Structural Eng. / Earthquake Eng. Vol.4. No.1, 51s-59s. April 1987
Japan Society of Civil Engineers (Proc.. of JSCE No. 380,/ I-7)

BENDING ANALYSIS OF RECTANGULAR PLATE ON
NON-UNIFORM ELASTIC FOUNDATIONS

By Hiroshi MATSUDA* and Takeshi SAKIYAMA**

In this paper, an approximate method for analyzing the bending problems of rectangular
Mindlin plates on elastic foundations is proposed. The solutions of the partial differential
equations of the bending are obtained in the discrete form, by translating thé differential
equations into integral equations and applying numerical integration. .

In order to confirm the convergency and accuracy of numerical solutions, comparisons ‘
with numerical solutions obtained by other investigators are made. As the application, the
bending behavior of rectangular plate on nonlinear elastic foundations and on non-uniform
elastic foundations are calculated:

Keywords : rectangular plate, nonlinear elastic Sfoundations, non-uniform elastic found-

ations

1. INTRODUCTION

The problems on the bending of rectangular plate on elastic foundations have been analyzed by many
investigators, by using numerical methods such as FEM, FDM and series solutions.

Nohmachi” expanded “Finite Fourier Transformation” to biharmonic differential equation by means of
Green'’s formula, and gave the solutions for the bending of the rectangular plate on elastic foundations with
four free edges. Kurata, Takahashi and Tanihira® obtained the numerical solutions of rectangular plate
with all free boundaries on nonlinear elastic foundations, using approximate method applying the finite
difference method, Kitamura and Sakurai® analyzed rectangular plates with four edges free on elastic
foundations, ‘using the method of eigenfunction expansion, k ‘

Cheung and Zienkiewicz? first analyzed the plate on elastic foundations, applying finité element method,
Henry? analyzed the large deflection problems of the rectangular plate on elastic foundations by FEM,
Svec? analyzed the thick plate on elastic foundations by FEM. ;

Sonoda and Kobayashi”? analyzed the quasistatic bending of rectangular plates resting on linear
viscoelastic foundations obeying Winkler’s hypothesis, and obtained double series solutions which are
derived by means of eigenfunction expansions: ‘

There are many methods to analyze the bending of rectangular plate on elastic foundations, However, it
has been hardly carried out to study the bending of rectangular plates with variable thickness on
non-uniform elastic foundations. And since the fundamental differential equations are formed by the
simultaneous partial differential equations with variable coefficients which are composed of the flexural
rigidity of the plate D(x, y), the thickness of the plate A(x, y) and foundation modulus klx, y), it is
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. therefore very difficult to find the exact solution,

In this paper, an approximate method for analyzing the bending problems of rectangular Mindlin plates
with variable thickness resting on elastic foundations which foundation moduli are locally non-uniform has
been proposed. By translating the differential equations into integral equations and applying numerical
integration, the solutions of the differential equations are obtained in the discrete form, and give the
transverse shear forces, the twisting moments, the bending moments, the rotations and the deflections at
~ the all discrete points which are intersections of the vertical and herizontal equally dividing lines on the
plate. k

In order to confirm the convergency and accuracy of the numerical solutions obtained by the present
method, comparisons with the exact solutions obtained by other investigators are made. As the application
of the present method, the bending behavior of the rectangular plate on nonlinear elastic foundations and on
non-uniform elastxc foundations are calculated. k

Furthermore, it is possible to analyze the rectangular plate with arbltrary boundary conditions, load
conditions and plate thickness resting on non-uniform elastic foundations, by using the present method.

