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A NON-ITERATIVE NONLINEAR ANALYSIS SCHEME OF FRAMES
WITH THIN—WALLED ELASTIC MEMBERS

By Akio HASEGAWA*, Kithsiri K. LIYANAGE** and Fumio NISHINO***

The purpose of this study is to establish a non-iterative efficient computational scheme to
trace the nonlinear finite displacement behaviour of space frames, using the tangent
stiffness equation of linearized fininte displacement of a thin-walled elastic straight beam
element, Direct solution of the tangent stiffness equation is used, imposing adequately
small increments. Local coordinates are updated at each incremental step, utilizing a
vector multiplication scheme. Numerical results for a wide variety of spatial structures are
given, demonstrating the versatility of the present scheme. :
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1. INTRODUCTION o

The non-linear finite displacement behaviour of structures has attracted the attention of many
researchers during the past few decades. Historically, Euler (see Ref, 1) happens to be among the earliest
to investigate the post-buckling behaviour of elastic structutes, well-known as elastica, who pointed out
that a slender column after buckling can increase its load carrying capacity significantly when the
displacements become large. Following him, a considerable amount of works have been presented in the
area of post-buckling behaviour of beams and frames., However, only a few of them have dealt with case of
spatial structures. Zamost and Johnston? analysed the post lateral-buckling behaviour of a cantilever beam
with uniform rectangular cross-section. ‘The behaviotir was found to be of the same nature as that of the
planar problem. A similar case was also examined by Masur®, who analysed a propped cantilever of narrow
- rectangular cross-section under a moment applid at the propped end. ‘

Among those who treated the buckling and nonlinear behaviour of thin-walled members based on the finite
element technique are Barsoum and Gallagher?, Bazant and El Nimeiri®, Ram and Osterrieder®, Komatsu
and Sakimoto et al. ?-#, the last two of which have extended their analysis to the inelastic behaviour.
Papadrakakis® analysed the finite displacement behaviour of spatial structures using vector iteration
methods, demonstrating the application of the dynamic relaxation method and the first order con}ugate
gradient methods:;

Even though a considerable amount of works have been reported in this area, it can be seen that most of
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the solution schemes available at present have certain drawbacks and many limitations in application.
Under these circumstances, the aim of the present study is to establish a non-iterative efficient
computational scheme to investigate the nonlinear displacement behaviour of thin-walled elastic beams and
space frames with general loading and boundary conditions, applicable for structures with any original
configuration, and which can be conveniently utilized for routine use in ‘practical applications,

2.  LOAD-DISPLACEMENT ANALYSIS

Common trend at present in the nonlinear finite displacement analysis is the adoption of iteration
schemes such as Newton-Raphson technique. However, the necessity of calculating the internal force at
each and every incremental step and of coninuous checking of convergence turns to be rather inconvenient
for wide applications. On.the contrary, the direct application of incremental relations with the consistent
coordinate transformations and updating procedures and by proper selection of incremental sizes, as
introduced in this study, seems to be more appropriate in general applications.

As is well-known, there exist two different methods of incremental procedures to analyse the finite
displacement behaviour of structures undergoing large displacements and rotations, The first is the
Lagrangian approach, in which all incremental quantities are referred to the original unstressed state,
whereas in the second method, namely the updated Lagrangian approach, they are referred to the current
equilibrium state. Owing to the fact that the tangent stiffness depends only on the current internal stress
resultants, or in other words, is independant of the current dlsplacements the uqdated Lagrangian
approach seems easier to handle and thus is employed in this study.

