crystals and was later applied to solids with
rahdomly distributed inhomogéneities, such as solid inclixsions or voids; see Willis® and Walpole?? who
give extensive lists of the literature. Application of the method to crack problems was pioneered by
Budiansky and O’Connel®, They considered a body containing randomly distributed penny-shaped cracks,
and estimated analytically its effective elastic moduli. Since then, this method has been extensively
exploited in the analyses of the km‘acrkoscop‘ic‘ properties of the body with cracks of various sizes and
configurations ; see, for‘example, Hoenig!, Kachanov'? | Horii and Nemat-Nasser!?, Although the method
has found its application in a wide variety of problems, it evaluates the effect of interaction between
neighboring‘ inhomogeneities just in an indiréct manner, In the ‘present‘ work, ‘we make an attempt to
examine whether or not the self-consistent method reasonably estimates the interaction.

2. THE METHOD OF PSEUDO-TRACTIONS

An infinite elastic plane containing a doubly periodic rectangular array of cracks is shown in Fig.1. Each
crack in the rectangular array is of length 2 ¢, and is separated from other cracks by a distance H
vertically and a distance W horizontally. The quantities which are used hereafter are also shown in Fig. 1.

The problem of an-infinitely extended elastic solid containing a doubly periodic rectangular array of
cracks under far-field stresses is referred to as the “original problem”. [In the doubly periodic problems
the far-field stresses are not well-defined. In this study, they are introduced through the following
superposition. ] The solution of the problem is given by the supérposition of the solutions of a homogeneous
problem and a subsidiary problem, as shown in Fig. 2. The homogeneous problem contains no cracks and is
. subjected to uniform stresses at infinity, being denoted by the quantities with superscript co in Fig.2. In
the subsidiary problem, the same constant stresses are prescribed on the surfaces of doubly periodic
cracks with no stresses at infinity, The boundary conditions along any crack  k are given by

o.z-_:_o.;’ ti,,“—‘“t;g, “Cé.’L‘kéC, yh=0 (1 )

Since the solution to the homogeneous problem is known, only the subsidiary problem is to be solved, To
apply the method of pseudo-tractions proposed by Horii and Nemat-Nasser® , all the cracks are numbered

) ‘ o o
&% © -0, -1 on

© b4 y o g :
T [ O T 4_4,.},,4,_},9‘34,7}{ all crack faces

g
Y. T
; - A IR R
[ : ;

ORIGINAL PROBLEM HOMOGENEOUS  PROBLEM SUBSIDIARY PROBLEM

Fig.1 ' A doubly periodic rectangular Fig.2 Decomposition of an original problem into a homogeneous problem and
array of cracks. . a subsidiary problem, g
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" Fig.3 Decomposition of the subsidiary problem into sub-problems,

and the subsidiary problem is decomposed into infinite number of sub-problems, as shown in: Fig, 3. In

sub-problem j, the boundary conditions along the crack surfaces of crack j are given by
az;:ﬁ_(ay.*.qy), txy (Txy+z'xy) —egx’ SC yJ——O ......... S (2)
The quantities ¢%, 72, being called the “pseudo-tractions”, are unknown tractions which must be
determined such that the boundary conditions (1) are satisfied when all the sub-problems are
superimposed. Note that the pseudo-tractions are the same for all cracks because of the symmetry of the
problem, ‘ :
In the present analysis, we employ Muskhelishvili’s' complex stress functlons #(z) and' ¢(z) (see
Muskhelishvili®) . Stress and displacement components are given in terms of these potentials by
ol 2)+ o 2)=2[8(2) +¢ 0(2)], oyl2)— 0x2)+2 itenl2)=2[Z D(2)+ U(2)],
2 G [ulz)+ iv(z)]=xd(2)— 28'(2)— ¢(2) :
when &(z)=¢(2), W‘(z) &’(2), z=x+1y, i=+/—1, G is the shear modulus x=3—4 y for plane
strain, x=(3—v)/(14v) for plane stress, v is Poisson’s ratio, the overbar denotes the complex

