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AN ULTIMATE STRENGTH DESIGN AID FOR FIXED END
STEEL ARCHES UNDER VERTICAL LOADS

By Tetsuya YABUKI*, Le-Wu LU** and Shigeru KURANISHI**?‘

To begin with, fixed-end restraint effects on the capacity of steel arches loaded into
elastic or inelastic and finite deformation range is studied by a nonlinear finite element
approach, ‘Then, based on this result, a design formula which predicts the ultimate
strength of fixed arches is proposed using effective length concept. By comparing with the
analitically determined ultimate strength it is shown that these formulas accurately predict
the strength of fixed arches for use in design,

Keywords © arch bridge, steel structure, compression member, st’ruciwral stability, limit

stale design

1. !NTRODUCTIQN ;

In conventional steel arch bridges, two-hinged supports might be chiefly provided because their erection
was simpler than for arches with fixed-end supports. Howévér, even in any practical arches, nonzero
design bending moments result from live loads. Especially, for long span arches with slender ribs, their
deflections become large. In these cases, fixed-ends should be desirable to minimize the amplification of
initial geometrical imperfections and live load moments, and eventually to increase their ultimate stfength,
In arch structures, because of the presence of axial thrust, the ultimate strength is usually affected by
instability and over-all failure occurs when the stability limit is reached?~9 . This behavior is similar to the
behavior of beam-columns or frames failing I)y instability, i.e., instability problems under combined axial
compression and bending moment?, ‘

For hinged arches, the design criterion formulated by the ‘combined meémber forces is now available to
determine their ultimate strength®. However, for fixed arches, no rational procedure based on this
instability concept has been developed. In this paper, first, the ultimate strength of fixed arches are
discussed mainly in comparison with that of hinged arches. Then, a design aid is proposed, ' in which the
fixed arch is transformed to become an equivalent hinged arch using the well-known effective length
concept. Thus, it is possible to utilize directly the available design criteria for hinged arches and no
instability analysis needs to be performed on the fixed arch. The proposed procedure is developed from the
analytical results of an extensive study of the ultimate strength of fixed arches with a variety of structural
and material parameters, ‘
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2. GENERALITIES

(1) Description of Analysis and Arch Studied
“ A nonlinear finite element analysis has been developed to study the ultimate strength of arches?9 and the

same approach is used in this study. It is assumed that no out-of-plane deformation occurs anywhere in the
structure and that the strength is governed by instability failure in the vertical plane. Two types of
instability analysis have been performed, one is the elastic analysis and the other the inelastic analysis,
both including the effect of finite deformation. The inelastic analysis takes into account spread of yielding,
unloading and reloading of the yielded parts in the cross section and along the length, and residual stress
due to welding, The load versus deformation relationship of the arch is obtained by successively
incrementing the load until the maximum value is reached. For each load increment the tangent stiffness
method and the Newton-Raphson iterative procedure are used”, The component plates of the cross section
are -assumed not to fail prematurely by local buckling.

The arch selected for the study is the same as used in Refs 3), 5) and has a perfectly parabolic axial
configuration with a span length I, and a rise h as shown in Fig. 1. The structure has a uniform cross
section and is constructed of thin-walled welded box section. The arch is loaded by a series of concentrated
loads at the nodal points which have been p‘re—selected‘for the finite element analysis®. The load acting at
each nodal point on the left half of the arch is ¢ and that on right half is 7 g, where 7 is a load reduction
factor. Theload ¢ represents combined dead, live, and impact loads, while 7 g represents dead load only.
In all the numerical calculations, the arch is divided into 20 segments with equal length along the span and
nodal point runs from 1 to 21. The loads at points 1 and n (=21) are assumed to be transmitted directly to
the supports and therefore produce no effect on the arch, By dividing the cross section into 40 segments the
elements of tangent stiffness matrix are evaluated numerically. These discrete treatment manners are the
same as those used in the previous studies of hinged arches? and fixed arches?,