The nonlinear finite-displacement behaviour is traced in this study using the tangent stiffness equation of
thin-walled straight beam element developed in Ref. 10, whlch can be written in the form

FPam JG(PO)g o vovneeeoeemees e (1)
for an arbitrary reference state in equlibrium where some internal stresses may exist, and I, 'd and K are
the incremental force and displacement vectors and the tangent stiffness matrix, respectively, and are the
same as F', d and K in Ref. 10, whereas P° stands for the internal stress resultants in the element at the
current reference state. The stiffness equation is defined for a right hand cartesian coordinate system
(x, y, z), with  along the beam axis, and y and z being the principal axes with origin at the centroid of
the cross-section, k

3 COORDINATE TRANSFORMATION AND ASSEMBLING

In the eiement stiffness equation (1), the components of the force and displacement vectors have been
arranged separated to their groups of individual problems, namely, the axial, biaxial bending and torsional
problems, in order to simplify the appearance of the stiffness matrix. Nevertheless, before the assembling
process and transformation, the end displacements need to be given in vector representation, and also they
should be rearranged separated to those corresponding to the end nodes. This can be achieved by making
use of the following transformations,

F:P 8 et s e e s aowneeannssansosnnasnsecoanssoansaresecaatonsaastsnatostaeneeoearia T et atata T et asceeta e et (2 a)
G PO e (2-b)
where
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In Eq.(5), u, v and w are the displacements in the directions x, y and z respectively and ¢ is the
rotation of the’cross-section. Subscripts ¢ and s refer to the centroid and the shear center of the
cross-setion, respectively | whereas f and j correspond to the element ends at the two ends at x=0 and x=
L, respectively. Prime ( ) denotes differentiation with respect to . The components at the j-node of Eq.
(4) is defined in the same way as Eq.(5). ‘

As is clear from Eq.(5), some quantities in the force and displacement vectors (F°® and d°%) are
referred to the shear center, whereas the remaining ones are referred to the centroid of the cross-sention,
However, before transforming into the global coordinates| it is necessary that all quantities be referred to a
single point on the cross-section. The cross-sectional centroid is used herein as the reference point, The
quantities defined in the single point reference system (i, e. all the quantities are referred to the centroid)
will be assigned by the superscript ‘¢’. ; :

The relations between quantities defined in two different systems can be written in the form

dO=QdC, = QT O et (6va,b)
with ' N
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in which y, and z, are the coordinates of the shear : :

center. By performing the transformations (2) and
(6), the element stiffness equation (1) can be
expressed in terms of the local coordinates as
K°d°=F° inwhich K°=(PQ)K(PQ) (8 9)
Global cartesian coordinate system (X, Y, Z) and
moving local cartesian coordinate system (x, ¥, z) z

defined at element level are being used in this study, as
shown in Fig. 1 (a). The unit vectors along the axes X,
Y and Z are {, jand k whereas those along the axes x,
y and z in terms of global coordinates are denoted by 2,
a, b and ¢, respectively. The direction cosines of z,
y and z with respect to the global coordinates are
“Hax, ay, az)(by, by, bsand (cx cy, c;), respectively.
Hence, the relations between quantities defined in local

and global coordinates can be expressed in the form

de=Td, F =TF rorereeevieeririiiiin (10-a, b)
where d and F are the displacement and load vectors in m/y}' . .
global coordinates, and the transformatmn matrlx T is " - g .
given by : l {\\‘ : *‘—P}\x
t 06 0 ¢ O ‘ e, 5 by ap,
‘ 0 ¢t 0000 y - plane z - plase : x - plane
6 ¢ 1 6 0 0
T= 00 0. f 0 0| a1) (6) Eat-Rotations Dofised an the Projected Planss
000 0 £ 0 Fig.1 Coordinate Axes and Reference Base Vectors,
6 0 0 6 0 1
in which
Ay ady Qg
t=1 bx by by |-coeieeeens B L L T PP PP PP PP PR P PR RPN (12)
Cx Cy Cz [

Hence, by performing the coordinate transformation (10), the element stiffness equation (8) can be
expressed in terms of the global coordinates in the form

Kd==JF - vereorsnremmmaninriineiineci s U S5 USSP (13)
in which
“'(PQT)TK(PQT) .................................................................................................. (14)