conjugate, and prime stands for differentiation with reé.pect to the argument.
For the sub-problem j, the stress functions are given by (see Muskhelishvili®)
Hoaf 1 fc(xz“cz)l/z oy e » ‘ ; ;
o'(z")= iz =) e x—2 o+ 0% (t“‘+ Txf‘?)1dx ................................ (4)
Ui(2))= ')~ 0'(2)— 2’ 0"(2)), Z’=x'+ iy, j= 1 2, :
The fequirement that the sum of the sub-problems must be equivalent to the subsidiary problem leads to

o ithy= 2[@( B4 B2+ 250 () + TN, 2"=d" e+, —cSa/s e (5)

where d’%, ¢’® x’ are defined in Fig. ] and Z’, denotes the summation for all the cracks except for the
crack j under consideration, Note that Z reprgsents a doubly infinite summation in the present problem.
The right-hand side of Eqn. (5) represents the sum of tractions on the crack j caused by all other cracks.
Eqns. (4) and (5) form an integral equatwn for the pseudo-tractions which are functions of x’. It is
not possible to solve this integral equation explicitly. However, this integral equation can be reduced to a
system of algebraic equations in the following manner. ‘
We expand the pseudo-tractions into a Taylor series as

a{,:(x’)%ir;g(x")=§(Pn—iQn)[%ir, ....... NS .............. e (6)

Substituting Eqn. (6) into Eqns. (4) and (5), the integral equation (5) is reduced to a system of
algebraic equations for P, and Q,. Horii and Nemat-Nasser® showed that P, and @, are of the order of
(c/d)™*, where d denotes distance between cracks, Neglectmg terms of orders higher than (¢/d) ",
we have 2 N linear algebraic equations for Py, -»-, Py_1, Qo ==, Qu_1. The first-order approximate but
explicit solutions are obtained by taking N=1, as follows Eqn (6) becomes ‘

ox)— ivix = Po“ lQo ................... (7)
implying that the pseudo-tractions are constant. Substituting Eqn. (7) into Eqn (4), we obtain the
stress function dﬁ’( ) for the sub-problem j as
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( j)——*[(o';'f—Po) Txy‘*'Qo)]{r__)}']{ 1} RRETEIRE et R TR RIEe ( 8)
It follows from Horii and Nemat-Nasser® that '
P= [% Agﬂ e [’ﬁ B{.’,‘} <= Qo:[% C{;é“]o;" [%L fk] Ly e - (9)
% ] & x %
where ‘ i

A= [cos (24")—7 cos 4 #"(c/a"y, =1 [—sin (2 $"+sin (4 p™)(c/d"y
L costgic/amr i,

The stress functlons of the ksub—problem J-are given by Eqns, (8) and (9), and the stress and
displacement fields are known through Eqn. (3). The stress and displacement fields of the original
problem are then obtained from the superposition. Furthermore, following Horii apd Nemat-Nasser® | the
stress intensity factors for mode ] and modeJf are given by

K[ v P () K Qo . : .
gy e _1+g;, TeyV TC =1+ Ty S ‘ : (10)

The doubly infinite series in Eqn. () represent the interaction effects from all other cracks on the

crack j. These summations can be evaluated numerically by considering the partial sums for finite number

BOOy 30

of cracks and increasing the number of cracks. If the doubly infinite series in Eqn. (9) are convergent,
the Way to take the partial sums does not affect the values of the limits. Here, we use a rectangular array of
R rows by C columns of cracks for the partial sums. Keeping the ratio C/R constant, we mcrease C and
R. Then the doubly infinite series in Eqn. (9) are expressed as

2 3 s 5 —sm{ L] e mm L] 4 pe
ZEAT IS TR ITRE IR St

ALL

e AL
)_;‘ Bio= Z;.:l Cro=

Sive=tm [ ] [A v B (et 2 (22 n B

.......................................................................................... (11)