2. FUNDAMENTAL DIFFERENTIAL EQUATIONS FOR ELASTIC FOUNDATIONS
PROBLEM

The fundamental differential equations for the bending of e
rectangular plate with variable thickness on elastic founda- Py
tions as shown in Fig. 1 are the simultaneous partial differen- “I"

tial equations (1-a) ~ (1-h) as follows. These equations are

|
based on Mindlin’s theory which include the effect of shear é $ § § $ §
deformation, Here, the shear coefficient x is taken equal to ) - .
5/6 Fig.1 Rectangular plate on elastic foundations,
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Here, Q,, Q are the shearing forces, My, is the torsional moment, M, and M, are the bending moments,

6, and g, are the slopes, w is the deflection, g=g(x, ) is the lateral load intensity, E is the modulus of

elasticity, G is the shear modulus of elasticity, v is Poisson’s ratio, h=Ah(x, y) is the plate thickness, D

=ER/12(1— 1Y) 1is the flexural rigidity of the plate, k,=Fk,(x, y)is the elastic modulus of the foundation,
By using the non-dimensional expression, Q. Qx, My, My, M, 6, 6 and o are as follows :

(Ko, X) = (@0 Qo) (X, X Xo)= Do M My M, (X, X0=(01, 6, Xe=rg
the differential equations (1-a)~ (1-h) are rewritten as follows;

: %')g(‘—l'*“” aa)§2=*6+Equ ............. (2.0) E?;é g aaX S . CRTTIITI T (2-€)
%)2:3 4.#%‘%:#)(2 ....................... 2-b) k ‘ %’g +u aX‘fqu3 ........................ (2-9)
aa)é* +u%”uX1 ....................... (2+¢) aaXS+X7 )5, CRTITIITEITTIOPOPOOPPPPOY (2-g)
88)? +Vﬁ %"f}’ IX, crereeeenmmmenneonies 2-d) ‘ aa§8+’“‘X° UL X oot (2-h)
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Here x=an, y=>bf, a, b : side length of rectanglﬂ‘ar plate, h, is the standard plate thickness, ¢,
is the standard load intensity, u=b/a, ky is the standard elastic modulus of the foundatlon - D, is the
standard flexural rigidity of the plate, Dy=FEh}/12(1—?)

e 4 _ 0’ Ry _ kwa'
=Ky QO’~K1MD0(1"'V2)’ k”"‘Kz Fo Ko Doll—vY)

ho\3 ho 1 ho\2 he
—— 2 ’ [ —
I=4u1 ”(h)’ I= 2”(1 y)(h>’ 10(;(\(1)}1
The differential equations (2-a) ~(2-h) can be used to analyzed the bending of rectangular plate with

variable thickness on non-uniform elastic foundations with arbitrary boundary conditions and arbitrary
load conditions.

3. APPROXIMATE SOLUTION OF DIFFERENTIAL EQUATIONS

- It is impossible to obtain the exact solutions of differential
equations (2-a) ~ (2-h) under the arbitrary loading and boundary

conditions, since these equations are formed by simultaneous

partial differential equations with variable coefficients, There-

fore, in this paper; we consider the rectangular plate as assembly X n
of intersections as shown in Fig,2. Approximate solutions of : :3:‘:’:’
differential equations are obtained for these discrete points. B EGOSOSS:

One divides the bounded area [0, o], [0, b] into m, n ‘ ;‘ “.... N
equal-interval and numbers each divisional point, as shown in —J— e ; o
Fig.2. Now, let [{, j] be any point in the rectangular region e !
097, 0=¢<¢;, @ be the principal point, O be the interior a -
subordinate points; and @ be the boundary subordinate points, Fig.2  Discrete points on rectangular plate.

First, by integrating the differential equations (2-a) ~ (2-h) ;
over the area [0, 7] and [0, {]; one obtains the integral equations. Next, by applymg the: numerical
integral, one can obtain the simultaneous equations for nondimension values X,,;; of the principal point. By
solving these equations, one can obtain eq. (3). The details to obtain eq. (3) see Ref. (9).

