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PRINCIPLE AND NUMERICAL CHECK OF A STIFFNESS
EQUATION FOR PLANE FRAMES

By Tetsuo I WAKUMA*, Akio HASEGA WA** =~ Fumio NISHINO***
‘ and Shigeru KURANISHI**** ‘

A stiffess equation of plane frames is formulated in finite displacements by the total
" Lagrangian approach. The formulation is based on the physical interpretation of the polar
decomposition theorem and does not use any variational principle. The corresponding
differential equations are also given to show which theoretical solutions the discretized
ones converge to. For the Bernoulli-Euler beam, the postbuckling behavior can be
analysed accurately without the geometric stiffness matrix which helps to accelerate the
convergence of solutions, On the other hand, the Timoshenko beam element must have the
geometric stiffness in order to obtain the correct solutions, Finally the typical stability
problems which have the bifurcation points in their equilibrium paths are solved to
demonstrate the ability of the stiffness equation.
Keywords : total Lagrangion, FEM, Timoshenko beam, finite displacement

1. INTRODUCTION

In the formulation of stiffness equations in finite displacements, the best and well-established method is
“to decompose total deformation into finite rotation and infinitesimal deformation, as long as the strains are
very small. There are two approaches, one of which is the incremental scheme?~?, In this approach; the
small incremental deformation is superposed on the deformation in the nearest current configuration to
derive the tangent stiffness equation. The obtained tangent stiffness equation is nonlinear with respect to
the incremental quantities such as incremental displacements.

Another approach is the total Lagrangian scheme?~® which separates the total deformation into its
representative rotation and the real deformation component. In plane problems, the finite rotation can be
easily handled, while there may exist some difficulty in dealing with the finite rotation in three dimen-
sions?. Although the stiffness equation has not been explicitly derived in Ref.5), the accuracy and
convergence of this method to describe the governing differential equation of a beam have been already
checked. InRef.6), the beam-column equation is analytically solved to derive the tangent stiffness matrix,
but the conventional stiffness matrices for a beam are not used explicitly. The stiffness equation is
nonlinear with respect to the total displacements. Hence becomes necessary to use some iterative scheme to
solve it.

We here present the principle on which the derivation of the stiffness equation is based in the total
Lagrangian approach, and show the explicit forms of the stiffness equation and its tangent stiffness matrix
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which are expressed by the commonly used stiffness matrices for a beam in either infinitesimal or
linearized finite (relatively small) displacement theory, The convergence of discretized solutions to the
elliptic-integral solutions of an elastica and its speed are examined in conjunction with the geometric
stiffness matrix for the Bernoulli-Euler beam. The discretized solutions of the Timoshenko beam elements
are compared with the numerical-integral solutions of various versions of the governing differential
equations, in order to examine their mutual correspondence and also show the important role which the
geometric stiffness matrix plays. To obtain the corresponding differential equation is important to judge
whether the discretized equation represents a correct physical model or not, Finally, as illustrative
examples, some bifurcation problems are analysed without the direct use of the eigenvalue analysis,

2. PRINCIPLE

In the total Lagrangian approach, the formulatmn of the stiffness equatxon may be based on the polar
decomposition theorem® which can be expressed in the matrix form by

F= [axt/aX] RU, B R e (1)
where F is the deformatlon—gradlent tensor ; x; is the i-th component of the current position vector of a
particle located initially at X, the j-th component of which is denoted by X;; U is the right stretch tensor
which represents the “real” deformation ; R is the orthogonal rotation tensor. Namely this theorem simply
states that the total deformation is the superposition of the rotation R and the real deformation [J. While,
in the infinitesimal displacement theory, both F itself and [J are approximately equal to the identity
matrix, only {/ is approximately the identity matrix in finite dxsplacements provided that the strain
(“real” deformation) is negligibly small. :

Utilizing this theorem, we can construct the local stiffness equation symbolically as follows. Consider a
small element including one point X, as a reference point. Then the deformation gradient, F', at an
arbitrary point in the vicinity of X, can be approximated by the relative displacements referred to the
displacements at X,. Furthermore, if the rotation near the reference point X, is also represented by the
rotation at X, Eq. (1) results in

