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A UNIFIED APPROACH TO THE ELASTO—PLASTIC ‘
& STRENGTH OF COMPRESSED CYLINDRICAL SHELLS

By Eiichi WATANABE*, Hidenori ISAMI** and Yasuji KYOGOKU***

Proposed herein are two procedures for the strength of compressed cylindrical shells on
the basis of so-called nonlinear bifurcation théory : one being a direct approach making use
of the pathological curve representing the stability limit for the elasto-plastic behaviors
near the elasto-plastic buckling point; and another being a unified approach making use of
the pathological curve associated with the plastic failure mechanism but near the equivalent
bifurcation point, :

Several numerical demonstrations are provided to give the imperfecﬁon sensitivity
curves, and the ultimate strength curves as the reasonable lower limit of several
experimental data, yet showing good correlation with the DASt and ECCS design curves.
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1. INTRODUCTION

Nowadays, cylindrical shells are being widely used in many civil engineering structures such as offshore
constructions, nuclear power plants, pipe lines and storage oil tanks. These cylindrical shells are often
subjected to uniaxial compression either independently ‘or in combination with hydraulic pressure or
torsion, The compressed shells are generally believed to be very sensitive to even small initial
imperfections, and thus may undergo global collapse easily. This is why the problems of the stability and
the strength of cylindrical shells are of great significa’nce.

Studies on the strength of cylindrical shells were initiated in the late nineteenth century”. Lorenz, von
Karman and Fliige obtained the buckling loads of cylinders, subjected to axial compression, uniform
external pressure and their combinations, respectively?. Then, Donnell derived the fundamental equations
of equilibrium for shells under torsion?. However, the results through the analytical investigations had
been considerably discrepant from the corresponding experimental results by Fliige, Donnell and et al¥.
This discrepancy was attempted to be interpreted clearly in terms of the so-called imperfection sensitivity
by such people as von Karmén and Tsien”. Moreover, Donnell and Wan clarified the post-bifurcation and
the general equilibrium paths of compressed cylindrical shells?.

Koiter discussed the stability and the imperfection sensitivity of cylinders on the basis of the potential
energy function using his general theory of elastic stability”. He also analyzed the imperfection sensitivity
curves of compressed cylindrical shells with axi-symmetric modes of initial deflections?. Arbocz and
Babcock reported on relationships between the initial deflection modes and the buckling configuration
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modes from many test data®, Similarly, Hutchinson, Hansen and Croll focused on the imperfection
‘sensitivity of axially loaded cylindrical shells 2. On the other hand, advanced studies on the inelastic
- strength of cylinders have been vigorously performed by Battermén Hutchinson and Croll®~19_ Also,
Vandepitte, Rathe and Bornscheuer reviewed many test results supporting the ECCS strength curves in
the elastic and elasto-plastic ranges¥ 1

Some types of shells are being designed so that they may fail in the e]astO*plastlc range, For the
evaluation of their inelastic strength, the incremental materially and geometrically nonlinear numerical
procedures seem to be being preferably adopted in recent years. These are time-consuming, nevertheless
in general and besides, the strength can only be determined in an isolated form for a specified set of
material and geometrical parameters,

Presented herein is a umfled approach to the elasto—plastlc strength of compressed cylindrical shells
considering residual stresses where the effects of the initial deflections are explicitly designated by a
unified strength formula®~%2), ‘

2. BASIC CONCEPTS

(1) Elasto-plastic buckling strength

A cylindrical shell model of length [ under uniaxial compressmn as shown in Figs. 1 is analyzed herein.
It is assumed to be welded along a longitudinal line with.an appropriate distribution of longitudinal residual
stress uniformly in that direction. The distribution of the residual stress is assumed to be such that the
maximum compressive stress is or and to be either parabolic, triangular or trapezoidal in the
circumferential direction as shown in Figs, 2(a) - (c), respectively. Herein, only a half of the distribution
of each type residual stress is shown for the developed surface of the cylinder, Then, the relationships
among the tangent modulus E,, the secant modulus E,, the average axial stress ¢ and the average axial
strain ¢ can be obtained as®~% :

o=0olk), e=elk), E,= %g““kE and ES:_‘.’_,,........, ...................................... e (1)

where, both the stress and the strain are functlons of the factor k, for given elastic Young’s modulus E and
yielding stress g, mdlcatmg the ratio of the elastic cross-section to the total section of the cylinder, that
is, the factor k denotes the non-dimensionalized tangent modulus E, by the Young's modulus, E.
The out-of-plane deflection, W, is assumed to be represented by the combination of an asymmetric and
an axi-symmetric mode both in the elastic and the elasto-plastic ranges in the coordinate system of Fig, 1 as
follows®9 : k
W=1w, sin- mgx cos y+w2 GO ;(2)
Herein, 7, 1w, and w, refer to the radius of the cylinder considered, the magnitude of the asymmetric and
the axi-symmetric buckling mode, respectively. Moreover, the magnitudes of the initial out-of-plane
deflections corresponding to w, 1, and w, are denoted as w,, 1w, and w,, respectively
The equilibrium of the cylinder can be determined from the modified Donnell’s fundamental equations
- using the Airy’s stress function, F, and the secant modulus E, for the in-plane deformations and the
Bleich’s factor® for the out-of-plane deformations, similar to the cases of plate members'® 2.2 ;