Xouy= é { Z:e ﬁzprr[tho; Xerll—87)]+ gé) BiaBod Xing— Xuiol1— 045)]

i J ‘ i | ‘
+20 23 BirBioCoroXirdll _5};"591)} T BisBralA T g eeeeeere i (3)
05T ; =)

where p=1, 2, -, 8, i=1], 2, crny My Jj=1,2, . n, ﬁu—azf/m Bis=ass/n. Ap, Ba, szfg .
Appendix, §;; . Kronecker’s delta

The coefficients g;,, a;, are the weight coefficients of the numerlcal integration. The trapezoidal rule of
approximate numerical integration are applied in this paper, therefore the values of a;,, a,, are given as
follows . 0,;=1—(85,+8:)/2, a;o=1—(0osF 855)/2

As one calculates the values X,,;, Xpi5, Xpo1, -+, in numbered order by using eq. (3), the values of the
all interior subordinate points are eliminated. Ultimately, the values X,;, of the principal point are
represented by the values X, (r=1,3,4,6,7. 8, Xws (s=2, 3,5 6,7, 8 of the bounded
subordinate points as follows, ~ '

Xi= Z:} (}; Grorra® X”"+;L;§, azpifgd'XSOg)+ R S S SR (4)

where,

8 i J :
Chpijua™ 23 { & ﬂikApz[antmud"' Grexsudl — 3kl)]+ ;Z:% BBl Gnwoiua= Crriual— 1))

i

+ é B kleCptklahlklud(l 5klalj)}
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Eq. (4) is an approximate solution of the differential equations (2+a) ~(2-h). The values X, , Xso0 of
the bounded subordinate points are integral constants, Then, the coefficients g, ,;;,s which relate the

values X,;; with the value X,,, Xy, correspond to the transfer matrix of the Transfer Matrix Method.

4. INTEGRAL CONSTANTS AND BOUNDARY CONDITIONS

a;=(—1), ‘Eix: et (— 1) Go, —77”52

Integral constants X, and X, express dimensionless quantities with respect to Q,, Mgy, My, 8y, by,
and Qr, Mzy, Mz, 6y, 8:, w, on £=0 and p=0, respectively.

There are six integral constants on each discrete point, According to the support type of the bounded
sides, three integral constants of six are known, and the remaining three unknown integral constants are
determined by the boundary conditions along 7=1.0 and ¢=1.0.

Integral constants and boundary conditions of rectangular plate with four edges free and with two
opposite edges simply supported and the other two edges free are shown in Fig, 3 and Fig. 4, respectively.
In these figures, fig. (a) express the whole of a rectangular plate, fig. (c) and fig. (d) express one half of a
rectangular plate with one symmetrical axis (either right and left or up and down), and fig. (b) represent

y=0 =0, v=0 =0 [0=0, By=0) =0 y=0 Q=0 fW=0, 8y=0

Q=0 Hxy=0 Gx=0,1x=0 Mxy=0  |Gx=0, 6 x=0 7 Hxy=0 Mxy;‘) 5 lxy#l ﬁfﬂ.ax:o
im0l =0 ey=0 ox=0_|try=0 8% =0 e 18 8y0[Mayd
by, 8x T Free E. s . i

w Free E. oy ! =0 . : i I =0
: Gx Hxy=0 o WS Hxy | =0
oy {w ] o0 l 8 x50 o |w | mx=0 ox L oex=0
2% T S =0 My | =] 6y=0 ]
Wl HELS me 6 “ ~ ox g Eloweo o [BUFR 6y, 0x
1% vy B w
(b)
Free £ . free £
6y, 6x - Hx=0 ; : - ;
W fy. éx,w 8y, 6x Qy=0 Ox, 8 x| 8y, 8%, w Qy=0
’ Qy=0] - Mxy=0 Qy=0,Hy=0 L Mxy=0 Qy=0,My=0

. Ca) ty=0| HMy=0  ax=0, 8 x=0) Ca) Hy=0 =0, 6 x=0)

=0,8=0 | {6y, Bx - | Mxy=0 : . m O, 6 x| 7 [Hxy=0
=0, 6y=0| | w H i
Qy=0.Mxy=0, 6y=0 |  Hxy=0 | . Qy=0,1y=0, 8y=0 |x=0 ‘ .
oy D o e o [ a0
0x=0 ox Hxy=0 C Hey i Hxy=0
Hxy=0 w oax=g Mxy Mx=0 Bx boax=0