The convergence of the infinite series in Eqn.. (11) is numencally examined and found o be fast, As an
example, for H/W=1, ¢/W=0.1 with C/R=1 an array of 10 by 10 cracks gives Z 3 and Z}
respectively the values of —(. 01036 and 0. 01036, while the final values are —(. 01039 and +0. 01039,
By varying the ratio C/R, the limits of the series are investigated and shown in Figs.4 and 5 for H/ W=
1, ¢/W=0.1. The ratio C/R represents the shape of the array that is used to approach the limits of the
sums. The results reveal that as we increase number of the cracks under summations, the value of each

KI/O;O/(ﬂC) ;
N o
Isida et al. [22] . g 1-020 1.012 - Kn/rxyl(ﬂc)
l.ooo_r E H/W=1, c/W=0.1 - 1030,
worfoaz 02990 (R=C) ; Delameter et al.[18] 1.020 . 1.0205

- Erom Egns. (10}, (11) JL1.0.980 “giy=)  c/w=0.1 . ?\F" 1.0204
\.\ . i from Egns.(]10), (11)..M/..1.010 (R=C) )

0.952 1-0-960. el ameter et al. [18] ;
1.000
0.545 0.940 ; ’ ' ' ’ .
60 40 20 20 40 0 60 40 20 0 20 40 60
R/C o oR R/C - by -~ C/R

Fig.4 Limits of Ki/o3/7cC. - Fig.5 Limits of Ky/z3,v/nc.
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sums approaches different limit for different values of C/R. ThérefOre, ~it is concluded that each doubly
infinite series of Kqn. (11) divergkeskbecause the limiting value depends on the way of taking the
summation, which means that Eqn. (10) is not the solution of the doubly periodic problem. This is the
essential difficulty of the problem of doubly periodic cracks and it always ‘arises when we use the
superposition principle to account for the influence from all the cracks on the state of stresses at a point in
the cracked plane, The superposmon always leads to the doubly infinite series of which llmlts depend on
the way of takmg the summation,

3. THE AVERAGE STRESSES

The reason for the difficulty shown in the preceding section is given as follows. We evaluate the infinite
series as the limits of finite sums, This corresponds to solving a problem of an infinite plane with cracks of
finite number and increasing the number of the cracks. No matter how we increase the number of the cracks
in the infinite plane, we always have uncracked area surround the cracked region. For each value of C/R
~ the array has a particular shape and the stress and strain fields have different patterns.

Now we evaluate the average stresses along the middle part of the cracked portion of the plane, i.e.
along line AA’ in Fig.6. By superposition, the average stresses Gy, Tzy are found to be

. . . K ‘ 4 % % nw 3 1
Oy ITxy™ Oy ZT:y"'W Enl 1‘?211 [L_I)W{Uy(xa Ym)— lfxy(x, ym)%dx}, ym::H(m“§> """""""" (12)
where o,(x, yn) and z.(x, yn) are the stresses along the segment AA’ in the sub-problems.

With the help of Eqns. (3), (8), and (9), we get

Gy— ifxy=ézljl [0@[14‘2[ T’éléc n]_iriy{1+2 [.}%T ig' anH" ........................ (13)

where

Imna(n-—l)3+[y—v$} n{n—1)7 n*—7n—3)+ [W}(ﬁ‘" —3n—1)— 3[%’2]6

T T
Il;n3(n—1)3+[~w~}[{%ﬂ]+n(n 1)](571 —5n+1)+ [%,—}

E o=+ [T+ [T

As an example, the results for H/W =1, ¢/W =0.1 are :
shown in Figs,7 and 8. It is seen that for different C/R, both o T9yr TTyy onallcrack faces
summations tend to different hmlts as number of the cracks in the C colums

mn

solid is increased.

