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ON TRACING BIFURCATION EQUILIBRIUM PATHS OF
GEOMETRICALLY NONLINEAR STRUCTURES

3

By Wzbzsono HARTONO* Fumie NISHINO**  Okiisugu F UJI WARA***
~and Pisidhi KARASUDHI****

This paper presents a method to trace the bifurcation equilibrium paths utilizing the
 Newton-Raphson method. The initial guess solutions on the bifurcation paths are obtained
by considering the higher order terms of the Taylor series expansion of the incremental
. equations at the critical points, )
Keywords © bifurcation, nonlinear siructure

1. INTRODUCTION

The geometrically nonlinear behavior of structures has received considerable attention in the last few
decades?~, When a structure is discretized with n degrees of freedom in displacement or position, the
nonlinear response of a structure under a given loading path is presented by adding loading parameter as
additional component, which may represent loading intensity or loading history, as a set of equilibrium
pathsin (n-+1) dimensional space. The paths consist of a main path which starts from the stress free state
and a number of bifurcation paths which intersect the main path at the critical points. Other paths which
are isolated from the main path may also exist?, The existence of the critical points on the equilibrium
paths can be detected by the singularity of the tangential stiffness matrix?—9, V

A large number of works are already reported to trace nonlinear main equilibrium paths, On the other
hand, tracing bifurcation paths received comparatively little attention in the literature on relatively simple
structures such as symmetric shallow arches, simple space trusses and frames under symmetric loading -9
Most of the method to trace bifurcation paths as well as to study the behavior at the critical points and the
stability of equilibrium state utilized the perturbation method on the potential energy function??-9,
Nishino et al. ¥ presented a method in which singular linear incremental equations at the critical points are
solved, of which solution consists of a particular solution and a homogenous solution with unknown
constants which have to be determined on trial basis. :
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This study presents a method to determine the directions of the bifurcation paths to be used as the initial
guess solutions for the Newton-Raphson method utilizing the Taylor expansion of the governing
simultaneous nonlinear equations,

2. METHOD OF ANALYSIS

(1) Governing Equations
Employing Cartesian coordinate for simplicity, the nonlinear dlscretlzed governing equations of a
structural problem can generally be expressed in the following system of 5 simultaneous nonlinear

equations
Ki(x)-—Fi=0 (i:l,Z,"', TL) ............................................................ senfeenstern s (1)
where F,=j-th component of the external force vector; x=<x, x, -+ x»" which is position

vector ; K;=i-th component of internal force vector corresponding to the external force F,;and n=
number of degrees of freedom of the system.
The external force F, is expressed in a general loadmg case as

Fi—ff di‘ (5_1’2’...,71) ................................................................................. (2)

where f is a parameter to specify the loading path and f( f)=1i-th component of loading pattern vector.
The loading pattern f; is considered in this study as a given quantity as part of the problem statement. To
simplify the formulation of the problem without losing generality, the external force F, can be idealized as
a piecewise linear function of f. With this idealization, f{f) becomes constant at each piecewise linear
part whereas parameter f could represent the loading intensity or loading history. In the following
development of this paper, the parameter f is used as to represent loading intensity. Since Eq.1
represents a system of n nonlinear simultaneous equations with (n--1) unknowns in terms of x and S, an
additional condition must be introduced for a solution to be found. The so-called chord length control from
a known point p is expressed as!

i(ai) (0= P+, (f — [P — R2=§(ai)”(Axi)zﬂL(af)z(Af)2~R2=O ............................... (3)

where a; and a,~constants, equating the dimensions of x; and f preferably with the dimension such that
Eq. 3 becomes non-dimensionalized ; x?, f”==known solution of Eq. ] at P Ax; and A f=increment of
and f from the known solution at p ; and R=chord radius along the equilibrium path from the known point
p which is a given value. Equations ] and 3 form the governing equations for the equilibrium paths in the {n
+1) dimensional space,
(2) Tracing Bifurcation Paths
- Equilibrium equations at a critical point denoted with supersecript ¢ as (x®, f°) and at a nearby point
denoted by (x°+Ax, f°+Af), selecting both points inside a piecewise linear portion of F, can be
written, respéctively as

f fidf=K{x°), _/ ﬁdf+f“Af K+ Axg) oeeeermeeennns e, e (4-a, b)

Expanding the right hand side of Eq. 4-b into the Taylor series and takmg the difference from Eq.4-a
result in the incremental equation as .

ngf__ Ki,Jij+ K;,,kAx;Axk/ZH* ngkleijkAxl/:'}!—" .............................................. ( 5 )
where (),=9( )/0x; and summation convention is used for repeated indices in subscripts unless stated
otherwise. Introducing orthogonal transformation which diagonalizes K7, Eq.5 can take the following
form .