[Relative Displacements near X,] = R(X;) [Real Deformation near Xo] e (2)
As long as the strains are small, the constitutive relation between the resistance forces of the body and the
deformation can be assumed to be linear. Therefore : :

 [Resistance Forces near X,] =K [Real Deformation near X;] -+-----rer- e (3)
where K is the stiffness coefficient in the infinitesimal or linearized finite dlsplacement theory. Since the
constitutive relation, Eq. (3), must hold independently of the finite rotation, R(X,), the resistance
forces in Eq. (3) are related to the stress resultants defined in the spacially fixed coordinate system as

[Stress Resu]tants] =R(X,) [Resistance Forces} ............................................................ (4 )
Eliminating the resistance forces and real deformation in Eq. (2), (3) and (4), and using the
orthogonality of R, we can express the stiffness equation near X, as ;

{Stress Resultants] =R(X, KR( X' {Relatlve Dlsplacements} ........................................... ( &) )
In the next section, this symbolic expression of the stiffness relation can be reduced to the element
stiffness equation of a structure.

3. STIFFNESS EQUATION AND TANGENT STIFFNESS

The principle presented above can be easily applied to the finite displacement theory of plane frames,
Consider an element of length [ in Fig, 1. If the finite rotation of this element is represented by the rotation
at point 1, the infinitesimal or linearized finite displacement theory applies to the beam in the £&-p
coordinate system. Therefore Eq. (3) holds in this £~7 system, Then, according to the relatwn in Eq.

(5), the stiffness equation for one element can be glven as
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fo= T(Wks(ds, d) TV ldo—di— DA} 0 x
o= TOkdds, )T ds— =D} |77 (6) ! 2 nital
where f, and d; ({=1, 2) are the nodal force and displace- ] configuration

_ment vectors at the j-th node defined by = v, v
f=[Ful*/EI FuL*/El C.L/EIT ; 5 Uyt + {(1-cosh)

'—[uL/L vL/L A]T
where Fy;, F,; and C;are the x- and y-components of nod-

vy =Yy = §Sink,

al force and the applied moment about z-axis at the j-th

node, and [, denotes the representative length of the struc- AN

ture which is introduced for non-dimensionalization. T(A,) T Current configuration
expresses the rotation of this element and is identical with y R
X . 3 ¢ . Fig.1 Relative Displacement Components.
the coordinate transformation matrix between the x~y and :
&-7 coordinate systems; i. e,
cos A —sini 0 .
T(/\l)E sin A COS Ay 0 | -rerrmeer s (8)
0 0 1 ‘
D()\,) is the displacement of node 2 as a rigid body due to the rotation of the element;i. e;
D(/\JE%(COS Al—l)/é' (Sin )&1)/{' O}T...; ....................................................................... (9)
where ¢ is the ratio of the representative length, L, to the element length defined by
EEE L/ L veeeeereees et (10)

and therefore (d,—d,—D(A)) is the relative displacement vector. Finally k, and k, are given by?
kki(dly d2)= kiL+z0(d19 d?)"iNL (i::l, 2)

= /6 0o 0 0 0 0

ko=| 0 —12874  68/A |, kw=|0 —64¢/GA) 1/(10 43)
) —60/ 4 2—128)C/A ) 0 —1/0104Y)  (—1/30—4)/(2AY)
B0 0o 0 0 0

ky= 128/40, =684 |, k= 6 A:¢/(5 AY) —1/(10 43)
| Sym. (4+12 $)¢/ Ao Sym. 2/15+ A)/(£AY)

where k,, and k,y, are the linear and nonlinear parts of the stiffness matrix, and
B=VI/A/L, $=af’C, «=E/GK, A=1+12¢, A=1+104;, A,=2¢+12¢
zldy, d)=(Axial Force)L*/EI=[{(u,—u,)/L—(cos A—1)/¢lcos A poeeee (12)
+(v,—v)/L—(sin A /C%Sln /\Jg/ﬂ‘z ; : i
and K is the shear coefficient®. Here k;,, can be called the geometric stiffness matrix of the Timoshenko
beam, because it corresponds to the conventional geometric stiffness when shear deformation is
neglected ;i. e, a=0. : ‘