V‘F'*'Est <‘1‘. Ww:x'*' Waxxwyyy— Wséy+ W,m:vvmyy“'z Waxym),xy+ WwyvVo,xx>:O

B T RTE T SO SOUR (3)
DYEW [ Foaat Focs W W= F o W+ Wt Foal W+ Wol | =0
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Fig.1 Cylindrical Shell under Uniaxial Compression.
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Upon substitution of W in Eq. (2) into Eqs. (3) letting W, be zero and through the Galerkin’s method,

the elasto-plastic buckling siress g;, can be obtained as follows : The elasto-plastic buckling stresses gy

and g,,, for the asymmetric mode 1, and the axi-symmetric mode 1w, can be independently obtained in the

similar form. Then, the interactive elasto-plastic buckling can occur at the near-coincident critical stress
and the buckling mode.

t : shell-thickness.

Gom™ [ 55 AN Gopgm FSGp reeerereesemnrmsstr it (4)
where
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in which, ¢, and R refer to the Euler stress and the generalized radius-thickness ratio for the compressed
cylinder, respectively. In order to consider the effect of residual stress on the elasto-plastic buckling
stress g.,, the Bleich’s factor 7 is taken conveniently herein to be equal to the tangent modulus k in Eq.
(1). Then, k¢ and f€ refer to the critical value of the factor f, evaluated at the elasto-plastic buckling
point, and that of the ratio of the elasto-plastic buckling stress to the Euler stress, respectively”. Taking
into account the interaction between asymmetric and axi-symmetric modes, the buckling mode can be
determined so that

(my_23s) By (k) (1"_75):2(_71_> ....... (5)
L k°tr E L L T
Then, since (< k°<1, #=1. In this paper, the least elasto-plastic buckling stress g, is taken to be g¢ps
for the axi-symmetric mode 15, of buckling, considering the interaction with the asymmetric mode w,. Itis
needless to say that in Eq. (4), oy is equal to g,,; when f=1, i.e., k=1 in the purely elastic range,
showing the complete compound bifurcation buckling.

(2) Elastic pseudo-potential energy

The elasto-plastic equilibrium paths for the imperfect cylinder and the postbuckling path for the perfect
cylinder can also be obtained substituting the elasto-plastic buckling modes of Eq. (2) into equations of
equilibrium, Egs. (3) :

%(,B—A)x—% Ay +2 asxy=0 e ST LIS TR FR N s (6-2)
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Fig.2 Several Circumferential Distributions of Longitudinal Residual Stress,
(a) Parabola  (b) Triangle (c¢) Trapezoid

(l*)k)y“kﬁz‘?‘asxz:() ............................................. B N (G'b)
where

g 3v3(1—v9) . Wy _ Wn W,

A:;’:; s Oer= ffcrz, Qg™ 39 /—kc E » sz ER S S o Yy 7 s and > t
in which, the corresponding buckling mode is given by Eq. (5). Therefore, an elastic pseudo-potential

energy A can be defined so that the equilibrium equations can be derived by the first differentiation of A
near the elastouplastic buckling point :

5 (l—A)yZ—A52y+asx2y ......................................................... (7)

The potential may be truncated up to the 3rd-order terms of the modes, leading to the incomplete parabolic
umbilic catastrophe, The elasto-plastic and the elastic bucklings correspond to the near-coincident and

A=-1 609 N 8A61x+1

completely simultaneous bucklings, respectively?,

3. DIRECT STRENGTH PREDICTION (Method T)

(1) U!tlmate strength

Described herein first is called Method ] based on a direct evaluation of the stabxlxty limit curve using
an elastic pesudo-potential energy near the elasto-plastic buckling point. The elasto-plastic stability limit
of compressed cylindrical shells is obtained directly from the singularity of the * Hess:an matrix of the

elastic pseudo-potential energy, Eq. (7).

Solving simultaneously for the nonlinear process of Egs. (6) and vanishing the Hessian, the
elasto-plastic ultimate strength formula A, can be obtained as the imperfection sensitivity surfaces at the
elasto-plastic buckling point, their typical configuration being illustrated by Fig.3 :

/lm) (,8" Am)]%:/\m(l-Am)& .......................................................... ( 8 )

‘ 1
16 [2 ashnert (1

sfs

Apparently, in the purely elastic range and in case ¢,=(, this strength is identically equal to the Koiter’s
imperfection sensitivity formula with only finite axi-symmetric mode of initial deflections for compressed
cylinders?