GEAS = DAY+ DAY AU/ 21+ DAY AYAY /Bl o oo (6)
where D¢,=0 for j# j ;and gé=transformed loading pattern vector in the coordinate y, which is called as
principal coordinate in this study. Considering small increments, the second and hlgher order terms may be
neglected in Eq.6 and hence - ‘
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g?Af-‘:D?,jAy,- (inotsummed) ................................... R PR A R PN Ceied eveaiaed (7)
where D¢,= i-th diagonal term of the diagonal matrix D¢, which also represents the eigenvalue of D;; and
hence of K, ;. -

At a critical point ¢, at least one of D¢/'s is equal to zero. When only one eigenvalue is zero, it is

‘ referred to single critical point whereas zero eigenvalue with multiplicity of more than one is referred to
coincidental critical point?¥. At a coincidental critical point with s number of zero eigenvalues, the
second order terms of Eq. § corresponding to s equations of Eq. 7, where the eigenvalues are zero, must
be considered in order to get definite value of Ay,. Assuming they correspond to the first s equations of
Eq.7, the first s incremental equations at a critical point become : :

9iASf=D5 Ay MY/ 2! (1=1,2,, 8, J,h=1,2, = n)creeeemeneees Civieieedeiiiien. e (8)

A set of s second order nonlinear and (n— s) linear equations as given in Eqs. 8 and 7 is obtained with (n+
1) unknowns in terms of Ay;and Af. Solving these equaktions‘together with Eq. 3 written in the same form
in the principal coordinate under a given chord radius, and transforming back into the original coordinates,
the incremental vectors Ax; and Af ‘can be determined, provided that the Jacobian of the system of the
equations does not vanish, If the Jacobian is zero with or without vanishing all terms of D, ,,, the next
higher order terms in the Taylor series expansion have to be considered until the Jacobian has non-zero
value. A critical point can be either a stationary, a bifurcation point or a combinatoin of both. At a
bifurcation point, solving those equations will yield at least four real roots for solutions on the main and a
bifurcation paths, two solutions on each path due to the nature of chord length control. No bifurcation
paths emanating from a coincidental critical point are also possible?-®, More than four real roots indicate
more than one bifurcation paths at the critical point.

Selecting the increment vectors Ax; and Af for a solution on a b;furcatmn path and addmg it to the
known solution at the critical point ¢, the initial value for tracing a bifurcation path can be obtained and the
path can be traced by simple and effective method such as the Newton-Raphson method.

In practice, it is difficult to get the precise location of a critical point, and hence this numerical analysis
has to be made at a point close to'a critical point ¢. The selection of chord radius R needs attention, The
smaller value of R is preferred as it leads to more accurate values of the incremental vectors Ax; and A f
due to reduced error in neglecting higher order terms of the Taylor series expansion and this will lead to a
faster convergence of the iteration procedure. On the other hand it has to be much larger than the distance
from the true critical point to the point where the solution closest to the critical point is obtained and
treated as the critical point,

3. NUMERICAL EXAMPLES

(1) Governing Equations of Elastic Trusses

Some of the theoretical developments are demonstrated in numerical examples on elastic trusses,
because the exact governing equations can be easily derived. Since a complex loading sequence can be
idealized without losing any generality as a piecewise linear function of f in the small interval including a.
critical point within the interval, only proportional loading is considered. Fig.1 shows displaced
equilibrium state of a bar element pg with the initial undeformed length [. By considering the equilibrium
in the direction of the base vectors §,, i, and {; at both end
nodes p and ¢ of the element, the equilibrium equations are
expressed as

f Sf? ’ _N |xf— i

£ et —a

where N =internal axial force in the bar, positive for i

(i=1to nd)-~-¥ ....... (9)‘

tension ; x*=position vector of node p; nd=number of

. . ~ i in Equilibri t Displaced State.
dimension (2 or 3 for the plane or space truss); and [=the Fig.1 A Bar in Equilibrium at Displaced State
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deformed length, which is expressed as

l—lx —x I ............................... (10)