We employ the Newton-Raphson method to solve the nonlinear discretized equilibrium equation, Eq.
(6). Since Eq. (6) is a highly nonlinear equation in terms of the nodal displacements, and is not based on
any variational principle, the tangent stiffness matrix becomes very complicated and nonsymmetric. After
: expanding the right-hand side of Eq. (6) by the Taylor series with respect to the incremental
displacements, taking only the first order terms of the small increments of nodal displacements, we can
obtain the tangent stiffness equation as

AF=Fedy, o) Ad -veeeseessmsrsses it B TR R SO (13)
where A signifies the small increments, and ‘ :
AFSIAFT AFIT,  AdSIAT AdI]T+eesreseressessemismn i (14)
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The 6X6 matrix, k, is the tangent stiffness matrix expressed as
__iTleT (dz“dlfD)} a/adx} {Iln H, H,+S, H. H; 1115]
=

Tk, T" (d,—d,—D) 2/0d, H,, H, H23+Sz Hu Hys Hy
P 3
+{P }[ COSA —SinA g COSA SIN A 0] oo (15)
2
where
H=[H, H, H: H, H; H=Tk, T'C,  S;=[Qk,T™+ Tk;Q"]d, d.,— D}
P={TkT d,—d,— }//92 (z=1,2) ,
-1 0 (sind)Z 100 ‘—sin/\l —cosk 01 | 16)
C=| 0 —1 —(cosA)V¢ 01 0|, @=| cosAh —siniA 0
0 0 -1 0 0 1 0 0 0

9=—{u;—w)/L—(cos A—1)/¢sin AlfH(’Uz‘" w)/L—(sin A)/¢lcos A

Employing the Newton-Raphson method to solve Eq. (6) with Eq. (13), we can write the recursive
equation to obtain the (n-+1)th solution as ; k
d, L ] A=TOP) kd™) TOO) ldP—dP=DOPY 17)
d2 dz fz___ (A(n}) (d(ﬂ)) T(A(TL))T id‘{n} dm) D( )}
for the displacements at the g-th step known. In the calculations below, the iteration is stopped when
Id(ﬂ+1 d(ﬂ ‘ /I d(ﬂ'kl)' <10‘

It should be noted, however, that all quantities above are defined in the local element coordinate system.

n+1)

In order to construct the global tangent stiffness equation of -the plane frame, the commonly used
manipulation of the coordinate transformation is needed as is briefly stated below. ‘Suppose that one
member is initially inclined by the angle § from the spacial coordinate system in the same direction of the
definition of X in Fig. 1. If the nodal quantities are also defined in the spacially fixed coordinate system,
the tangent stiffness equation (13), for example, must be rewritten as
AF =Ty T(B) A+ vrvveremeemiiineiieesiiiiiinaeeenes B RSP PRPR (18)

in the spacial reference coordinate system, in which T is defined in Eq. (8). The evaluation of k,
however, must be carried out in the local element coordinate system.

4. ELASTICA

First consider the beam without shear deformation, the Bernoulli-Euler beam, to check the éccuracy
and convergence of the solutions of Eq. (6). As is clear from Eq. (15), the tangent stiffness matrix is
non-symmetric. In order to examine the effect of non-symmetry, consider the Euler buckling of a straight
column subjected to the compressive force P. The fundamental solution from Eq. (6) is that the column
remains straight;i. e, :

( Uy u,)/l—-P/EA .................................................................................................... (19)
Substitution of Eq. (19) into the tangent stiffness equation (13) yields
Af=[kgg+kc+O(P/EA)]Ad ............. ey e e e e et P S (20)

