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A STUDY OF THE STABILITY AND BEHAVIOR AT THE
CRITICAL POINT BY THE TAYLOR EXPANSION

By Fumio NISHINO* Wibisono HARTONO**, Okztsugu FUJI WARA***
and stzdhz KARASUDHI****

A Study ‘on the stability and the behavior at the critical points of nonlinear discrete
structural system is presented utilizing the Taylor expansion of the governing algebraic
equations. The results are compared with the previous works on the same subject. This
method is found to be much simpler to explain the subject than the perturbation method
together with the energy function which is the technique mostly used in literature.

Three examples on plane and space elastic truss structures are presented to illustrate
the analytical results,
Keywords . stability, bifurcation; nonlinear structural analysis

1. INTRODUCTION

Many structures may exhibit more than one equilibrium configuration under a given external loading.
Such structures can undergo a remarkable change in the deformation that is not associated with a failure of
the material but rather represents a loss of stability of the original equilibrium conflguratwn This.
behavior can only be explained by nonlinear theory of elastic stability, :

The study of the general elastic stability as well as the characteristics of bifurcation: points of a
continuous system was presented by Koiter?, Thompson et al.? and Huseyin? presented the results of the
similar study of a discrete nonlinear system. All of them utilized the so-called perturbation method
together with the energy function. They employed as the condition of the stability of an equilibrihm state an
axiom that a complete relative minimum of the total potential energy with respect to the generalized
coordinates is necessary and sufficient for a stable state. It is worth to note that this criterion for the
stability has only been proved on single degree of freedom system??. Britvec® analyzed the same subjects
by utilizing the same energy function but employing Taylor expansion directly without going through
perturbation technique as Refs. 2 and 3. In his analysis the derivatives with respect to a loading parameter
are present in addition to the derivatives with respect to the components of displacement vector as in
Refs. 2 and 3. The same method of Taylor expansion is used to study the behavior at the critical points¥
Recently, Nishino et al. ® studied the behavior at critical points by examining the solution of linear singular
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incremental equations at those points. Similar work is also presented by Pecknold et al. ” on single critical
points, both of them gave numerical examples on truss structures,

This paper presents a study on the stability of equilibrium state as well as the behavior at the critical
points of nonlinear static discrete structural system utilizing Taylor expansion of the governing algebraic
equations, The use of this governing equation contributes to delete derivatives with respect to loading
parameter which were present in the analyses based on the energy functlonz 3.9 and hence to simplify the
theoretical developments.

In this study any general loading system is presented without losing any generality by a sequence of
piecewise linearly varying loading within a short interval® E

2. STABILITY OF EQUILIBRIUM STATE

The governing equilibrium equations of a discrete structural system under static and conservative
loading can be written employing Cartesian coordinates for simplicity as k

Fi=K{x) (FIT B0 J3) -seemeerereseemaem st et s et (1)
where F,= i-th component of the external force vector; x =<{x;, x, :*+ x, =displacements or position
vector ; K;= j-th component of internal force vector ; and n=number of degrees of freedom of the system,

The external force F, is expressed in a general loading case as®

Fizv/‘)\f.fi(t)dt (i=1 (X ) ETRPREERTEPEPRRPRrRS: R R L T P PR PR PR R PR PP PRPPEP (2)

where f is a parameter to specify the loading path;and f(f)=i-th component of the loading pattern
vector, The loading pattern f, is considered in this study as a given quantity as part of the problem
statement, To simplify the formulation of the problem without losing generality, the external force F; can
be idealized as a piecewise linear function of f. With this idealization, f,(f) becomes constant at each
piecewise linear part whereas the parameter f could represent the loading intensity or loading history. In
this paper, f is defined as to represent loading intensity.

The principal coordinate y=<y; ¥, - ¥n,>" at a point p on an equilibrium path is defined as the
coordinate obtained by orthogonal transformation of x which diagonalizes K, (x?), the first derivative of
K, with respect to x, at the point p%. ‘ ‘

Consider a pbint p and a nearby point, (f?, y*) and (f°+ Af, y°+ Ay), respectively, on a piecewise
linear part of the equilibrium path. k Expressing the external force vector in the principal coordinate y as
G{f), the governing equations at both points can be written respectively as

G{:’:Di(yp), G{’—!‘ AGlle(yp—}-Ay) ........ RIRLLARRERLLEPE L L RE R R P E R PP P P PP T P PP PP P ( 3 a, b)
Equation 3-b can be rewritten as )
—AG= Gp D( "+Ay) .................................................................................. qseserenes (4)

If AG, is considered as a sole mhmtesxmally small dxsturbmg force in the i-th direction of the principal
coordinate, exerting this disturbing force into an equilibrium position (y*, F*) results in a change of
posmon of Ay. If this force is removed, the left hand side of Eq. 4 indicates the unbalanced force at the
position y?+ Ay under the force G?. Because of this unbalanced force, the system starts to move, If the
direction of the j-th component of Ay and the unbalanced force — AG, present at the disturbed position is
not the séme, ie (Ay)(—AG)<0 or rewriting

Ay,,AG >0 (i not summed) PP (5)
the system will start to move back and resume its original equlhbrmm position due to damping.