: : X : : 20AL A" R
4, THE STRESS INTENSITY FACTORS : e
In previous sections we have shown that the stress intensity T
e : ‘ Fi‘g,G A solid with an array of R rows
%% 1 000 1.000 o by C columns of cracks,

0.979 (R=C) : T ‘
from Egn. (13) - (—’_‘_—_——‘ T T
. 1.000 Xy 1.000
. 0.960 B : . . 1.000
. H/W=1, c/W=0.1

508 . 0.940 from Eqn.(lB)/ AL, 0.990 (R=C)
1
0

H/W=1l, c/W=0.1
0.920 /=Ly e 0.980

¥ T ] 4 T T 1 . ] T 1 1) ¥ i
60 40 20 0 20 40 60 60 40 20 20 40 60

R/C : . C/R R/C C/R
Fig.7 Limits of §,/0%. ~ Fig.8 Limits of #,,/7%,.
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factors and the average siresses depend on C/R, i.e. they depend on the way of taking the summation_k
In the sequel we show that being expressed in terms of the average stresses, the stress intensity fac-

tors are uniquely determined. ; i ; :
From Egns. (10); (11), and (13), the stress intensity factors normalized by the average stresses

“instead of the stresses at infinity are given by

el ol ooy | "
=1t [ | Fus=1 [ [ Gug=14 4 Hutg)
where : - e

Fl<¢>?—~,s,zarzo{~[ 7 [ L]rn[ies ]
W :

ni(n—10—[ 22 ([ %] + nin—1] 6 w*=5 n+ 1)+ 2= H
o= [T w )T

Gle)=[ 45| Fi@), B@=1-F(®), Guld)=| 4| Fulg), Hi@)=T5-Ful9), tan p=1-.

The numerical results obtained from Eqn. (14) for the case of H/W=1, ¢/W==0.1 are shown in Figs. 9
and 10. It is seen that a single limit exists for each fracture mode, which means that the doubly infinite
series in Eqn. (14) are convergent series and the stress intensity factors are uniquely determined.

For H/W=1, ¢/W=0.1, Ki/é,+v/7C is given by Eqn, (14) to be 1. 0110 which is very close to the
value of K,/ g,/ 7c reported by Isida® and Isida et al.?? being 1.012. [Note that the present solution is
an approximate solution. ] However, the numerical value of K,/s+/7c. for the present case is shown by
Delameter et al'® to be (. 9517. The numerical solutions given by Isida® and Isida et al, ? are considered to
be the solution to the problem of doubly periodic cracks since his collocation procedure is performed on the

unit cell, a rectangular plate with a single crack, with the appropriate boundary conditions of the doubly
periodic array of cracks. On the other hand, the method used by Delameter et al. ¥ has its basis on the
superposition. In his formulation, Delameter represents each crack by a certain distribution of
dislocations and employs the superposition principle to obtain the stress field due to the applied stresses
and the dislocations, This leads to a term with doubly infinite summation of the contribution of all other
cracks. He evaluates the doubly infinite summations in the vertical direction first and sets up a numerical
scheme to solve the resulting integral equations, If the ratio of C/R is set to be very small, which is
equivalent to taking the summation in the vertical direction first, Eqn. (10) gives K,/ oy +/zc the value of
0.9482. Hence, it seems that the stress intensity factors obtained by Delameter et al. ™ corresponds to
Eqn, (10), which differs from our final solution (14). : k