from which the buckling load can be obtained as its eigenvalue and where k sz 1s the linear stiffness matrix of
the Bernoulli-Euler beam, and k, the geometric stiffness. ky; and k, correspond to k, and ky; in Eq. (11)
with no shear ;i. e. g=(), respectively.” Since P/EA is the axial strain of a column, the third term in the
“blacket of Eq. (20) can be negligible compared with the other two terms; ‘as long as the small strain
assumption holds. Therefore the tangent stiffness matrix is almost symmetric and has the ordinary form of
the sum of linear and geometric stiffness matrices. Judging from this result, we can expect that the
non-symmetry effect is as the same order as the strain components.
The numerical solutions of the discretized equation are then examined by the simple problem of an
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elastica, the analytic solutions of which are expressed by e ar w0} P2
‘the elliptic integrals? 12 The absolute errors;of‘ the 2 ~\Ei~'3'° < 10'2k . & g1 =37
lateral displacement are shown for a certain number of = N ke % N ke
elements in Fig.2. In the numerical calculation, - the 5107 \ h .o g '\. ~
slenderness ratio is set 10°, because the elastica is the ‘2 o (kBE’ke)\- :10"' j(kss'ke)\» ;
inextensible rod and thus can be approximated by the % ( Q\\\ § : .
beam with very large slenderness ratio. When the' g0° Ji__‘-‘ - g0t Ei:%._P
geometric stiffness matrix is included, the solutions are 10-8ﬁ~v_3§..m 102__;_.{3,15?_%
closer to the analytic ones than those without it for a . . = Number of Elements .- Number of Elements-
certain number of elements. Furthermore, the converg- Fig.2 Convergerice of Discretized Solutions for
ence is much faster when the geometric stiffness. is . Elastica.

included, but the results without it also converge to the
same exact solutions.

5. CORRESPONDING DIFFERENTIAL EQUATION AND GEOMETRIC STIFFNESS
MATRIX

Since the Bernoulli-Euler beam does not always need the geometric stiffness matfix, we here derive the
differential equation which corresponds to the discretized equation (6) without the geometric stiffness,
k. To this end, the technique to check the consistency of the finite difference equations® is used. The
same technique has been used to show the validity of the analysis of curved beams by the assemblage of
straight beam elements', Let 4, v and A denote the translational and rotational displacement components;
and let N, V and M denote the axial and shear resultant forces and the bending moment. Quite
cumbersome manipulation on Eq. (6) leads to-the differential equations as

IN cos A—V sin =0, {N sin A+V cos ¥'=0, M'+V=0 :

w=(1+N/EA)cos A—(V/GKA)sin i—1 o R T R P PO S T R 21)

v'=(1+N/EA)sin >+(V/GKA)cos A, X=M/EI :
where a prime stands for the differentiation with respect to x. In the Appendix, the various approximated
theories of the Timoshenko beam obtained in Ref. 10) are enumerated. The equations above are identical
with the “small strain” approximation of the Ist order theory :(C) in the Appendix, Figs.3 and4 show the
convergence of the discretized solutions with shear effect for the same problems examined for the
Bernoulli-Euler beam in the preceding section, The dashed lines indicate the change of such solutions
without the geometric stiffness matrix. These lines seem to converge to the level shown by the horizontal
lines with a letter “C” at the right hand sides of figures, This horizontal lines with “C” show the
numerical-integral solutions of the differential equation (21) by a shooting method®, All other horizontal
lines indicate the similar solutions of the differential equations in the Appendix specified by the affixed
letters from “A” to “F”. ‘
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TN B=01 8=005
A 01 0785
\ 2 (ke k) ::g =//g
oy N\ Leso 06 _c : ; —2 ;E;Q‘,_P =0
\\\ F — —C v /'—‘ g
L _c —A 0.80 ky 0.790 yd
‘ —F -t Ir’ a=30 /o [a=30
0.66 (k) :g 0.615 . ,’ 8=01 : /I B=0.05
— S / 7
4 % 64 256 4 16 64 256 0'794 16 64 256 0'78519 6 64 26
Number of Elements Number of Elements Number of Elements Number of Elements
Fig.3 Convergence of Discretized Solutions of Fig.4 Convergence of Discretized Solutions of

Timoshenko Beam (Shear). : : - Timoshenko Beam (Compression).
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In the same figures, the change of the discretized solutions with the geometric stiffness matrix is also
shown by the solid lines, Unlike the Bernoulli-Euler beam, the solutions with or without the geometric
stiffness converge to the different answers. The solutions to which the solid lines seem to converge are the
ones by the theory (E), the “small extension” approximation of the 2nd order theory. Although the
differential equation which corresponds to the stiffness equation with the geometric stiffness is not derived
because of its cumbersome procedure, these numerical check of the convergence may support that the
discretized solutions are the approximated ones of theory (E). :