In the following presentatlon the summatmn convention is employed for all subscrlpt indices unless
‘otherwise stated. Summation signs, however, are used at some equations to emphasize summation,
Expanding the right hand side of Eq.3-b into the Taylor series and taking the difference with Eq 3-a
result in

AG=D2,AY,+ D2 AY,AYn/ 21+ D2y AYpAYs 3l oe +ooovssseresssinssinic Sl (6)
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where (), = d(. )/3y;. Substituting this result mto Eq. 5 leads to the stability condition of a structural
system with 5 degrees of freedom for the disturbance in the j-th direction as
DijAytAyﬁDf,kAy,Ay,Ayk/Z' (1 not summed) .............. (7)
When the first term does not vamsh the higher terms can be neglected due to the smaller quantity
compared with the first term. Noting that D?; is a diagonal matrix due to the definition of principal
coordinate y;, the condition for a stable state in the j-th direction is given as ‘
D2(Ay)>0 (i not summed) -reeeethei T T SRS N e (8)
where D, is the j-th diagonal element which also represents the eigenvalue of the first order term, For a
system to be stable, it has to resume the original position for disturbance in any combinations of principal
directions and hence all D%s have to be positive. The stability condition, then,” can be expressed as

Z}D”(Aya) 0 RETRS RPN O N EI ............. B RN (9)

This expression is known as the quadratic form of D%, which is also of K%,, the first order term expressed
in the original Cartesian coordinate or mostly known as the tangential stiffness matrix, As all Dg/s are
positive for a stable state, it indicates that K2, is a positive definite matrix. Hence a system is stable when
Eq.9 holds, i.e. when K%, is positive deflmte. This stability condition, however, has not been proved
- except for one degree of freedom system, but accepted as an axiom for multi-degrees of freedom system?-9
When at least one of D?;'s is' negative while the rest are positive, the structure is unstable and this
condition is equivalent to indefiniteness of K?,. k
If K¢, is positive semi-definite; i e, if there are s zero values of D%, while the other (n—g) are
positive, the next order term in Eq. 7 should be considered for the corresponding s equations of Eq.8. This
condition happens at the critical points where the first order term K 7; is singular. In the following
expressions, the superscript p is replaced with c to indicate that the point is a critical point. In this case it
is not proved that the system is stable when Eq. 7 holds with the summation convention being applied for all
subscripts but this condition is adopted in this paper as an axiom as adopted in the literature?? and hence
the stability condition when the tangential stiffness matrix is positive semi-definite is expressed as
DLsAY:AY s+ DAY AY;AY/ 21+ DEsmAY AYs AYrAY: /317> - ovvreveeeseininisii (10)
Assuming the first s exgenvalues are zero, the value of Ay, whlch makes the quadratic form of Eq: 9 vanish
is given as ‘
AY;=CCY CF vve G5 0 0 vvr QD rrremmmrisseesen il e e L (11)
where C{i=1 to §) are arbitrary constants. Substituting Eq. 11 into Eq. 10 and considering only the
~second order terms yields the condition of the stable state as

%i by 52 € CECI R0+ v ernseememe ettt e e 12)

i=1j=1k
The sense of C* and hence of CiC’C* take both positive and negative values depending on the sense of
disturbing forces. Because of this the structure is in an unstable state unless all D{;;, are zero. If all of
them are zero, the next higher order terms should be considered, which yields

5

=17

Mw

ZZ g D¢ Ct {CICEC DS et e e (13)

cn\»—n

1k

If the Dg,y, is positive definite, it gives a sufficient but not necessary condition for a stable state. This is
due to the fact that Eq. 13 can be regarded as a quadratic form if C’C’ and C*C’ are considered as one
variable, but in that case there exist terms such as (C?? which take only positive value. If D5 ;5 is positive
semi-definite, a further higher order terms have to be considered and the same procedure is repeated,

The method presented here gives identical results with the one studied by the perturbation method of
energy function” ¥ up to the cubic order term, i.e. Eqs.9 and 12. But the condition given in Eq.13 is
different with those reported in Refs, 2 and 3 which includes an additional term given as
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3. BEHAVIOR AT CRITICAL POINTS