For Comparison purpose, the cross sectional properties of the box section and the magnitude and
distribution of residual stresses assumed in the numerical calculations are also the same as those used in
the Refs, 3) and 5), as shown in Fig. 1 (H, B=depth and width of the cross section; ¢,, I, =thickness of
aflange and a web plate; A,, A,=sectional area of a flange and a web plate ; rmzra&ius of gyration, and k
=core radius). The pattern of residual stress is taken from Ref. 6) originally, and has a maximum stress
* at the welds equal to the yield stress of material and the maximum stress in compression equal to 40 % of
the yield stress. The structural parameters in the study are the rise-to-span ratio /L, the slenderness
ratio A which is the ratio of the curvilinear length of the arch axis, L, to the radius of gyration of the cross
section, 7, the load reduction factor 7, and the yield stress of material gy. The ranges of these
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Fig.1 Fixed-End Arch and Its Cross Section Studied. Fig. 2 ‘Replaced Hinged Arch and Egquivalent Hinged Arch.
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parameters selected as given below are generally within those found in steel arch br)dges

h/L=0.1~0.3; A=100~300; r=0~0.99; 0y=240~460 N/mm*
The Young’s modulus E is kept constant at 2.1X10° N/mm?

(2) Principal Effects of End Restraint

Some typical results of the study are shown in Fig. 3, where the load-deflection relationships at a
quarter point of an arch with 4/L=0. 15, 2=200 and ¢,=320 N/mn, The 7 values are 0, 0.5, 0.75 and
0:99, respectively. The load ¢ is nondimensionalized with respect to a reference load ¢,. This load, when
apphed at all the nodal points (2 through 20, wzll cause full yleldmg at the springing under axial thrust, It
is g;ven by

Aaay

‘qp%\/[%g}z+[§ s b L{E+3L L+ lﬂ

in which n=number of nodes, L=(i—1)/(n—1), lz-—l I, i=order of nodal point (Flg 1), and A,=

cross sectional area of arch, ¢, depends on the /L ratio, A, and g,, and is the same for hinged or fixed
arch; The results of the elastic instability analysis are shown as the dashed curves in Fig, 3'and those of the
inelastic analysis are given by the solid curves, The elastic analysis shows that for r=0. 99 the maximum
load gpaxeias: is almost equal to the linear bifurcation buckling load gpyciie and that ¢uayenns: dose not
change with the value of 7 very much. The true maximum load carrying capacity, i.e., the ultimate
strength; is the maximum load g, of the inelastic analysis, which is generally much lower than the elastic

value Quaxeinst. AlsO, @max decreases significantly as the applied load becomes more unsymmetrical. The
load at which initial yielding occurs in the structure (residual stress effect not considered) determined by
the second-order elastic analysis is shown as the elastic limit load ¢4, in: Fig. 3. ‘

In Table 1, these loads Qumax, Qmaxerass, '@0d Qyana are summarized. The elastic limit load calculated by
the conventional first-order elastic analysis gy, is also tabulated. The guax and gy nq values obtained can
be used to study the margin of safety of the arch if it is designed by the allowable stress method using the
results of a second-order elastic analysis. For the case =0, if a factor of safety 1. 67 against yielding is
used in establishing the allowable stress, the margin of safety against instability failure is 1.67X
0.340/0. 228==2.49. For r=0.5 the margin is 2. 26 and for r=0. 99 this value is 1. 59. If the elastic limit
loads are calculated by the convensional first-order elastic analysis, the corresponding margins of safety
become 2.41, 2. 01 and 1.38. The last figure for either the first- or second-order analysis is certainly
lower than the safety margins specified in most of the bridge specifications? ? -Actually, - an allowable
stress less than ¢,/1. 67=0. 6 ¢, is often used in practice to account for the effect of instability. A rational
design procedure based directly on the ultimate strength is needed in order to achive an adequate and
consistent safety margin in design.