Assuming linear elastic materlal the stress-strain relationship can be expressed as
T O Y O S SN e SR (11)

where E=modulus of Elasticity; A=cross-sectional ‘area of bar element ; and ¢=strain of bar, The
strain-position relation is expressed using the deformed length ] as a parameter as

Uy 1Y SO U 3 O TSR U P OO RO 12)
Substituting Eqs. 12 and 11 into Eq. 9, the governing equations of the element are obtained in terms of the
position vector as the main unknown as

f Sfi =EA(-1*~‘1A“) ’xt"xi K;

fi l l xi—af Kiina

The first and second order derivatives of the member’s governing
equation, Eq.13, are given in the Appendix.

(2) Two Bar Plane Truss

As the sunplest example, a two bar plane truss with two degrees of

[ C(I=1 10 md s K= — K)o 13)

freedom and the initial configuration as shown in Fig, 2 is 1nvest1gated under
a vertical force at node 1, <(g; g»"={ 1)". The superscript to the
components of forces and coordinates indicates node. The same example is
solved analytically and reported in Ref, § utilizing the Green’s strain tensor .

instead of Eq.12. Britvec? and Kondoh and Atluri also used this example ’
but considering the bifurcation due the the flexural buckling which is outside ~ Fig.2 Two Bar Plane Truss.
the scope of this numerical study, Computing the first order term of the
Taylor series expansion yields a diagonal matrix, the elements of which are

D=2 EA/n—1/6+1/€)/L, Dsx=2 EA(L/n—1/&+(y =T /&) L-wevoeeseininnnnnn, (14)
where Ti=2x}/L ; xi=displaced position of node 1 in i, direction ; y=ratio between height and projected
- length L; and 7 and {2 are defined, respectxvely, as

:—IZ‘-, 5:»% ........ v“””“““;‘“““““””“f ............................. e e ‘..‘.‘,.,.......‘T(ISOR{ b)

which are expressed as : ‘

=/1+79, E=TA (Y =TT covverrmmrrmeore et (16-a, b)

The main equilibrium path for y=2.5 is shown in Fig. 3 by the solid line, where the ordinate and
abscissa are non-dimensionalized intensity of the force and vertical position of node 1, respectively, Also
shown by the dashed lines are the changes of the nondimensionalized magnitudes of two eigenvalues D, , and
D, of which zero values detect the location of critical points. Six critical points are found and marked as
points A to F and all of them are single critical points, The figure shows that the critical points A and B,
‘and also E and F are bifurcation points and the critical points C and D are stationary points. This
classification can be easily made analytically?. At the single critical points A and B, the incremental
equations, Egs.7 and 8 together with Eq.3, take the following form ‘

DiwATIAZI=0, DSATI=AS, (@) Az +(af (AT + (P (AF=R? wovvoeroeon (17-a, b, ¢)
where . : :
Dfn=2 EA(y—%}) (— L/E 3/ €5)/ LF e vevremeeesenesiieioi (18)

Selecting a,—.az—-l /L and a,=1/EA, the initial values for the first iterative solutions on bifurcation
paths can be computed from Eq. 17 for a given R. The first equxhbnum points were obtained by solving
Egs.1 and 3 by the Newton-Raphson method with the initial values so obtained. Then the bifurcation
equilibrium paths were extended in the same way as for the main equilibrium path starting from these first
points on the bifurcation paths following the established standard procedure by using the Newton-Raphson
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Fig.4 Main and Bifurcation Paths of Example 1. Fig;G Part of Main Equilibrium Path with
) Critical Points of Example 2.