In view of Eq. 6 and replacing p by ¢ to indicate a critical point, the incremental equations considering a
linear piecewise part of G, within a small neighborhood of the point and neglecting higher order terms can
be written as k ‘

cAf DL,LA Ys (i not summed) ....................................................................... cesnenaees (15)
where g;=j-th component of the loading pattern vector in the principal coordinate and g Af=AG, Ata
critical point, one or more eigenvalues are equal to zero, which is referred to a single critical point or a
coincidental critical point, respectively??  The incremental equations at these critical points with first s
zero eigenvalues are, then, expressed as® k :

g?Af=D§,mAy,~Ayh/2! (i=1tos;j, k=1 £O 73] +nrrorr st e (16‘3)

g§~Af=D§,sz; (i=s+1ton; inotsummed) ............................................................. (16'b)

(1) Single Critical Point : :

Assuming the first diagonal element of D?; is zero, and noting that if g,#0, a solution of Eq. 15 exists
only when Af=0, and it is given as ;

A =CX1 Q0 @ - [ AR R T T R R PP PP PP PP PP PP PEPLOPPERLRETED feeteesarasuretsatosaesrnsiosnosaasransntons ( 17)
Though the magnitude of C'is not determmed the existence of a unique solution shows that the critical
point cannot be a bifurcation point, but it is a stationary point since Af is zero. In order to check the
behavior at this stationary point, the incremental equation of Eq. 16-a has to be examined. After dividing

¢,; into three parts, Eq.16-a becomes ‘

GEAS =Dl AY) /24 DEnAY A+ DSy AYAY; /2 (6, =2 10 )ereesessessimsesnsenss 18)
In view of Eq. 17, | Ay| > | Aw:| (i1) at a point very close to this stationary point, the second and third
terms of the right hand side can be neglected and Eq.18 becomes ‘

GEAS = DSy (AYa)/2 reerereresmmses et (19)
This indicates that the critical point is either the local maximum or minimum point with respect to y, when
DS../g¢ is negative or positive, respectively. If Df,, is zero then the next higher order term should be
considered in a similar way which results in k

GEAS == DSy AYL S /6 -+ eererrmesmse st (20)
If D¢,y is not zero, the point is a saddle point with respect to y,, otherwxse the next higher order term
should be considered and the same procedure is repeated, ‘ :

If g¢=0, the first equation of Eq. 15 does not give any information. A solution has to be obtained
through Eq. 16 which takes the following form after substituting the (n—1) linear equation into the first
equation

0=Dfn(Ay)/2+ AAYAS +B(ASV /2o TR FREURPTRT @)
where - ; ‘
A= Zchngc/Duyand B= 2 Zplugtgf/(Df,inJ)(zza’ b)

Eqkuatmn 21 is a quadratic equat}on in terms of Ay, and Af and hence solving this equation yields two
distinct Af for one Ay, provided B is not equal to zero as k

Af =[— A AT DG B) JAY /B worvereessssesessrsmnsstsssieici s rnresseerain (23)
If the discriminant is positive, this critical point is a bifurcation point where two- equilibrium paths
intersect, ‘ :

If D¢,, is not equal to zero, Eq. 23 yields two distinct non-zero roots of Af, and hence two equilibrium
paths intersect at the critical point with non-zero slopes. The eritical point is referred to an asymmetric
bifurcation point? . Due to non-zero values of Df,, this point is unstable,

If D¢, is zero, one of the roots will be zero, and hence one of the equilibrium paths intersecting at the
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. Table 1
D;:.“ = 0 Limit Point
gy = 0
c s
o o Dl,lli = 0 Saddle Point
1,11 p¢ =90 The Same Procedu-—
1,111 re to be Repeated
Py,1 =0
D{; T 0}  Asymmetric Bifurcation Point
’
g, =0
D§ [ o Symmetric Bifurcation Point
when Bifurcation Path being .
Stationary .

critical point is stationary with respect to y. This point is called symmetric bifurcation point, when the
stationary path is the bifurcation path. The stability of this point is determined from the sign of Df;;;.
When this term' does not vanish, this point is stable or unstable, - depending on Df;,, being positive or
negative. :

This study on a sihgle critical point gives the same results as the those studied by the perturbation
‘method together with energy function? ¥ which are summarized in Table 1.

(2) Coincidental Critical Point :

Assuming the first s diagonal elements of D¢, s are zero, Eq. 15 indicates that if at least one of gf ({=1
to s) is not equal to zero, then A f must be equal to zero. This shows that the critical point is a stationary
point with respect to y for the main and all the intersecting bifurcation paths if they are present.