Some selected results of analysis for the ultimate strength of fixed arches for the ranges of /L, Xand
r described before are given in Table 2, where they are compared with the results of hinged arches having
identical, geometrical and material properties and loading conditions as shown in Fig, 2 (a) (termed as

a/q9p - X10 for elastic deflection V/L - . Table1 Ultimate Strength of Fixed Arches Compared. with
2.0 o : #tastic limit load level (Qy, zng/Tp) " Critical Loads Obtained by Elastic Analysis:
Oy =320 Nimm?2 r

r( Gv.2n¢!%! Imas/Tp P ;
228 | 340 5 nax/%p %nax, elast/Ip %y, 2na’%p 9y, 15t/ %
339 | 459 (1) (2 (3) (4) (5}
463 | 569 0 0.340 1.637 0.228 0.236
.839 | 801

0.5 0.45% 1.439 . 0.339 £0:381
0.75 0.569 1.413 0.463 0.515

r=Q 0.99 0.801 1.480 T .83 0.969
by the ultimate strength analysis

o 0.002 0.004 0. 006 0. 008 Veumy/ L

Note : A = 200, h/L = 0.15, 9 = 320 W/mm?

Fig.3 Load-Deflection Curves at Quarter Point of
Fixed Arch.
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Table 2 Ultimate Strength of Fixed Arches Compared with

-0.307~

Those of Two-Hinged Arches (for various of 7,
h/L and ). 018
X o o.1s state:t
Arch Type = 200 L = 0. 8 e
. h T staze.;os [ N o
ratio of increase|h/L=0.1 |h/L=0.15[n/Lx0.3 | A=100 | A=200 | A=300 L0 R T ot : ;
o fixed-ends 0.400 0.340 0.303 0.672 9.340 0.207 Q\' N:‘(:‘Q 5'”‘7"'— ; xn
: - : . ol - -672 . . i . o e g g
hinged-ends 0.262 | 0.213 | 0.174 | 0.467 | 0.213 | 0.125 0.15 = 1.00
. state: &
ratio of increase| 0.527 0.596‘ 0.741 0,439 0.596 0.656 i \\-/ 0.78
0.3
0.5 |£ixed-ends 0.496 | 0,459 | 0.a5¢ | 0.795 | 0.455 | 0.283 ; N /rmz0 weors 0.50
hinged-ends 0.321 | 0.288 | 0,259 | 0.607 | 0.288 ‘| 0.159 . (x109) | G320 nimme =039 | 0.25 i
ratio of increase| 0.545 0.594 0.753 0.310 0.594 0.780 : T . H
- avViag
0.99|£ixed-ends 0.731 | 0.801 | 0.956 | 0.961 | 0.801 ‘| 0.555 ° ot B2 ot
hinged-ends 0.521 0.538 0,580 0.837 0.538 0.280 . . . ;
ratio of increase| 0,403 0.489 0.648 0.148 0.489 0.982 F!g'4 Incrementa} Vertlcal Deflectlon MOde at EaCh
Note t ‘o, = 320 N/em? : Loading State (for r==0.99). -

“replaced hinged arch”). From this table it is obvious that the ultimate strength of the fixed arches

- decreases significantly as the applied load becomes more unsymmetrical and as the slenderness ratio
increases, ‘The ultimate strength for r=0 and 7=0.5 also decreases with increasing the rise-to-span
ratio. For r=0.99, however, it increases with the rise-to- -span ratio because of influence of buckling
phenomenon®. The basic trend observed also holds for the hinged arches. The increase in strength of a
fixed arch over a hinged arch is measured by the ratio (giax— @hax) / Qrax; “Where gfa., and gl are
respectively the calculated ultimate strength of the fixed and hinged arches. This ratio is also shown in
Table 2 as a “ratio of increase”, The data indicate that this ratio becomes larger as the slenderness ratio
or the rise-to-span ratio or both becomes larger. : ~ ~

Fig. 4 shows typical nondimensional forms of incremental vertical deflectlons along a flxed arch span (A
==200) —incremental deflection mode— from low level loading state to the ultimate state for ¢ ==(). 99,
where the mode is given by dividing the nondimensional incremental deflection (A7=Av/L) by the
dimensionless load intensity (Ag=4¢/q,) . From the figure the incremental deflection mode for low level
loadings is seen to be the first order mode in which a shortening deformation is distinguished, while when
the axial thrust becomes relatively higher the deflection mode changes to the bending deformation mode

~ (second order mode) . Thus, the so-called inelastic buckling phenomenon appears in this case. It could be
_understood that the bending deflection mode becomes eventually dominant at the ultimate states even in the
quasi-symmetrical loading case, s ‘ o :

The effect of fixed-end restraint on the behavior of the arches has been previously studied in Ref. 3) in
detail from qualitative point of view. From the previous and present studies, it has been found that in the
inelastic range the bending deformation tends to increase more repidly than the axial deformation and that
fixed-end restraint remains effective until the ultimate load is reached.