method. The bifurcation paths so obtained are shown by dashed lines in Fig. 4. Employing the Green’s
strain tensor instead of Eq. 12, Pecknold et al.® did not obtain the bifurcation points B and E, and the
bifurcation paths from points A and F are obtained by solving the governing equations directly.
The critical points A and B and also E and F coincide at y=4/5.75, and critical points B and C and also D
and E coincide at y=+/7. The former case needs special attention since D¢,, vanishes and the next third
order terms in the first incremental equation must be considered to obtain definite values of Ax; which

yields : .
ng(Axi)3/6+ch,m(Ax})(Axé)l/zzo ................. P O (19)‘
where : ‘ :
Df,mrﬁEA(1/§3“6/§5+5/§7)/L3 ............. TS N ST TR P R SR ST SN (20.3)
Df,lzzzz EA [1/53_3/55_3 (7_'53)2/55_,_15 (7_53;)2/57]/1‘3 .......................................... (ZO’b)

Equation 19 together with Eqs. 17-b and ¢ yields solutions on the main and two bifurcation paths, The
number of bifurcation paths in this case exceeds the maximum number given in Ref. 2 and 3 but agrees with
the one given in Ref, 7. Since both eigenvalues are zero in the latter case, the two incremental equations
become nonlinear as

nzAx1Ax3 0 Dm(Axl) /2+D”2(A.’L‘3) /2 Af ................................................... (21)
where . i :
D§,22=6 EA y— F7 [ 1/53 7 —jé)z/gsj/Li’-.........‘ ......................................................... (22) .

Solving Egs. 21 and 17-c yields initial guess solutions on the main and one bifurcation paths.
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Tabie1 Increment Vectors (X107%) at Bifurcation Point C of Example 2 for R=0.001.

N T IR T T T - : 6 o1 e 9 o 1 112
axi i -0.11 4 o011 | -008 | 006} o 06 { -0.06 | o0.00{ 0.00!-0.10{ o010 {-0.10 0. 10
Axé' i 0,00 0.00 | ~0.10 | ‘0.10 | -0.10 I oo oo -0 0.06 { ~0.06 | -0.06 | -0.06
axy | 000} 600 000} o000 o000 | 000 o000} 000 o000} 000 o000 i o000
ax? | -0.82 0.82 | -0.41 0.41 o.41 i -0.a1 § 000} 000 -0.70f 071071 0. 71
ax2 | 0.00 0.00 { ~0.30 | 0.30 | -0.30{ 0.30 | o035 | -0.35] 08| -0.18{ -0.18 | o0.18
Axg {570 {-s.70 | 2.85 | —2.85 | -2.85 | 2085 000] 0,00 484 -a98 488 -4.94
Ax? f-0.47 § 047 | -0.41 0.41 0.06 { -0.06 | 0.20{ -0.20 | -0.30 | o.30 | -0.51 i os1
Axg | -0.20 0.20 | -0.71 o | -os 0.51 : 0.70 | =0.70 : 0.18 | -0.18 | -0.53 | 0.53
ax) | 285 | -2.85 { 570 | -s.70 ; 2.85 | -2.85 : ~4.94 | 4.84 1 0.00 1 0.00 ! 4. 94 | -4.94
axt o -o.a7 10,47 { -0.06 | 0.06 I oar{ -0oa1 § =020 0.20 | -0.51 0.51 | ~0.30 | 0.30
oxy | 0.20 | -0.20 | -0.51 o510l -0.72 ] 072 0.70{ -0.70 | 0.53 | -0.53 | ~0.18 | o0.18
Axg -2.85 2.85 1 2.85 | -2.85 | 5.70 | -5.70 | -4.94 {aos |~ 04 : 4.94 1 0.00 | 6.00
53 1 0.2 | 0,82 | ~0.41 { o1} o041 {041 ooo{ oool-0.71 i 071 -0.71 i oo
axg | 000 {. 0.00{ -0.30 | 0.30 | -0.30 | 0.30 | 0:35] -0.35 { 018 {-018{-0.18] o.18
axy | -5.70 | s5.70 | ~2.85 | 2.85 ] 2.85 | -2.85 | 0.00 | 0.00 {-a00 | a9a ] -a0a{ 4.9
6x8 1 -0.47 | 047 { -0.a1 | 041} 008 {-0.06 | 0.20] -0.20 | -0.30 | 0.30 | -0.51°] o0.s1
ax§ | -0.20 | 020 | -0.70 | 0.71 | -0.51 i ost | o70i-0.70] 018 -0.18-0.53] o053
6x§ | -2.85 | 2.85 | -5.70 | 5.70 {-2.85 | 2.85 | 494 -4.38 | 000} 0.00] -4.0¢ ] 494
ox] | -0.47 | 0.47 | -0.06 | 0.06 | 0.4t | -0.41 | -0.20 | 0.20 | -0.51 | 0.51 | ~0.30 | 0.30
ox) | ©0.20 | -0.20 | ~0.51 | 0.51 ] -0.71 ] 071§ 0.70] -0.70 | 0.53 | -0.53 | -0.18 | 0.18
ox) | 2.85 | -2.85 | -2.85 { 285 | -5.70{ 570 | 4.94 | -4.94 | 484 | -a.94 | 0.00 | o0.00
6f | ©0.00 { 0.00 | 0.00 j 0.00 { 0.00; 0.00 { 0.00{ 0.00 0.00 | 0.00 0.00; 0.00
EA_=_10%