Global stiffness equation is assembled for the whole structure and solved for the next incremental step.
In order to overcome the singularity of the stiffness matrix at limit and bifurcation points, and also to
- achieve higher accuracy for the same computational effort the path length control technique! is adopted in
this study with some modifications of simplified linear form of absolute values i.e. in addition to the
stiffness equation, the following condmon is imposed

iz_“';;ai di'+tan+1 f‘:ﬂ'i .......................................... ............... I (15)

in which 7 is the dimension of the stiffness matrix, d, is displacement component nondimensionalized by its
norm, and Jis the load factor defined by o

F E=3 f . f .................................................................................................................. (16)
where f is the proportional load vector. Magnitudes of the nondlmensmnal constants @, to a,,, are so
selected that the order of all terms in the left hand side side of Eq. (15) remains of similar magnitude, and
c is another constant defining the magnitude of the incremental step. In numerical calculations, the
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absolute values appeared in Eq. (15) are achieved by defining the sign of g, to be the same as that of the
corresponding displacement or load step in the previous mcrement :

4. UPDATING PROCEDURE

(1 ) Updating of Coordinates -

Consider a beam element in ethbrmm with external loads at an arbltrary state, ' of which the
configuration is already known. The unit vectors along the element axes (x, ¥, z) are denoted by a 57,
¢y respectively as shown in Fig. 1(b), in which the subscripf ‘n’ refers to the number of the current
reference state, whereas the superscript “m’ refers to the element number, Due to deformation of the
element, the systems of beam axes at the two ends may not lie along the same directions as the system of
local coordinate axes. The unit vectors along the beam axes at the two ends are denoted by A1, BI™ and
C1% at x=0, and Az,":, B27 and C27 at x=1, following the same notation as for the element local axes.
The projected rotations at the two ends about the local axes (all of which are already known) are denoted by
(81,02, (91,)%, and (81,)% at x=0, and (62,)7, (92,)7, and (§2,)* at x=1. Consider the rotations at x=(
. through Fig. 1(c). The angles 81, and 41, are those between the element local x-axis along the longitudinal
direction and the projections of the element end longitudinal direction A1 to'the respective local y- and
z-planes, whereas §1, is the angle between local z-axis and the projection of C1 to the x-plane. The
rotations at =1, can be defined in the same way as above, All the angles are measuredkstarting from the
respective local axis, with positive sign given when measured in positive direction of the axis of the plane,
using the right hand screw rule. The superscript ‘m’ is omitted in further explanations, for the purpose of
i'educing complexity in appearance of the expressions. However, it should be understood that all
expressions correspond to the mm-th element.

For the ease of clear understanding, the tangent stiffness equation, whichever appropriate, Eq. (8) for
local coordinates or Eq. (13) for global coordinates, is simply re-written as

FrAd = A -+ ceeoeeeeiee e (17)
where ‘ :

AF=(AFT, AFDT,  Ad=CAdT, AdD - eereesree ittt e (18)
with k

AF={Fu, Fyi, Fai; Czi, Cyi, Cay, Corp"™=<AF 15, AF 14, AF 1., AC1;, AC1y, AC1,; AC1)7-- (19)

Ad=Uci, Veis Wess Bis = Wery Ve, — B0 =<Aul, Avl, Awl, Ab1;, A81y, AG1,, AGLDT - (20)

Note that AF1, and Au1, for example, are replaced to AF 2, and A42 for the element end j, After solving
the incremental equation for the assemblage of Eq. (17), the new position coordinates at the ends of the
element are obtained by the relations : ‘
le.]zXln"i‘AUIn, Yipa= Y]n-!-Avln, Zln+1=ZIn+Aw1n ............................ (21.3’ b, c)‘
X2n+1=X2n+Au2n, Y2, = Y2n+‘A7)2n, ot =2 D AWy wovvvrereierrisnnnaniiiiin, (21.(}, e. f)
in which all the increments are defined in global coordinates. However, regarding incremental rotations it
is necessary that they are transformed into local coordinates; before adding to the previous rotations,
Hence, the new rotations at the two ends of the beam element can be obtained by the relations
(011 =(012)n+(A012)n,  (019)ns1=(01)n+H(A013)n,  (01)n1=(01)n+H (A1) --ooo- (22-a, b, ¢)
(022)n11=(022)n+H(A022)n,  (024)001=(02)nH(A024)n,  (622)n1=(02)0+(A62)5 -+~ (22-d, e, f)
in which all the incremental rotations are defined with respect to the current local coordinates;
The unit vectors along the new directions of the beam axes at the two ends can then be determined by the
relations A
ap+tan[(91)n.]b,—tan [(ely)nﬂjcn