The accuracy of our first-order approximate solution is examined by comparing the values of K, given by
Eqn. (14) to those reported by Isida et al.®_ Table1 shows the values of K;/4,+/zc computed from
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KI/;y/(“C) ; Table1 "K,/6,4/nc for several values of H/W and
1/4 N i
1.0125. o 1/ ; ¢/W.
! v 2/3
: e/¥W 0 | 0.05] 010 0.15| 0.20 | Remark
c/R 1
1.0120 4 S : Wy : :
: L 3/2 ] :
! i ; : 0.5 | 1.0 | 0.982 | 0.928 | 0.838 Iram
1.0115_} 1.0 | 1.0 | 1.003 | 1.011 | 1.025 (14)
: 1.5 1 1.0 |'1.004 | 1.016 | 1.036 | 1.064
1.0110 % 0.5 1.0 0.983 1 0.948 0.922 : fram
y : 1.0 |0 1.0 [1.003 | 1.012 | 1.031 |- Isida
: 1.5 | 1.0 | 1.004 | 1.017 | 1.039 | 1.074 | (1981)
1.0105.] L H/W=l o/W=0.1 -
1.0100 ; Table2  Ku/?#syv/mc for several values of H/W
r T T . ) ; oo i
o 1 2 3 4 56 4 7 and c/min (H/W). -~ :
: NUMBER OF CRACKS (x10°) T -
: (] 0+100 | 0-125 | 0.167 | 0.200 | 0.250 | Remark
Fig.9 Convergence of K,/6,/7cC. g s
SRR R W
e 1 0.0 11,0164 |1.0257 {1.0457 1,028 |
o 2/3, 3/2 . 0.4 1 1.1028 fram
N : : 0.6 1.0460 (14)
K./t /(Tc C/R v 1/100, 100 0.8 : 1.0274 1.1094
1T (Tc)
Y /2% 1.0 |1.0204
1.0206 _ o 1.2 1.0713
. s 1710, 10 : 1.6 1.0664 .
. : 2.0 1.0659
1.0204 ] : : @ [1,0164 1.0658
. 0.0 |1.0160 [1.0246 |1.0424 1.0881
1.0202 H/W=1, ¢/W=0.1 g.-; oo 1.0881 mg::“
: 0.8 161 | 1.1022 | et al,
_— 1.0 |1.0208 (1975)
1.0200 , ' ; . , B . 1.2 1.0787
0 1 2 3 4 5 6,7 1.6 1.0757
NUMBER OF CRACKS (x10%) 2.0 1.0753
= 11,0160 1.0753

Fig. 10" Convergence of Ky/#uyv/7C.

Eqn. (14) and those obtained by Isida et al. 2 for various values of H/W and ¢/W. Good agreement
between both results is observed for small values of ¢/W.

For mode [, it can be shown from Eqn. (13) that as C/R decreases, the value of 7,,/7%, approaches
1.0, making the values of Ky;/z3,+/7c of Eqn. (10) approach those of K/ 7,/ 7c of Eqn. (14). (See
also Figs. 5 and 8.) Accordingly, the numerical results for mode]] reported by Delameter et al. *® can be
used to examine the accuracy of our first-order approximate solution. Table 2 shows the comparison of
the values of Ky;/7.4+/7C obtained via Eqn. (14) and those computed by Delameter et al.'® for several
values of H/W and ¢/min (H, W). Satisfactory agreement is observed for small values of ¢/min (H,
w). . T ‘

When H/W goes to infinity, Eqn. (14) yields the solution of an infinite row of collinear cracks which

'

agrees with the expansion of the exact solution of Westergaard?

T ‘ K_I e _‘Ez, £ z : - Ku o 7l cT
Jm e 1 [W} Y e [W] """ (15)

The solution 6f é single stack of c¢racks is obtained from Eqkn_ (14) if H/W goes to zero. The solutions
(16) shown below compare well with Fig.2.29 (p.123) of Isida®™ and correspond to the first-order

neglecting higher order terms, i.e.

approximate solutions of Horii and Nemat-Nasser®

i K xfep o Ke o ATce)
W Godme 1T &) Jim, /e 16 ik | AL

In Figs. 11 and 12, the values of the stress intensity factors computed using Eqn. (14) are shown for
various values of ¢ /min(H, W) and ¢. Note that the angle ¢ defines the crack arrangement; tan ¢=
H/W. It is seen that for ¢ less than (. 214 », the values of K,/,+/7¢C are less than one. For mode [l ;
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E K._/1_ /(fc)

K_/o/(%c) IT° xy
oy 1,021 _ ,
1004 L-o0all ] 1.02039

g ' 1.019 |
1.002 ]

- 1.00066 1) 1.017 | 1.01645
1.000 f1:00000 ) a)

1.00016 1

-W : 1.015 |

0.998 | 1.006 ]
0.99803 .

a)c/min{H,W)=0.05
o 1.00510

1 b)e/min(H,W)=0.02 1.005 | )

i che/min (1,W)=0.01 i

' ‘ ‘ 1.00411
1.004 . b)