3. DESIGN AID

(1) Effective Length Concept ~

The extensive numerical results obtained from the study make the development of an ultimate strength
design procedure in fixed arches, This procedure permits direct use of the design criteria that have been
proposed previously for hinged arches?. The first step is to establish an equivalent hinged arch which
would have the same ultimate strength as the fixed arch. The analytical study of fixed arch shows that the
increase in strength is due primarily to the rotational restraining effect at the springing. This effect, of
course, is also present in analyzing fixed arches for their bifurcation buckling. A simple way of
recognizing the restraint effect is to use the “effective length concept”, in which the buckling strength of
the fixed arch is related to that of an equivalent hinged arch with a reduced rib axis length (shown in
Fig.2 (b)). The two arches (Fig.1 and Fig, 2 (a)) have identical, cross sectional dimensions, material
properties, rise-to-span ratio and load reduction factor. Fig,5 shows the relatmnshlp between: the
effective length factor K and the rxse—to—span ratio h/ L for fixed arches based on the linear bucklmg
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Koo L SR N R : Gl
Como b i : ) 100 hIL=0.1, K=0.691
. Gy= 320 N/mm?
. 0.75
: K=0.716-0.249h/ L
oest & 0.50 |
bifurcation buckling thrust
#EL
=~ two-hinged arch: Hy=d'
o 0.25
B ~fixed arch: Hf—d"m . ;
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Fig.6 Sirength Comparisori of Fixed Arch and Equivalent

Fig.5 Effective Length Factor of Fixed Arch. ; ’
v Hinged Arch (for‘h/ L=0. 1.

analysis., By applymg a regression analysis on statistics a predlctlon formula for K can be obtamed as
follows : ; R . ~
K= 0716 0249h/L"""""*‘ ................. RIS F R A R SRR PTIUERIRE Ot L Ghiaen vE e gy e i ae due dd (2)
This formula is also shown in Fig.5. : SRR Tt SR S

It is proposed to use the same K value to define the eqmvaient arch for evaluatmg the ulnmate strength
of fixed arches, The equivalent arch is loaded in the same manner as the fixed arch. The accuracy of using
the equivalent arch defined by Eq. (2) in evaluating the strength of fixed arches is illustrated in Fig. 6.
The solid curves show the ultimate load gnax/ g, of hinged arches with 4/L=0.1 and ¢,=320 N/mm? as a
function of A for r valuesof 0, 0.5, (.75 and 0. 99. For comparison purpose the ¢uax/qs values calculated
for fixed arches with 1=100, 200 and 300 are plotted at the equivalent slenderness ratio of KA=69.1,
138.2 and 207.3, respectively, in which K=0.716—0.249X0.1=0.691. These ultimate loads are
indicated by the circular marks, Same comparisons for i/L=0.15 and (. 3 are also shown in Figs7 and 8.
The correlations are considered satisfactory. Similar studies for arches with different yield stress also
show reasonable correlations. It may be concluded that the equivalent arch concept proposed herem gives
results which are sufficiently accurate for practical applications. . '

(2) Ultimate Strength Design Formulas ‘ ~ :

The second step is to establish ultimate strength formulas being apphcable to the equivalent hmged arch.
The criteria proposed previously for hinged arches are expressed in terms of the axial thrust N and
bending moment M at the critical quarter point determined from a first-order elastic analysis at the design
ultimate load (working load multiplied by a factor). They are as follows 5) '

a[%} _*_b[_m_} Hgy}$1 0 for 11\\; S g et ....... (3 1
; [ }_,_ﬂ[ ]SIO for ﬁ<ncr(32) ;

in which @, b, ¢, o and B are empirical coefficients and 5., is a nondimensional axial load. These

¢ qmalep P Gmax/9p
1.00 1.00F
0.75 F 0.75F
0.50 + 0.50 |
0.25F 0.25F
. i L i I 1 i L 3 2. i L D
0 50 100 150 . 200 250 300 A 0 50 100 150 200 250 300 A

Fig.7 = Strength Comparison of Fixed Arch and Equivalent
Hinged Arch (for h/L=0.15).