Alp = Ta T tan L Tbman (Gl ey (23-3)
_ cpttan (01 )ni]an—tan[(81)n,1]100 -
Clai= lenttan [(ﬁly)ml]an“ tan[(81z)ni1lbnl Bl = Clany X Al (23 b, o)
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an+tan{(62)n1b,—tan [(ﬁzy e )Cn ‘ i
A2, = T Ftanl(82)..1b,—tan 7 T I - (23 - d)
C2.. = ¢, ttan [ 62, Jniilan—tan [(621: 1B

™1 epttan [ 62y)n+1}an tan[ 02y n+1:] bal’ )
Next, the procedure to find the updated system of local coordinates, which are to be used as the local
coordinates for the next incremental step, is explained. The local axis in the longitudinal direction of the
beam element is selected along the line joining the two ends of the element, and hence the corresponding

B2 = C2 X Ay srermereernsscesioeees (23'6, f)

unit \?ector can be expressed in the form
- (X2n+1’“ X1n+1)i +(Y2n+1 - Y1h+i)j+<22n+1 - Zlnﬂ)k
anﬂ— (inﬂ""XlnH)i +( Y2n+l— Yln+1)j+ (Zznﬂ—ZlnH)k !
The local z-axis is selected to be along the average of the correspondmg dlrectmns at the two ends of the

beam element, Hence,

Cly+C2ayy !
m ....................................................................... S ensansecirunanasuancras (25)

and the local y-axis is obtained by using the orthogonal property with x and z axes. Therefore, the unit

Cni1™—

vector along y-axis can be obtained using the condition

, Cni1 X Uit : '

b“l:m ............................................................. ............. (26)

As the present ¢,,, may not be perpendicular to a,,,, a modified ¢,,, is obtained by making use of the
condition i

Crno1=Cne1 X By oereoreremsronens e L N (27)

Next, the end rotations w1th respect to the new set of local coordinates are re-computed using the

following relations.

Cloe bn ' Alnir Cn
— -1 __ e .
(ﬁlx)m—tan ( Clui1® Coi >’ (01 )nﬂ tan- ( A1n+x‘an+1) (28 & b)
Alpir bagy C2ni1* bo
= [l il A A B ey .
(611 =tan ( AL, anﬂ)’ (62z)ns=tan” ( Czn+1’0n+1) (28:¢, d)

A2y bnﬂ

A2y Cny
W_I—“‘L)s (92z)n+1=tan“(—A2m

(624)ns1=tan™" (— Az, ) ............................... (28-e, f)

The calculations can then be proceeded to the next incremental step.

It is assumed in the numerical examples explained later that the inital element length 1, does not change,
simply for the ease of computation, although the change can be evaluated from the new positions (21) of the
element ends, if required. It is also worthwhile to mention that, as far as the in-plane behaviour is
concerned, the evaluation only of @,,, which is obtainable from the new positions (21) is required to

“Uni1 *Qn+y

proceed the computations,

(2) Updating of Stress Resultants

The procedure for updating the stress resultants is explained in this section, Con51der the structure in
equilibrium at the reference state ‘n’ and suppose that the configuration and the end forces of the individual
elements are already known. The stiffness equation for the whole structure is solved for the next
incremental step, thus leading to the incremental displcements. The coordinates can then be updated
following the procedure explained in the preceeding section.