In the Appendix, the buckling formulae of a column are also summarized for each one of theories. Since
the buckling load obtained from the theory (C) is the same as the Euler buckling load, the theory (C) does
not completely take the effect of shear deformation into account. On the other hand, the theory (E)
predicts the same critical load as that obtained by Engesser’s formula. Judging from the difference of these

- predicted buckling loads by both theories, we must conclude that the geometric stiffness matrix cannot be
neglected in the calculation of the Timoshenko beam. If the shear deformation is neglected, these theories
(C) and (E) are identical. Therefore the geometric stiffness matrix is not always necessary for the
Bernoulli-Euler beam. k ‘ ‘ k

6. STABILITY OF SIMPLE STRUCTURES

We here show the results of the typical stability problems as illustrative examples. Since the available
solutions to be compared are mainly for the slender beams, the shear effect is neglected in the results of
this section. Fig, 5 shows the load-displacement relation of a non-symmetric eircular deep arch®, which
has been also calculated in Ref. 2) and recently in Ref. 17). In the process of the Newton-Raphson method,
an elimination method is used to solve the simultaneous equation, After the forward elimination, if there
exists at least one negative element among the diagonalelements of the tangent stiffness matrix, one of the
eigenvalues becomes negative, and thus the tangent stiffness is no longer positive definite. The number of
these negative diagonal elements of the matrix is the same as that of the negative eigenvalues, Therefore,
chasing the change of the number of these negative celements, we can find the bifurcation points along that
equilibrium path without consuming time to carry out the eigenvalue analysis,

Although the bifurcation points are not searched systematically in these numerical examples, numbers
‘attached in the following figures indicate the number of these negative elements. As has been pointed out in
Ref. 17), no bifurcation point can be found in the equilibrium path shown in this figure. The equilibrium
paths for more slender arches, for example, with R/v/T/4 larger than 700, are the same as that in Fig.5,
but the number of negative eigenvalues can not be determined stably due to the numerical errors, because
we did not do -any preprocessing of the tangent stiffness matrix, such as normalization,

~On the other hand, the symmetric circular arch in Fig. 6 is relatively deep so that the non-symmetric

10
QR .
Er NESS
5 Hor: : 48 elements
orizontal 16 straight segments
) RITIA =100
Vertical :
0 05 1.0 15
: (Displacement at Crown) /R

Fig.5 Large Deformation of a Circular Hinged-Clamped Arch.
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LI/IIA =100 ¢ Fig. 7 N0n~Symmefric Bifurcation of a Three-Hihgéd?
Fig.6 Non-Symmetric Bifurcation of a Shallow Circular “Arch-like Frame; ¢ is the vertical displacement
Arch; & is the vertical displacement of crown. e of ‘the loaded peint.

buckling oceurs at point A before the maximum load is - : ‘
achieved at B® . The fundamental path from C to I may be PZL(Z) ~ ~ lp i :
the curved one with the symmetric deformation, The steep- El B o
er path from C to D corresponds to the non-symmetric de- ) A N nt ‘ ‘
formation with some rotation at the crown. There exists 0 ‘ ;
short path with three negative elements between bifurcation 01 0.2

M 8/L

C

point and lower extreme point near C. The structure is
stable along the paths before 4 and after F'.
Fig.7 shows the behavior of a “pin-jointed frame” | the