Fig.8 Strength Comparison of Fixed Arch and‘EquiQa]eﬁt
Hinged Arch (for A/L=0.3).
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roeffncxents and 7n., are depending on rise-to-span ratio, h/L, and slendemesq ratio parameter
A ;H/;;/TE‘/,, ................................................ L 3.3)
Namely : ~

| G=2.509—1.6897; b=—1213+1 605 30135 X c=(1.824—0.914 A+0.376 2°)(0.82+1.2 A/L);
a=1/my; B=(Mo—Mer/(Moticr) ; Mp=1.172—0. 0469 A5 ner=(—bme—ami)/c;

- Mer=m, for (ami+bdm,—1)/a<0; me=m,—/lami+bm,—1)/a for (ami+bm,—1)/a>0.
In the following discussion the superscript ~ will be used to indicate structural properties associated with

the equivalent arch, ' thus : B o
L KL; h Kh /\-——-K)\ ........... rraneesnees A SRTLIETIE B R LT PP TREP P AR A FRTPN (4 1)

The equivalent arch is analyzed by a first-order elastic analysis at its ultimate load Imax= Qhax and the
resultmg axial thrust and bending moment. at the crmcal quarter point are :

N knqu;M/(KL) kmqmax ...... S O U Y (5)
in which %, and %, are constants for a given h/L ratio and r value, Next consider the replaced hinged
arch, which is the same as the fixed arch in all respects except that the supports are hinged.. To this arch
the design criteria given by Egs. (3.1), (3.2) and (3.3) are directly applicable. The superscript~will be
used when refering to the properties of the replaced arch. The axial thrust and bending moment at the same
quarter point of this arch at its ultimate load

 Omax™= Qhax are

N k,.qmax,M/L kmqu ....................................... (6)
From Eqgs. (5) and (6) : ‘ ~ ; : :
~ﬁ=ﬁq$¢x/q&ax;M=KMqéax/0§ax .............................. SO e et (7)
or expressing nondi‘mensicnally : s
"N _ N Ghax/0 M fax/ :

NN Gou/o Mg B G/ G | (s}

Ny Ny Qmax/ &’ M, My Qhax/ Qo
in which N, is the yield axial thrust and M, the yield bending moment of the arch cross section. They are the
same for the fixed arch, the equivalent hinged arch and the replaced hinged arch,
Eq. (8).can be rewritten as: , ; S

fi= nf/f m= Kmf/f ....... qemqesaeaiansnss (9)

in which 4 n= N/Ny, A= N/Nyy m= M/My, m= M/Myy f Qhax/ Ao f Qmax/q:) Fig. 9 shows how the

design criterion for the replaced arch can be transformed to become the criterion for the equivalent arch
based on Eq. (9). The lower curve shows the criterion for the replaced arch and each point on the curve
represents a critical combination of 7 and 77 at the ultimate state, for instance, point A, The 7 and 77 are
then multiplied by f /f to obtain 7 and 7 (point B). Thus :

T=RL/ S TS/ oo S (10)
: ‘ s 7 ;
: 1.00 F hL=0.15, K=0.679
: Gy =320 N/mm?
n
1 o
RE.B_T 0.7 5= =

design criterion WO 5 A=0.843 (A=100)

for equivalent arch P

(R=kn) nEaEn o

0.50 A=1.687 (A=200)

LTE I S SN H k
i L A=2.531 (A=300)
\’ H 0.25 + .
7l ' il
: : My
H i i L &
P = —hm 0 025 050 075. 100 125
Fig.9  Transformation of Design Criteria, © - Fig,10 . Comparison of Calculated Strength with Predicted

- Strength Based on Proposed Criteria.