< | ‘ 6x 8y=0 1

8y i w=0 :
; 5] o | bt [ : @
w ey oxow oy ox Mo W ex, 8y.w Ux. 6x MEGXSW 8y, 8x,w
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(d4)
(e e Fig.4 Integral constants and boundary cond:txons of plate
with two opposite edges simply supported and the

other two free,

Fig.3 Integral constants and boundary conditions of plate
with four free edges,
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one quater of a rectangular plate with two symmetmcal axes; Integral constants and boundary conditions at
_ the corners of plate are shown in the boxes :

5.  NUMERICAL RESULTS

(1) Rectangular plate on uniform linear elastic foundations
First, in order to investigate the convergency

and ‘accuracy of numerical solutions of the rec- YA
tangular plate on uniform linear elastic found- ;_‘li 1 b/a=1.0
. ~ . . , =1/5
ations, - let the present method be applied to a % ) :—’é; E—-i iji:o{o 12002
- square plate with two opposite edges simply sup-~ : oL v=1/6
Db T ' K=3.0
ported and the other two free, whichis subjected to v : ! kot
) L 5 K4 =
" a uniform distributed load ¢ over the square area in- e 2 ——d b
the center of plate as Shdwn in Fig‘ 5. Table 1 Fig.5 Partially loaded square plate on elastic foundations.

shows the numerical results of the deﬂectlons and Table1 Deflections and bending moments of the rectangular
the bending moments at the center and at the middle plate with two opposite edges simply supported and

point of free edge of the plate with different 4 / a the other two free subjected to uniform distributed
. . R . load ¢ (v=1/6, b/a=1.0, c/a=1/5 K=3.0).
values; together with the series solutions obtained : ‘

. =a/2 , y=0 =a/2 , y=b/2
by Ref. (8). In this table, m=10 and 20 are nal m inalz . v ey

s : M M
division number, and 10-20 represents the " * o " *

: k , ) — 10 | 0.504 | 0.707 | 0.448 | 0.345 | 0.348
Richardson’s extrapolatedk values of m=10; 20. It ool 20 0o | o708 | 07533 | 0347 | 0.349
: : 10-20 | 0.534 | 0.828 | 0.562 | 0.348 | 0.350
is found from this table that the extrapolated values rorg | o2 | 08a | 0360 | 0349 | 0,349
(10-20) agree with the series solutions. : 10 | 0.508 | 0.708 | 0.447 | 0.343 | 0.351

S let the present method be applied to a 0.05] 20 | 0.532 | 0.797 | 0.534 | 0.346 | 0.354

econd, let prese app ; 10-20 | 0.540 | 0.826 | 0.564 | 0.346 | 0.355
square plate with four free edges, which is Ref.8 | 0.541 | 0.824 | 0.562 | 0.346 | 0.355
subjected to a uniform distributed load ¢ over the 10 0.522 | 0.705 | 0.447 | 0.362 | 0.355

. . 0.10| 20 | 0.569 | 0.79 | 0.536 | 0.344 | 0.360
square area in the center of plate’ as shown in 10-20 | 0.558 | 0.826 | 0.365 | 0.344 | 0.361

. Ref.8 | 0.558 | 0.820° | 0.562 | 0.344 | 0.359
Fig.5, and a concentrated load P at the center,

. ; i k 10 | 0.565 | 0.699 | 0.447 | 0.340 | 0.356
respectively. The values of the deflections, the 0.15| 20 0.576 | 0.786 | 0.535 | 0.342 | 0.360

" . 10-20 | 0.586 | 0.815 | 0.564 | 0.343 | 0.361
bending moments and reactions at the center, at the Rer .8 | 0387 | 0.813 | 0.562 | 0.343 | 0.361
corner and at the middle point of free edge of the 10 | 0.577 | 0.690 | 0.447 | 0.33 | 0.35 |