Fig.8 Non-Symmetric Bifurcation of a
profile of which is similar to the arch in Fig. 6. The hinge Two-Hinged Frame, -

at the loaded point is inserted by the technique described in
Ref. 19). Since the component members are relatively slender, there exists one bifurcation point before
this structure shows the snap-through phenomenon at B, although a “truss” with the same geometry
does not show such a bifurcation because of its rather small rise H without bending freedom® . At the
bifurcation point, the axial forces of both members reach the level of the Euler buckling load of a hing-
ed-hinged column. The configuration along this bifurcated path: is sensitive to the trial solutions
assumed to search the possible equilibrium state after the bifurcation. If both members are currently
bended either symmetrically or antisymmetrically, the bifurcated configurations are also either symmet-
ric or antisymmetric with one negative diagonal element in the tangent stiffness matrix. If one of the
members is kept straight and another is bended, the configuration is the same as this initial trial solu-
tion, and one of the members remains straight with two negative elements in the stiffness. However,
independently of these assumed trial solutions, the bifurcated paths are identical on this figure. As the
member becomes stocky, this bifurcation point A relatively approaches toward the peak point B, be-
cause the Euler buckling load is also becoming larger. For such stocky ‘members, for example,
L/v/I7A smaller than 60, this structure can be really called a truss;i.e. the Euler buckling load be-
comes larger than the snap-through load. Hence the bifurcation point eventually vanishes, and only the
snap-through instability occurs.

Finally if the members in Fig.7 are rigidly connected at the crest, the load-deflection curve becomes
different as is in Fig. 8. Before the maximum point is achieved, the bifurcation also occurs, The related
study on number of negative elements has been reported™ ™.
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7. CONCLUDING REMARKS

The stiffness equation, not the “tangent” stiffness, for plane frames is derived by the physical
interpretation of the polar decomposition theorem. The basic concept lies in the same consideration as the
approximation of curved beams by the assemblage of straight beams, because to analyze the equilibrium in
the deformed configuration is substantially the problem of the curved beam. A method to check the
consistency of finite difference _equation has been employed to obtain the corresponding differential
equation to the stiffness equation without the geometric stiffness. The other differential equations are also
enumerated, and the convergence of the solutions of discretized equation with the geometric stiffness to
those of the differential equations is demonstrated numerically. Although the geometric stiffness matrix is
not always necessary to solve the Bernoulli-Euler beam, it can never be neglected to solve the Timoshenko
beam which corresponds to the differential equation for the “small extension” approximation of the “Ind”
order theory, ‘

It must be noted that the solution of this stiffness equation does not satisfy the real equilibrium condition
even when the infinite number of elements are taken., However the difference between the approximate
solutions and the real equilibrium solutions is the same order as strains, This difference stems from the
approximation of the moment equilibrium with shear force as shown in Appendix, The nonhnearlty in this
moment equilibrium can never be taken into account by the present formulation, as long as the linearized
conventional stiffness matrix is used. The solutions of typical stability problems show the ability of this
discretized equation. The bifurcation phenomena and the snap-through-type buckling can be searched by
chasing the number of the negative diagonal elements even in the non-symmetric tangent stiffness matrix.

A computer program used here is developed for a micro- -computer. The arc length method® is employed
to estimate the post-buckling behavior properly, and the skyline technique® is adopted to use memory
effectively.

APPENDIX. TIMOSHENKO BEAM THEORIES

We here simply enumeraie two basic theories and their approximations of the Timoshenko beam
formulated in Ref. 10). Since the boundary conditions for all theories below are completely the same as
those in Ref. 10), only the differential equations are shown, The following nine theories are also
summarized in Table 1. In this table, “No” in the last item, “Strict Equilibrium”, indicates that the
theory is not a physical one but an approxxmated one, and that the equilibrium is not rigorously satisfied
because of such approximations, ;

(A) The first order theory, extensible

Tabie 1 Comparison of Timoshenko Beam Theories,

Constitutive = EA € : M = EI K

Equations V=0AY f V=(GA+N)vY

Shear Effect included neglected included

Theory A B ¢ G 1 ] 5| E F

Buckling Modified + Modified | Euler Euler £ Euler New|Engesser |Euler

Formula |Shortening Shortening ‘

e S O L -
Stiffness : B g L

Strigt Yes No Yes No {Yes No
Equilibrium :

(*) Inextensible beam (elastica) can be analyzed with very large slenderness ratio.
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_ The first order theory assumes the constltutlve relations by - ; ;

N=FEAe, M=EIx, Vi GAY v e R i i R o (A- 1)
where ¢ is the extension of a beam;y the curvature; y the shear deformation, Then the governing
differential equations are written as follows ; S