0.996

.994 ]
] &) o/min(H,W = 0.10
6.992 ' 1.003 | b) c/min(H,W) = 0.05
i i c) .c/min(H,W) = 0.01
0.990 1.002 |
0.988 | 1.001
0.98766
0.986 ‘ ' 0.21:;1? ' s@ 1.000 - 1.00020 1.00016 ¢) o
0 0.1% 0.29 0.39 0.4%  0.5% : 0 0.17 0.29 0.31 0.41 0.59
Fig. 11 Ki/6yv/7C plotted against ¢, Fig.12 Ku/%zyv/nc plotted against ¢,

0.3931
0.3931

0.4% 1 0.5%

/2
0 10/4 [

T T T

T 1
0. 0.17 0.21 0.3 0.4% . 0.5%

Fig.13 Plot of Hy(¢). Fig. 14 Plot of Hy,(g).

values of K;;/#+/wc are seen to be always larger than one, ;

From Eqn. (14) it is seen that the variation of the stress intensity factors with the crack arrangement at
a constant crack density, ¢*/HW, is represented bg; functions Hi(¢) and Hy(¢). The functions H,(¢) and
Hy(¢) are plotted against ¢ in Fig.13 and 14, respectively. k

5. THE OVERALL COMPLIANCE AND THE SELF-CONSISTENT METHOD

The overall compliance of an infinite elastic solid containing a doubly periodic rectangular array of
cracks is evaluated by utilizing the solutions obtained in the previoﬁs chapter, The relationship between
the average strain ¢,; and the average stress 4, in the cracked solid has been shown by Horii and
Nemat-Nasser'® to be ‘

éiJ:Dijkl6kl+_%7'£% ([ui]nj+[ui]ni)ds:(Dijh:l+Hijm)&kl:-ﬁijkl&kl’ iy J, k9 1=1,2,3enen (17)

where [1,] denotes the displacement gap along the crack surface with unit normal vector n;, D,y is the
elastic compliance of the uncracked solid, D, is the overall compliance, and the integration is carried
over the crack surface S contained in the solid of volume V. Once the displacement gap is known, the
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tensor. H;;,; and then Dijw are obtamed ;
For the present, two-dimensional problem the overall compliance matrix is written as
€x ) Du Dlz DIG - |
&y 1= 521 '522 Ezs &y . with Eij:Dij+Hijq Z:,jk=1,2,6""k ..... P TR SRR (18)
zex"" . DGI Dsz Bes : tay - : ‘

With the solution obtained in the prevmus section, the components of the tensor H,; for the sohd containing
a doubly periodic set of cracks are calculated as'

(x+1 (et ’ ‘ ; |
I-In:(’i1 G) }'—7;%/' [1+HWH<¢)]’ H“:‘(z Gl) }7;%/ [1+ CW Hn(¢)}, otherwise ngk=0 ............ (19)

in which H(¢) and Hy(¢) are given by Egn. (14). From Eqgns. (18) and (19) the overall compliance of the

Q>

solid is then given by :
k 1 —vy : AR 0

o c? . ‘ o
(Dl=L| 142251 + i H9)] S SN TR R R (20)
2 : .
0 : 0 201+ v)+2 i |1 [ N H.,(¢)}
for the case of plane stress; and for plane strain we have
1-v —y s 0
e’ [, ¢
[D”]__l—gv —v (=) +20—v) g [1+—H~WH,(¢)] -0
: ‘ zct c*
0 0 2+2(1— ) [ 145 Hul9)

The same results are obtained by evaluating the difference between the strain energy of the body with and
without cracks subjected to the same applied stresses. Results obtained through Eqns. (20) and (21) are
shown in Fig.15 and 16. ‘ :

It can be observed from Egns; (20) and (21) that if the cracked solid is subjected to applied stresses,
the macroscopic elastic response appears to be anisotropic. Since the characteristics of the functions Hy(¢)
and Hy() are different, the influences of the geometry of the array on D,, and Dy, are not the same. For
the solid undergoing shear deformation, holding the crack density ¢?/HW as a constant, D, is seen to
reach its minimum value when ¢=7/4. Under tension in the direction perpendicular to the crack faces, the
interaction increases the stiffness of the solid when ¢ is less than (.214 » (H/W being 0. 80).

Ey/E(D22 o) ; x}o/c;(_b/ﬁ)
1.