‘ . 0.20] 20 | 0.613 | 0.777 | 0.535 | 0.340 | 0.359
plate are shown in Table 2 and Table 3. In these oo | 0.625 | 0.806 | 0.364 | 0.31 | 0361
tables, 10-20, 8-12 and 4-8-12 repesent the Ref.8 | 0.626 | 0.804 | 0.362 | 0.341 | 0.361

. . 5 5 3 N 2 ) -2_ 2

Richardson’s extrapolated values, It is found from Multiplier |1079a*/D 107qa 10%ga*/D| 107qa

Table 3 that the numerical solutions obtained by
the present method converged monotonically according to an increase of division number,

(2) Variable thickness plate on nonlinear elastic foundations

Let the present method be applied to a square plate of variable thickness with four free edges on
nonlinear tensionless. elastic foundations, which is subjected to a concentrated load P at the center,

Nonlinear tensionless elastic foundations are assumed to be active only when the plate has pressed
against the foundations, and to be inactive in the regions where the plate has lifted off of the foundations,
In other words, the foundations can be modelled as the springs of the stiffness k¢ when in compression and
zero when in tension. In this paper, the load-deflection relationship of the nonlinear elastic foundation is
assumed as shown in Fig.6, and it is expressed as follows; :

pzk'ww/(—w+w) .............. T T TP F PRI (5)
The modified spring reaction p’ at w=w' is
p'=k‘1I)2w/('u7+ w’)2+ kTv“w’”/(?Y;+ w’)z ..................... U N (6)

Fig. 7 shows the flow-chart of computational procedures, Now, if the (s—1)th deflection at the point
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Table 2  Deflections and bending moments of the rectangular plate p
“with four free edges subjected to uniform distributed load ) p'
q(v=1/6, b/a=1.0, ¢/a=1/5, K=3.0). kw [~ SRR iy - s
(a/2,0) (0,b/2) | (a/2, b/2) S P
h/a m " o
M W W Mx - ) '
v . ? ? 0.5k fr==7i" A :
10 0.687 0.504 | 5.56| 2.1310.263 | 0.428] 0.170 ,' ;
0.01 20 0.708 10.596 |5.73| 2.01 {0.248 | 0.424 0.187 ) T !
- - - . 1 VA
10-20] 0.714 | 0.627 0.24310.422) 0.193 betan~lk
10| 0.702 |0.501 | 5.69] 2.12 | 0.262 | 0.425| 0.182 0.0 R v
0,10 20 0.726 |0.597 |5.88] 2.00]0.247 { 0.420| 0.354
10-204 0.734 ]0.630 ) - - | 0.242]0.419 0.355 Fig.6 . The reaction-deflection relationship of
10 0.744 | 0.496|6.03| 2.07 | 0.255|0.418| 0.186 ) hyperbolic spring.
0.20 20 0.779 10.589 | 6.31(1.9410.240 |0.413! 0.197
10-20{  0.790 | 0.620 - - 0.236{0.411| 0.200
Multiplier |107qa*/D | 107%a" 107% 107%a*/D 10774’
Table 3 Deflections and bending moments of the rectangular plate )
with four free edges subjected to a concentrated load P [Analysis of winkler foundation]
at the center (v=1/6, b/a=1.0, K=3.0). .
(a/2,0) (0,0/2) la/2,b/2 @ No
h/a m
W Mx p W p W Yes
Modified spring
4 0.0158 | 0.085| 1.28]0.00817 | 0.66| 0.0112 reaction eq.(8)
8 0.0175 Q0.148| 1.42 | 0.00641 1 0.52| 0.0106
12 0.0179 | 0.185| 1.45] 0.00608 | 0.49| 0.0105
0.01 16 0.0182 | 0.211} 1.47{0.00596 | 0.48| 0.0105
4 8-12 0.0183 | 0.214 - 0.00381 - 0.0104
4-8-12 | 0.0184 | 0.220| - 0.00581 - 0.0104
4 0.0160 | 0.085| 1.30{ 0.00812] 0.66{ 0.0111
8 0.0179 | 0.147 | 1.45]0.00638 | 0.52| 0.0105
12 0.0185 | 0.185| 1.50 | 0.00608 | 0.49{ 0.0105
0.10 16 0.0189 | 0.211| 1.53 1 0.00596 | 0.48| 0.0105
8-12 0.0190 | 0.213 - 0.00s80.1 - 0.0104
4-8-12 | 0.0191 0.219 - 0.00380 | - 0.0104
4 0.0166 | 0.084} 1.34 | 0.00797| 0.65}| 0.0109
8 0.0192 | 0.145] 1.56 | 0.00622 | 0.50| 0.0103
12 0.0203 { 0.182) 1.64 1 0.00589 | 0.48 0.0102
0.20 16 0.0209 | 0.209} 1.690.00578 | 0.47| 0.0102
8-12 0.0211 0.212 - 0.00562 - 0.0102
4-8-12 | 0.0213 | 0.218] -~ 0.00562 | - 0.0102
Multiplier Pa?/D P P/a% | .Pa?/D | P/a?| Pa?/D ‘ Fig.7 Flow chart of computational procedures,