1208



An Ultzmate Strength Design - Aid for ched End Steel Arche& Under Vera cal Loads e 7

Table 3 - Comparison ;of Analytically Calculated Ultimate Table4 Comparxson of Analytlcally Calculated Ultlmate ;
Strength with Predicted Strength (for various - Strength with Predicted Strength (for various
values of 7 and A). SR - values of 7 and h/L).

0 = e p = A - pone
L r 5 £ /£ Kme {4} ne{4}) FC x. h/L £ f/f K!'\'ff“ ne(4y Fc
Sy {2), (33 (4) (5) (6} [&2) 1) {2) (3) {4} {5). {6) {7y

{100}

o (:.343 0.672 1.439 6.883 0.305 1.098 o 0.1 - 0.400 1.527 0.791 0.189 0,979
200) y . i SIS
1.687 0.340 1.596 0.878 0.152 1.017: 0.15 0.:340 1.596 0.878 0.152 1.017
{300} ) E B o
2.53% 0.207 1.656 0.797 0.092 10,983 3 N 0.3 '0.303 1.741: 0.964 ' 0.113 1,058
(100) - Y

0.5 L} 0.843 0.795 1.310 0.559 0.533 1.051 N 0.5 | 0.1 0,496 1.545 0.507 0.352 0:937
{200} N -
1.687 0.459 1.594 0.604 0.308 0.986 - 0.15 0,459 1.594 0.604 0.308 0.986
{300} -
2.531 0.283 1.780 0.553 0.180 0.993 R 0.3 0.454 1.753. 0.730 0.254 1.068
(100) ) R

0.99 0.843 0.961 "} 1.148 0.082 0.855 1.139 N 0.99 0.1 0.731 1.403 0.057 | 0.688 0.945
{200) B
1.687 0.801 1.489 0.050 0.713 1.018 0.15 0.801 1.489 0.050 0.713 1.018
(300) . ; : i
2.53% 0.555 1.982 0.035 0.494 1.015 0.3 0.956. | 1.648 0.045 6.710 1.152

Note : h/L = .15, o, = 320 N/mn?, K = 0.679 . N Note : i, A = 200, o= 320 N/mn?

For the equivalent arch the design criterion is Table5 Comparison of Analytically Calculated Ultimate

defined according to Eq. (9) by : o o . Strength with Predicted Strength (for various
PURIN — ) valuesof 7 and o).
A=T1 ;msz St e ine S B pa s ( n) . ~y~ .
.. . . T (UYN;M) i E/f wme(4) | nei) g
This is shown as point C on the upper curve, The = . o @ e @ e f et |
. iy . {240)
upper curve can be obtained directly by applying ° 13380 | 0359 | 1541 ) 0,928 | 0,167, | 1.026
A 1687 | 030 | 1596 | 0878 | 0uts2 | 1017
Egs. (3.1), (3.2) and (3.3) to the equivalent arch as 550 L os | aisse |00 |oia0 | 0w
fOuOWS : 0.5 4?2%1)) 0.496 | 1.503 | 0.654 | 0.333 | 0.999
s R . . ) %887 | o.ass | 1508 | oie0s | 0.308 | 0.586
am’*+bm+cnsl.0 for = Teprmrrrns (12» 1) ) 14093 [ovios | t.es | ousas [oiors | o.em3
am +ﬂﬁ£1 0 for ﬁ<ncr -------------------- (12 2) 0.99 izgg«;) 0.864 | 1,307 | 0,054 .| 0.783 | 1.056-
) 1.687 | o.801 | 1.487 | 0.050. [ 0.713 | 1.018
/\" K/\‘v O'y/E /= 0 716—0.249 h/L)AV Gy/E /m 19093 1 ouses | 1iser | o.oas | o.s33 | 1.020
.............................. (12 3) Note i A = 200, B/L = 0.15, K = .0.679: :

and is also the design formula for the flxed arch, :