Next, the increments in the element end forces are found by the re-substitution of the incremental
displacements to the individual element stiffness equations as given by

AFe-‘——“K?Ade ........................................................................................................... (29)

Hence, the element end forces can be updated by adding the increments of the element end forces to the
previous values in terms of global coordinates, thus leading to the next reference state, of which the
configuration and the element end forces are known, The individual element end forces are next
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transformed to the respective new element local coordinates and the stress resultants at the new reference
state can then be found, The stress resultants are computed by taking the average of the stress resultants
at the two ends of the element, except for the axial stress resultant which is constant throughout the
element length. ‘ ‘

5. NUMERICAL EXAMPLES

The proposed method is applied to 1nvest1gate the nonlinear finite displacement behav:our of a number of
important spatial structures, In some cases, the structure itself is spatial, whereas, regarding the others
the original structure is plane while the displacements occur in the out- of-plane direction as well. All the
computations are performed using HITACHI HITAC M-280H computer. The following cases are
considered. = ‘

1) Cantilever beam : Investigated flrst is the out-of-plane load- dlsplacement behaviour of a uniform
cantilever beam with doubly symmetric I-section under vertical load at the free end. The lateral buckling
mode is initiated by a torsional moment at the free end, appliéd at the beginning. The displacements at the
free end are plotted against the load, as shown in Fig.2. Also shown in Fig.3 are the deformed
configurations of the structure at various load levels.

2) Symmetric circular fixed arch @ Considered next is the out-of-plane load-displacement behaviour of
a uniform circular arch with doubly symmetric I-section fixed at both ends under a concentrated vertical

load at the crown with initially applied disturbing torque at the same point of applxcatlon The lateral and

vertical displacements at the crown of the

Load
arch are plotted against the load, as shown o) o a6 e 10" 1oe

G=7.95 x 10" xPa

in Fig.4. The corresponding deformed

Initial Torsion ( T, ) = 3.18 kim
Warping is Included

. . 2.5 4
configurations are shown in Fig.5.

3) Twelve member hexagonal frame :
The twelve member hexagonal frame with "
hinged supports shown in Fig. 6 under ver-
tical load applied at the crest is considered

next. All members are of uniform solid

square cross-section without warping, The

. - o P
tangent stiffness equation for non-warping ol o g Bretents m Ll

members is found in Ref. 12. The crest of Nr. of Incremeats = 200
CPU Time = 11 sec

&8 ¢m

the structure is allowed for the displace- .

2 T T T T T
. . - . .8 . 2.2 8.3 8.4 8.5
ments in the vertical direction only. The ’ !
Displacements { w/L, v/L, w/L)

dlSplacementS at the loading point are Fig.2 Spatial Load-Displacement Behaviour of a Cantilever Beam.
plotted against the load, as shown in
Fig.6. The deformed configurations are
also shown in Fig.7. It should be noted

that the vertical dimensions in the de-

e

-

]

formed configurations have been exagger-
ated by three times, to distinguish the ORIGINAL CONFIGURATION ! CONFIGURATION

. ! CONFIGURRTION AT AT
deformations.

4). Space frame : Investigated in the
fourth is the finite displacement behaviour
of the space frame shown in Fig.8. The
structure is loaded with four vertical -

cOncentrated }Oads ()f equal magnitude P at CONFIGURATION CONFIGURRTION . CONFIGURATION

At {3 ar & at [8

the joints, in addition to two disturbing Fig.3 Deformed Configurations of a Cantilever Beam.
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Fig.6 Load-Displacement Béhaviour of A Hexagonal Frame
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Fig,7 Deformed Configurations of a Hexagonal Frame with with Hinged Supports,

Hinged Supports (3 times enlarged in Vertical Scale) .

horizontal lateral loads of maguitude P/1000. All members of the structure are of uniform doubly
symmetric I-section. The lateral and vertical displacements ¢ and 2 at one joint are plotted against the

load, as shown in Fig.8. The deformed configurations are also shown in Fig. 9.
5) Truss Structures : In addition to the frame structures, the proposed method is applied for some

truss assemblages also, for the confirmation of applicability, The stiffness equation for trusses is found in
Ref. 12. The load-displacement behaviour for the truss idealization (all joints are assumed to be hinged,
instead of the rigid joint condition assumed in frame analysis) of the twelve member hexagonal frames
considered previously is obtained, as shown in Fig.6. Also analysed is a reticulated space truss shown in
showing the