(2) Modification of imperfection

The concept of the equivalent initial imperfection is adopted herein following the cases of columns,
beams, plate panels and stiffened plates®®~? in the following form : ~ o

af:,u(R)&g (,’:1’2) ......... g (9)

where
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Fig.3 ‘Typical Imperfection Sensitivity Surfaces by Method 1.

WR=se (R, w1, and pr=2(1—)
In which, ¢¥, ¢ and R, denote the equivalent and the initial deflections, non-dimensionalized by the
shell-thickness, and the transient value of R from the elasto-plastic to purely elastic, respectively, and
the form of 4(R)is determined taking into account many test results and the ECCS strength design curves.
Finally, the imperfection sensitivity or the load-carrying capacity can be determined by Eq. (8) with the
equivalent imperfections of Eq. (9)"~*. ‘

4. UNIFIED STRENGTH PREDICTION (Method 1I)

(1) Elasto-plastic postbuckling paths and failure mechanisms
Since Method ] fails to take into account the effects of the failure mechanisms upon the ultimate

strength, another method, referred to as Method Il will be proposed herein to consider the effects. In
Method T[, the strength is obtained from the imperfection sensitivity near the equivalent bifurcation point.
The point is defined as one of the intersections of the elasto-plastic postbuckling paths as shown in Fig. 4,
with the plastic failure mechanism surfaces as shown in Figs.5. The original concept underlying this
method has been proposed by Watanabe and Isami and has been applied to columns, beams, unstiffened
plates and stiffened plates® . ;

Two types of failure mechanisms of compressed cylindrical shells are considered herein : one is a ring
type corresponding to the axi-symmetric mode, and another being a diamond type corresponding to the
asymmetric mode. Then, the relationship between the deflection and the average axial stress of the
cylinder for each failure mechanism can be obtained respectively as follows™ :

iU:Apl B AR LA (10)
G
where
=2 =2 and Ap:§ for diamond—typé or A,,:l for ring-type.
t Ty 4 4

(2) Ultimate strength :

Rigorously speaking, the ultimate strength should be obtained like in Method I, in terms of the
imperfection sensitivity surfaces against two independent modes of imperfections such as those illustrated
in Fig. 3. One of the most convenient and simplified concepts to obtain the imperfection sensitivity surfaces
would be to make use of the so-called one-dimensional imperfection sensitivity curve for each of two
independent initial modes of axi-symmetric and asymmetric deflection corresponding to each failure
mechanism while considering two independent modes of axi-symmetric and asymmetric deflections in the

postbuckling behavior simultaneously.
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Consequently, the ultimate strength can be formulated simply in the following form :

“5;,:21-1—&*{00‘-«-«\/2 a"fﬁ;ﬂi<]+~%— a*ﬂ;w) (I=1,2) evvrrememrecnseninnn, fervertestastgennnienans 11

near the equivalent bifurcation point ¢(i¥, ﬁy;", G*). Besides, 5* can be obtained from the intersection of
the postbuckling curves and the surface of the failure mechanism as a real root of the following polynomial
equation | : . : g

(9 Cf‘1)5*4+(5'c71 + 5'”2)5*3“'(18 CH" 5.M15.Cm)5.*2+9 Cf:() ........................................... (12.3)

for the diamond-type mechanism, A4,=3/4 in Eq. (10), or
G o g o N temeresens e tn s et ats et nnetaenonnal (12-h)

for the ring~typek mechanism, A,=1/4 in Eq. (10). In which,
_ - 3v3(0—y) Es ‘

Lok 32 E
Moreover, the factor o* is determined approximately from the slope of the failure mechanism curve at the
equivalent bifurcation point C ; the slope in the Wy -direction ({@,= i) for the diamond-type mechanism or
in the @,-direction (5, =¥ for the ring-type mechanism, respectively :

w__ 1 do -0 *%_ .................................... B O SRURO
o drdw | anam A1+ 6% (13)

5. | NUMERICAL ILLUSTRATIONS

Several numerical demonstrations are provided on the elasto-plastic strength of the compressed
cylindrical shells. The type of residual stress distribution is mainly assumed to be parabolic as shown in
Fig. 2 (a) with the maximum compressive residual stress g,=(. 4 oy, since the difference of the distribution
does not essentially affect the ultimate strength®™. Moreover, the magnitude of initial out-of-plane
deflection is also assumed to be [,/100 for both asymmetric and axi-symmetric modes, The value is
prescribed on the basis of the maximum limitation as specified by the ECCS-Recommendations, where J,
refers to the gauge length specified as [,=4.+/77 &, Therefore, the magnitudes of the non-dimensionalized
initial deflections can be obtained as follows :