IN cos A—V sin A+ p=0, iNsm/\+Vcosz\Z+q 0 ‘ o :

M'+V(1+N/EA)—-N(V/GA)= =({1+N/EA)cos A—V/GA smx\ 1o (A2)

v'=(1+N/EA)sin A+ V/GA cos/\ X=M/EI ‘ ~
where p and ¢ are the x- and y-components of the distributed load per unit axial length. The buckling
formula for a hinged-hinged column predxcted by this theory is the modified formula with the shortemng
effect, and is expressed as : : e SRR \ .
¢=P.,L}/EI[= 1“\/m 2/9 @)} e s L L e R (A-3)

- (B)  Small extension approximation of the first order theory : :

If the axial extension effect in the equilibrium of moment is neglected as a small quantlty ‘the’ thlrd
equation of Eq. (A 2) must be replaced by

M+V— NV/GA) R T T T S UL PO U R S P Sl ln (A 4)
The buckling formula is then identical with the modified formula as g

G=WTHA T2BE —1}/(2 @BY) -+ evverrereasriein et e P S (A-5)

(C) Small strain approximation of the first order theory R

If the small strain applies in this moment equilibrium;, Eq. (A-4) must be further approximated as

A W mm e e e e e e (A-6)
and therefore Eq. (21) is obtained. The bucklng load is finally identical with the Euler load which does not
include any effect of shear deformatlon ie,

P P e e e e (A-7)
Note, however, that the shear effect is still taken into account in the fourth and fifth equations of the
governing equations, which are the kinematic relations.

(D) The Second order theory, extensible

The second order theory is based on a different constitutive relation for shear force, which is expresséd
by . :

V= (GA+N) .................. et e i e i i (A-8)
Other two relations in Eq. (A-1) hold, Then the governing equatlons different from Eq. (A-2) are the
third, fourth and fifth equations expressed by

M+ V(Q+N/EA—N(V/GA)/QA+N/GA)= o

wW'=01+N/EA)cos A= V/GAsin \/U+N/GA)—1 } e PP ST (A-9)

=(1+N/EA)sin A+ V/GAcos A/1+N/GA) |
where the underlined terms do not appear in the first order theory. The buckling load is expresséd by the
following implicit equation : k

=g /(1= a2 ) — Bt e e L e e (A-10)

(E) Small extension approximation of the second order theory : ‘

The similar approximation in (B) is applied to obtain the moment equilibrium as

M+ V—=N(V/GA)/A+N/GA)=0 --rineenies F N - (A-1D)
This approximated theory predicts the same buckling load as Engesser's formula;i.e.
¢=l2/(l+aﬂ2ﬂz) ...................... (A'IZ)

(F) Small strain approximation of the second order theory e ‘
Eq. (A-11) is further approximated by the small strain assumption to get the same equation as Eq. (A-6) .
The obtained buckling formula is again the same as the Eular load, Eq. (A-7).

(G) Bernoulli-Euler beam, extensible

If the shear effect is neglected, both the first and second theories result in the same theory, the

8ls
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exte‘nksible Bernoulli-Euler beam theory. The governing equations are the same as Eq. (A-2) except the
following three equations : k
M+ VQA+N/EA)=0, uw'=0+N/EA)cos A—1, v'=1+N/EA)sin A e (A-13)

The buckling formula mcludes the shortening effect pI‘lOI‘ to the buckling, and is expressed as

¢=11—+/1—4 228}/ 2[)) ....................... T T S D NN SO TN SiNesan (A-14)

(H) = Small extension (strain) approximation of the Bernoulh—Euler beam

If the extension is neglected in the equlibrium equation of moment as a small quantity, it becomes the
same as Eq. (A:6), and the buckling load is given by the Euler load, ‘Eq. (A-7).

(1) Inextensible Bernoulli-Euler beam. {(elastica) ‘

If the beam is so slender that the extension is negligibly small compared with the bending strain, Eq.
(A-13) must be replaced by the following equations, s SN

M+ V=0, w'=cos A—1, v =sin T Vit riiiesiis R R eharenisassenes e iiaiies weseaad (A.15)
The buckling load is identical with the Euler load. . k ‘
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