The accuracy of this formula in predicting the strength of fixed arches is demonstrated in Flg 10 fora
series of arches with i/L=0.15 and A=100, 200 and 300. The solid curve shows interaction between 7
and 77, and is obtained directly by Eqs. (12.1), (12.2) and (12.3). The circular marks represent the
critical combination of # and 7 given by Eq. (9) in which f‘ and f are determined by the ultimate strength
analysis, and 7 and 7% are analyzed by the convensional first-order elastic analysis. All the calculations
are shown in detail in Table 3, where the ultimate strength predicted by Egs. (12.1) and (12.2) is
compared with the analytically determined ultimate strength, using a correlation factor F.. The F, is
obtained: by solving equations as follows :

[Fc] +b[ ] [Fc} ;1 forF gnm ...... ..... .................... S i (13.1)

o {%}ﬂg [%]:1 f0rﬁ<ncr .................................................. R Tt T 13.2)

in which 7 and 77 are analytically determined and given by Eq. (9) and the slenderness ratio parameter is
difined by Eq. (12.3). Some comparisons for arches with different rise-to-span ratios and yield stresses
are shown'in Tables4 and 5, respectively. The correlation factors for the twenty one cases studied are
gathering between (0. 937 and 1. 152. The average is 1.024 (2.4 %) . It can therefore be concluded that the
proposed formula can provide good estimates of the ultimate strength of fixed arches for use in design.

The final step in the development of the design procedure is to derive a design formula for fixed arches
expressed in terms of the axial thrust and bending moment of the replaced arch, When arches are designed
by the limit state approach based on the ultimate strength, a design should be considered to be satisfactory
if the calculated strength is equal to or greater than the requlred strength for the factored load. For the
fixed arch studied, the calculated strength is gfax, and is equal to §uax of the equivalent arch. When the
load g7y is applied to the equivalent arch the axial thrust N and bending moment M are givenby Eq. (5).
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When the same Ghax 1s applied to the replaced arch, the axial thrust N and bendmg moment M are :

N };nqu § M/L kamax ...... ‘.f ................................................................................ (14)
- Combining Eqs (5) and (14) gives: ‘ ‘
N:}V : MImm KM oovvveereee ettt e ettt e e (15)
Then, Eqs (12 1) and (12.2) can be rewritten in terms of M and N as follows :
M M -Nw ‘N— ........................................................
[ ]+;9[ ]sl for IIVV<nCT ..................... e (16.2)

The eqmvalent slenderness ratio parameter is gwen by the general expression, Eq. (12 3), " which is
repeated here for convenience, namely : : ~
A=K ‘/;;/TE' TS SN B NS SUUN RN IO IS ISR S SR (16.3)

These equations are, finally, proposed formulas for the fixed arches. In the desxgn process, N and M are
axial thrust and bendmg moment at the critical quarter point of the replaced hinged arch corresponding to
the designed fixed arch. They are determined by the first-order elastic analysis for the factored design
load. The loadmg condition usually involves dead load over the entire span and live load (mcludlng impact)
_over half of the span. ~

4. SUMMARY

The study reported herein was undertaken to develop an ultimate strength design for fixed-end steel
arches with thin-walled welded box section. The following conclusions may be reached chiefly :

(1) The ultimate load of the fixed arch is related to that of an equivalent hinged arch using the
effective length factor defined by Eq. (2). This relation becomes the key step in estabhshmg the ultimate
strength design formulas,

(2) The design criteria proposed previously for hinged arches are then modified to provide the
criteria applicable to the equivalent arch given by Egs. (12.1), (12.2) and (12.3).

(3) It has been shown how the design criterion for a replaced hinged arch can be transformed to
become the criterion for the equivalent arch, based on the calculated results of the ultxmate loads for the
fixed and replaced arches, ; ‘ ~ ~ :

"~ (4) Then, a more direct and practical procedure employmg a replaced hinged arch in the design
calculation has been presented by Eqs. (16.1), (16.2) and (16.3). :

In order that a fixed-end steel arch attains the computed ultimate load, its rotation capacity is essential,
Particularly, the rotation capacity is required for redistribution of the fixed-end bending moment in
inelastic range. Work on development of such required capacity is needed.
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