Fig. 10, under a system of vertical loads at the joints. The result is presented in Fig. 10,
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Fig.8 Load-Displacement Behaviour of a Space Frame.
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Fig.9 Derormed Configurations of a Space Frame.
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{ Any coherant dimension can be adopted )

LOADING PRTTERN

Fig.10 Load-Displacement Behaviour of a Reticulated Space Truss.

relation of the load versus the displacement at the center, For comparison purposes, a more precise
solution is also obtained by using the so-called Newton-Raphson techmque and it is seen that the results
predicted by the present scheme closely agree with it.

A number of numerical examples have been limited in this paper because of page limitation. More
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extensive examples are seen in Ref 13, including the rather familiar cases of the plane behaviour of
structures,

6. CONVERGENCE STUDY

As is explained in the previous sections, the load-displacement behaviour is obtained in the present
scheme by the direct solution of the incremental equation, without performing iterations. The important
factors affecting the accuracy and the efficiency are the size of the incremental step and the selection of the
coefficients in the path length control equation,

The solution is expected to converge to the exact solution, when the number of incremental steps
approches infinity in a similar way as the convergence with respect to the number of elements. Numerical
- results for convergence analysis are obtained for the out-of-plane behaviour of cantilever beam considered
in the first example, as shown in Fig. 11. As mentioned before, the rate of convergence depends also on the
coefficients in the path length control equation (15). However, it seems difficult to present a gekneral
criterion applicable for all the structures, to select the most appropriate values for them, Nevertheless, in
general, good estimates for the coefficients can be obtained by selecting them such that all the terms in the
left hand side of the equation are of approximately similar magnitude,

From the results obtained in this study, a i}uestion may be raised regarding the rather wide-spread
understanding that reliable solutions for finite displacements are obrainable only through the use of some
iterative procedures with the inevitable consideration for large rotations. Although one may argue that the
present results do not have any guarantee for ‘true’ solutions? a serious question is also raised what is a
‘true’ solution without any exact analytical solution. Having confirmed the numérically stable outputs which
satisfy the equilibrium conditions for a wide variety of structures, the results can be identified as solutions
under ‘some’ assumptions. Knowing the fact that the beam mechanics itself is not exact in the sense of, for
example, the theory of elasticity, exactness may not be so imperative as in the case of explicit
mathemmatical solutions, particularly when the result can only be found numerically, The most important
and the most seriously considered for structural mechanics problems seems equilibrium condition to be
satisfed. The solution procedure presented in this paper may be understood as the solutions with some
sacrifice of the accumulated stress resultant-displacement relations which have not been examined
carefully in the present scheme, However, this sacrifice may be accepted, when one may realize the fact
that some level of approximation inevitably be involved in this sort of nonlinear numerical computations
even with the considerations of iterations and large rotations particularly for space structures,

7. SUMMARY AND CONCLUSIONS

A computa‘tionsl scheme to investigate the nonlinear finite displacement behaviour of thin-walled beams
and their assemblages, making use of the tangent stiffness matrix for thin-walled straight beam element,
has been presented. Direct solution of the tangent stiffness matrix helped by a proposed -updating
procedure and a modified form of the path length control technique was utilized to trace the
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load-displacement behaviour, Imposing adequately small increments, the accumulation of error has been
reduced to an acceptable level. ’

Numerical results are presented for a variety of spatxal structures having various initial geometrles
boundary -and loading conditions, including structures with snap-through type load-displacement
behaviour. Buckling of bifurcation type is avoided by applying appropriate inital disturbing loads of
relatively small magnitude, Noting that neither iteration nor checking of convergence is involved, it can be
concluded that the present scheme is quite appropriate for routine use in practical applications,
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