(7, j) is expressed w,,, ,, the(s)th analysis is made as follows.
Wyss1>0 © use the eq. (6)
Wi ss-1<0 1 k=0 ‘

The process is repeated until convergency condition - ;
('wz,j,s““wt,),s—l)/wo,s<10—3 ........... rersaseesieis Ceeeennes L eea s e e at e o st eeenaeay e aine i FRPT (8)

is satisfied, 'Here, w,s is the (s)th deflection at the center of the plate.

Rectangular plates of variable thickness which changes linearly in x direction are treated as shown in

Fig.8. The taper ratio is Case (1) a=0.8, 8=1.2, Case (2) e=0. 4, B=1.6, respectively.
The numerical results of rectangular plate of variable thickness on nonlinear elas{:ic foundations are

shown together with the numerical results of rectangular plate of uniform thickness on linear (Winkler)

and nonlinear elastic foundations in Fig.9. Fig.9 shows the values of the bending moments and the
deflections at y=(. The numerical computation for m=12 is carried out. It is found from Fig. 9 that the
effects of variable thickness are a little on M,, and little on M, and w. It is also found that the numerical
solutions of uniform thick plate on nonlinear elastic foundations used for the present calculation are about

1.5 and 1. 2 times on the deflection and the bending moments at center, respectively, as compared with the

solutions on Winkler’s foundations.
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E—— e ; P :
oh 7 h : o . & [
Free E. - e . r : i g
, i : =3.0. | [ "k=2.5, 3.0, 4.0
ke SEb ~ 0.0
Free E. 0.058 My /P (y=0)
H — :
o S L
Case(1)a=0.8,8=1.2, Case(2)a=0.4,8<1.6 0.1
Fig. 8 Rectanguiar plate with vafying thickness, 0.15
SR
- - 0.0 =
¥tz P =0
0.0 -
0.1 k
0.05 < 0.15
0.1 My/P (Y=0)‘

wD/Pa2 (y=b/2)

0.0
0.01¢
------ Winkler 0.02 Tt

b/a=1.0 , v=1/6 Hyperbolic

h/a=0.004~0.016 —e—— Case(l) wD/Pa2  (y=0)

K=a%k,/D=3.5% ——a— Case(2) h/a=0.2 v=1/6 p=1.0 7 ’ﬁfi'g
. . i B k —adky/D —a— K=2.
Fig.9 Numerical solutions of rectangular plate with variable K—a‘ v &— K=4.0

thickness on nonlinear elastic foundations (four free Fig.10 Numerical solutions of rectangular plate with all

edges). i i ) free edges on non-uniform elastic foundations.