(3) Reticulated Truss _

A reticulated truss with the initial configuration as shown in Fig, 5% is analyzed as a numerical example
with larger degrees of freedom and hence with more complex behavior. The bifurcation paths have been
traced in Ref. 4, however, the initial guess solutions were obtained on trial basis of the solution of linear
singular incremental equations, Eq. 7, at the critical points, The truss is subjected to a vertical loading at
each node of the same intensity, except at node 1 where reduced intensity of one half is applied. Part of the
main path is shown in Fig. 6* where the abscissa and ordinate are the vertical position of node 1 with the
unit of cm and a non-dimensionalized loading intensity f. The critical points detected by zero values of
eigenvalue are marked as &, 7 and [] which indicate single bifurcation, double bifurcation and stationary
points, respectively, ‘Em‘ploying Eqs.3, 7 and § at those bifurcation points, the initial guess of the
increments of positions can be computed. Values of the initial guess of the increments of positions at the
bifurcation point C are tabulated in Table 1 as an example of the solution. One, three and six bifurcation
paths are found to emanate from the critical points A to C and this agrees with Ref. 4. The number of
bifurcation paths at the point C exceeds the maximun number given in Refs. 2 and 3 which is given as 22— 1=
3 but agree with the one given in Ref, 7. By extending the bifurcation paths, it becomes obvious that at the
critical points A and C symmetric bifurcation paths emanate whereas at the point B an asymmetric one
emanates, This classification can also be determined analytically? . ‘ Iy

4. SUMMARY AND CONCLUDING RIMARKS

There are only few works on tracing bifurcation equilibrium paths from critical points. Most of the them
are based on the potential energy theorem and utilize the perturbation technique.
The purpose of this paper is to establish a simple technique to trace the bifurcation equilibrium paths
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from critical kpoints It is a well known fact that the Newton-Raphson method is one of the most powerful
techniques to solve nonlinear equations in whlch estimation of the mmal guess solution is the most
important factor. ;

This paper presents a method to obtain initial guess vectors for the bifurcation paths from critical points
which can be utilized to obtain solutions on the paths with the Newton-Raphson method, The Taylor
expansion of the nonlinear governing equations has been used to obtain the incremental relation between the
loading intensity and positions at critical points. The relation is solved to get initial guess solutions. The
procedure has been applied successfully for the numerical’ eXamples demonstrated in this paper, i. e,
solutions on bifurcatior paths are obtained without any difficulty. Once a point is obtained on the path, the
extension of the path can be done in the same way as tracing the main path,

The numerical examples presented are on truss structures, of which elements of the second order terms
are relatively easy to formulate, Other structural elements may need complicated analytical formulation.
. In this case, numerical differentiation to compute those elements may be necessary,
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Appendix——The First and Second Derivatives of The Governiﬁg Equation of Elastic

Trusses
_EA, . D) (g o N — — —
Kz,r‘? (xi—xi)(xj_xj)+EA(l/l_1/l)8ij__I((Hnd),j_——Ki,(j+nd)“‘"1{{i+ﬂd},(.i+nd) """"""""" (23)
Ki,mz“r%gé (xi~x?) (xi— i) (xi—~ -T/'g)"{‘”E?l*‘;i [5jk(x§_x§)+ Silxi—af)+ PR ook 4] EETTELERRPREP (24)
=— Kitna, = Kisnaienar= Kiina sina=— I((i+nd),(j+nm<k+nd)= —Kivrnan=— Kismina

where §,;=Kronecker delta;and j, j and k=1 to nd.
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