L We _ We b [T (1 D remoioie e S
e=—p = 7 =0.044/5 (i=1,2) : - (14)

Fig. 6 shows the predicted ultimate strength curves, Eq. (11), for the axi-symmetric initial deflection of
& of Eq. (14), with only the ring-type failure mechanism being taken into account by Method [, together
with several experimental results®-” | results by Method ] and two design formulas of DASt and ECCS»

By

]
3

Fig.4 Postbuckling Paths cénsidering both (2) Ring-Type (b) Diamond-Type
_Asymmetric and AxifSymmetric Modes. Fig.5 Simplified Failure Mechanisms.
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plotted at the same time, :

“Also illustrated. in Fig. 7 are the comparison of the imperfection sensitivity curves by Method T,
Method ][ in which the ring-type failure mechanism is assumed, for generalized radius- thickness ratio of
R=0.516, 0.807, 1.291, and 1.504, respectively. The abscissa and the ordinate designate the initial
deflection of w,/(R#) multiplied by a constant, and the non-dimensionalized strength; respectively. The
specific value of the abscissa, (.04, corresponds to the one as specified by the ECCS recommendations,

From Figs.6 and 7, it is found that, regardless of the values of R. the results by Method [| are
generally more conservative than those by Method ] and are in good correlation with the DASt and the
ECCS curves. The imperfectibn sensitivity in the rarnge of small imperfections is noted to be quite
significant when R is close to the transient value, R,. The difference between the results by two methods
seems to diminish for larger generalized-thickness ratios. ‘

On the other hand Fig. 8 shows the ultimate strength curves for cylinders; Eq. (11) for asymmetrlc
initial deflection of ¢, of Eq. (14), with only the diamond-type failure mechanism being taken into account
by Method [I, together with several experimenktal results®” and two design formulas of DASt and
ECCS®. plotted simultaneously. In the range of R>(.58, the results by Method []: assuming the
diamond-type failure mechanism cease to exist since the elasto-plastic postbuckling path as shown in Fig, 4
does not intersect with the failure mechanism surface of Fig.5 any more. However, should a compound
failure mechanism be considered between the ring- and diamond-type failure mechanisms, the continuous
strength curves could be obtained for R >(0.58 as well. Therefore, In the range of R>0.58, the ultimate
strength may have to be predicted somehow by using some transient curve connecting the point of the
strength curve I at R=0. 58 with certain point of the strength curve | at the intermediate value of R near
R=1.

Ilustrated in Fig. 9 are the comparison of the imperfection sensitivity curves by Methods [ and [[ for
the generalized radius-thickness ratio of R=0.516, 0.807, 1.291, and 1.504, similarly to Fig.7. It is
also shown that the results by Method ]I assuming the diamond-type failure mechanism is more
conservative than those by Method T for R<0. 58, similarly to the case of the ring-type failure mechanism
as shown in Fig. 7. :

Finally, from the comparison of Figs,7 and 9, the strength prediction of the compressed cylindrical
shells by Method [I assuming the ring-type failure mechanism will be the most conservative for wide range
of generalized radius-thickness ratios, if the magnitude of the initial deflection is within the values
prescribed by the ECCS-Recommendations. Thus, this prediction may serve as a simple and convenient
basic strength formula of compressed cylindrical shells.

6. CONCLUSIONS AND ACKNOWLEDGEMENT

Two approaches to the ultimate strength of compressed ¢ylindrical shells are proposed. The main
conclusions are summarized as follows @ ‘ ‘

(1) Two different procedures for the strength of compressed cylinerical shells are presented !
Method T being a direct approach making use of the slope of the pathological curve representmg the
stability limit for the elasto-plastic behaviors near the elasto-plastic buckling point ; and Method [[ beinga
unified approach making use of the slope of the plastic unloading curve associated with the failure
mechanism near the equivalent bifurcation point.

(2) The initial deflection is conveniently modified and replaced by the equivalent imperfection
proposed herein to be in good correlation with several test data and design curves in DASt and ECCS.

(3) The elasto-plastic buckling may occur simultaneously in the axi-symmetric buckling and in the
square asymmetric mode, In the elastic range, the present formula through Method I identically gives the
compléte simultaneous bucklings, and the imperfection sensitivity for the axi-symmetric mode is just equal
to the Koiter’s formula.
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(4) From the comparison of several demonstrated results, the strength prediction of the compressed
cylindrical shells by Method [j assummg the ring-type failure mechanism is the most conservative for wide
range of generalized radius-thickness ratios, if the magnitude of the initial deflection is within the values

as limited by the ECCS-Recommendations. Thus, this prediction may serve as a simple and convenient

basic strength formula for compressed cylindrical shells.
The authors wish to express appreciation to President Yoshiji Niwa of Fukui Technical College and
Professor Emeritus of Kyoto University for his support and valuable criticisms.
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