(3) Rectangular thick plate on non-uniform elastic foundations

In the previous section, the foundation meduli are uniform in the whole foundations, However, -it is
considered that the foundation moduli are locally non-uniform: ~

Accordingly, first let the present method be applied to rectangular plate of umform thickness with four
free edges under a concentrated load P at the center on non-uniform elastic foundations which the values of
non-dimensional foundation modulus are K=3. 0 in left half, k=25, 3.0 or 4.0 in right half as shown in
Fig. 10 above. The numerical solutions of the bending moments and the deflections at y=0, and y=05/2
are shown in Fig.10. It is found from this figure that the effects of non-uniformity of dimensionless
foundation modulus are very small in regard to the bending moments My, M,, but large in regard to the
deflections. ;

Next, let the present method be applied to rectangular plate of uniform thickness with four free edges,
which is subjected to the uniform distributed load g over the square area in the center of plate, on
non-uniform elastic foundations as shown in Fig. 11.

Fig. 12 and Fig. 13 show the values of the deflections and the bending moments at y=0 and y=5/2.
From these figures, it is found that the bending moments are little affected by non-uniformity of foundation
moduli, but the deflections are so much,
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Ko : xqa?
K1 c/a=1/5 .
, o 0.0

¥o 0.005

Ko
A
Fig.11 Rectangular plate on nonuniform foundation.
x10%a%/D ‘ 2:003
0.0 R e s e + — :
L Ko=3

0. xqa?

0.0

0.002
‘ Mx (y=b/2)

h/a=0.2 e K1 =10

Fig. 12 Deflection curves (y=0) versus K, and h/a values, Fig. 13 Bending moments M, and M, versus K, values,

The numerical results for the thin plate (h/a=0.01) are plotted by the dotted lines for comparison in
Fig.12. When dimensionless foundation moduli as shown in Fig. 11 are K,=3, 10 and 100, the ratios of
maximum deflection are wmay (h/a=0.2)/ Wmax(h/a=0.01)=1.10, 1.15 and 1. 41, respectively. It is
found that the more non-uniformity of foundation modulus i increases, the more influence of plate thickness
ratio h/a 1ncreases

CONCLUSIONS

The main conclusions of the work described in this paper can be summarlzed as fo[lows

(1) A general numerical method for analyzing the bendmg behavior of rectangular Mindlin plates on
elastic foundations has been proposed. This method is an application of numerical integration and the
numerical solution of integral equations, :

(2) The approximate solutions of the partial differential equatxons of the rectangular Mindlin plate
give the transverse shear forces, the twisting moments, the bending moments; 'the rotations and the
deflections at the all discrete points which are intersections of the vertical and horizontal equally dividing
lines on the plate. Thus, the method does not require prior assumptnon of the shape of the deflection of the
plate, S ‘

(3)  The method can treat the bendmg problems of the rectangular plate on nonhnear elastic
foundations and on non-uniform elastic foundations with acceptable accuracy and efficiency.

Appendix

Aot =Y, Bpsz, : Corn=t Yozt L Vo) [Yotl= [7pl:[_ :

App=0, : Bp= Yo, Cor= Yot L Ves Tu=Bu, T=pfs, 7zz~"ﬂﬂw, 713—%1;51,
kAps=7pzvk Bos= 1es, Con= Ju Yoo Tu=Bu Tus=ubu Tn=—ufu, 733"#/9;:,
A=V Bau=0 C Com™= It You, 734218&, Tu=—LiBu V=B, Fa=puBy;,
Aps=0, : Bos= Y2, przklkﬂps ; 75;"‘:“'“1511953, Tse= Wi, Fsr=pufis, Tos=
Aps=YosF Vs, kBpozﬂ%e, Cpskz='fﬂ7mk,k = Julus Tee=tBss, For=Bu, 771=“ILLuﬁu,
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A= 7pﬁ» Bor=1{v¥u+ )’pﬁ) Com="Yos» Fie=ubs, 7’:8:/9&, Fse=—LuBis, Ter=Bu,
Aps= Yor Bos™ Yos - Cosm™= Yor Kom Foe=8s Bu=BuBis
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