66" 66
1.0,

NO INTERACTION
i ——ese— DOUBLY PERIODIC ARRAY, ¢=1/4

0.4 ot T L THE SELF-CONSISTENT METHOD
NO INTERACTION : -
i ——--—— DOUBLY PERIODIC ARRAY, $=1/4 E - v=0.3
TN R — ' THE SELF-CONSISTENT METHOD 0.2 ]
J ) 5 : - : 2
o L c /HW o : c“/HW
T Ll ¥ T T T T T T T Ll T L 1 1] 1] ] 7 i i Ll L} T H T T 1 i
0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 : 0  0.02 0.04 0.06 0.08 0.10. 0.12 0.14
Fig.15 E,/E as a function of the crack density. ' Fig. 16 Ga/G as a function of the crack density.
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The overall elastic moduli of solids containing randomly distributed, unidirectional cracks evaluated by
the self-cnsistent method are examined by comparison with Eqns. (20) and (21) as follows. Consider a
single crack embeded in the infinite solid whose compliance is set to be the overall compliance D,,, which is
the unknown to be determined. [Note that for a solid containing randomly distributed, unidirectional
cracks, the overall response of the solid is anisotropic. | The displacement gap along the crack surface is
expressed in terms of the unknown overall compliance by using the solution of a single crack in an
anisotropic material given by Sih, Paris, and Irwin®. According to Egns. (17) and (18), the

displacement gap is integrated and then the overall compliance is obtained as

Du=Dut e Dul2 Dt Dest 240Dl Dus=Dist 25 {IDul2 Dot D+ 24(DuD)]
........................................................... i (29)

This equation is called the consistency condition for the unknown overall compliance D,,. An approximate
solution is obtained through asymptotic expansions of the unknown variables with respect to a small
parameter ¢*/HW as

) 2.z ¢t 3x) 5 _ 0ty 2 x eerb e ek
Da=pt 22 14532, Du=2 FH E i T - (23)

E EHW

for plane stress, and for the state of plane strain we have

1—? (1—v* =c?

522: E +2

2 _
C 37(] Dase (1+V)+2

B HW [1+HW_2" E Lt [1' i ”]

E HWL "HW 2

Eqns. (23) and (24) are seen to be of the same form as those for the doubly periodic cracks, Eqns. (20)
and (21), except that Hy(¢) and Hy,(¢) are replaced by 3 /2 and 7 /2, respectively. [Note that these terms
account for the éffects of crack interaction. ]

From Fig, 14, the results by the self-consistent method for mode ][ are seen to be the lower bound of
those for the doubly periodic cracks. The nearest value is attained when the array is of square shape ; ¢=
x/4 or H=W. This result seems to support the applicability of the self-consistent method to the problems
of mode]] deformation, On the other hand, Fig. 13 shows that for mode ] the value of H,(¢) increases
monotonically and takes the same value as that given by the self-consistent method when the array is far
from the square; ¢ being 0.393 = or H/W=2.86. This seems to indicate that the applicability of the
self-con51stent method to the problems of unidirectional cracks under mode | deformation is questionable,

The overall moduli for the plane stress obtained by means of the self-consistent method are shown in
Figs. 15 and 16 in comparison with the results of the preceding sections. The rate of decrease of the
modulus predicted by the self-consistent method are shown to be faster for the mode [ _deformation, ‘
comparing with the solution for the array having ¢ equal to /4. Deforming under mode [| does not show
much differences between the rates of change of the overall pfoperties obtained by either methods,

6. CONCLUSIONS

In the present study, it is revealed that the difficulty in solving the doubly periodic problems arises from
the superpositidn principle. An approximate but explicit solution to the problem of doubly periodic cracks
is derived. The stress intensity factors and the overall compliance are obtained as functions of the crack
density and geometry of the crack array. The self-consistent method is applied to obtain the overall
compliance of a solid containing randomly distributed, umdlrectlonal cracks. It is shown that the solution
of the doubly periodic cracks supports the validity of the self- consistent method for mode H However for
mode I, the self-consistent method seems to be questlonable
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