- When all g¢ ({=1 to g) are zero, the first s equations of Eq. 15 does not give any information, but it has
to be obtained through Eq. 16. Consider a special case where D ;=0 for i, j, k=1 to' s. In this case,
substituting the (n—g) linear equations into the first s nonlinear equations yields

s n : n n

Z (DiAy;s 95/ DiDAS+ 2 X Dilge/Din (g7 /Did (Af Vim0 ceeeeeeeeseeieise e (24)

Jj=1 k=8+1 E=8+11=8+1
The solutions of Eq.24 is given as

Af=0, E :‘: (DisnAY; 9%/ D+ % 275 Dil g/ Di(GF I DSAS =0 cvveeeeeeennees (25-a, b)

: J=1 k=541 k=s+11=8+1
Equation 25-a indicates a number of symmetric paths with respect to y intersecting at the critical point but
. the definite values of Ay; ({=1 to s) must be determined by considering the next third order term since the
left hand side of Eq. 24 does not give any information on Ay, when Af is equal to zero, eventhough all the
coefficients of the second order terms do not vanish. On the other hand, Eq. 25-b is a linear simultaneous
equations, which can be solved for Ay,/Af and give solutions on a path, in general, with non-zero slopes
with respect to y. : ‘

: (3) Number of Bifurcation Paths

The maximum number of paths from one critical point has been reported” ¥ as 2°—1 where g is the
number of zero eigenvalues of the tangential stiffness matrix, This formula is valid only when the Jacobian
of Eq. 16 does not vanish. The Jacobian can vanish with or without vanishing of all coefficients of the
second order terms in those incremental equations. Ref. 5 reported the maximum number as 3°7!, which
was derived by considering the second order terms not only at s equations where the eigenvalues of the
tangentical matrix vanish but in all # equations. Because of this, it is obvious that the formula is
over-estimating the maximum number of bifurcation paths., When the Jacobian vanishes, the next higher
order term must be considered for the first s equations until the system of equations has a non-zero value
of Jacobian®, The maximum number of bifurcation paths then depends on the minimum order of the Taylor
series expansion which must be considered to have non-zero value of Jacobian and can be computed based on
Bezout’s theorem® 19 as 252X 35X+ X {%—1 where s,=number of equations of which the maximum ;-th
order terms of the Taylor series expansion must be considered to get non-zero value of the Jacobian and s,
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+ st Fs=s ,

Example 1 in Ref. 8 shows two bifurcation paths emanating from a single critical point due to the
vanishing of all coefficients of the second order terms in the incremental equations and at the critical point
C of the second example of the same reference shows six bifurcation paths emanating from a double
coincidental critical point due to the condition given in Eq. 25-a. In these two cases, the Jacobian of the
incremental equations considering only the second order term becomes zero, and consequently, the third
order terms need to be considered. It is found that they satisfy the above formula proposed in this study, In
the case of axially loaded circular column, it is obvious that the bifurcation takes any direction yielding a
bifurcation surface. Hence it can be expected that the Jacobian remains zero for infinite order of the
Taylor series expansion.

4. NUMERICAL EXAMPLES

Three numerical examples are presented to demonstrate the theoretical results on elastic trusses of
which the governing equations as well as the incremental equations are presented in Ref. §. The bifurcation
paths are . traced utilizing the method presented in the same reference.

(1) Two Bar Plane Truss

The main equilibrium path and the elgenvalue curves of a two bar truss under a vertical loading is shown
in Fig. 1 in two dimensional space with non-dimensionalized loading intensity of node 1 and eigenvalues as
vertical axis and the vertical position of node 1 as horizontal axis, where E=Young's modules ; A=cross
sectional area ; and xj=vertical displaced position of loading point 1 with the origin at the same node 1 at
the initial loading free configuration. The detail of the numerical calculation is given in Ref 8. This
example is presented to show the case of symmetric bifurcation and stationary point and to check the
number of bifurcation paths proposed in this study. Six single critical points are obtained by eigenvalue
analysis and marked as points A to F, At critical points A, B, E and F, D¢, and gf are zero and hence they
are bifurcation points, Considering the second order term, it is found that D¢, is zero and hence one of the
equilibrium paths at each point is symmetric. The stability of these critical points are checked by
considering the sign of D{,;;. It is found that these points are unstable. At critical points C and D, D5, is
zero but g§ is not zero and hence they are stationary points. All of the results agree with the numerically
traced solution curves,

It is shown® that at height to projected length ratio y equal to v5.75, the critical points A and B, and E
and F coincide but they are still single critical points. It is found that two bifurcation paths are emanating
from these critical points which exceeds the maximum number of 2'—1=1 as given in Refs. 2 and 3." The
incremental equations in this case show that the third order terms must be considered in. the first
incremental equation as all coefficients of the second order terms vanish. This increases the number of
possible bifurcation paths. The formula for maximum number of bifurcation paths proposed in this paper is
3'—1=2 which satisfies this case,

0.8
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Fig.3 Main and Bifurcation Paths of Example 2. Fig 4 Four Bar Space Truss. '

(2 )k Three Bar Space Truss ;

- A three bar space truss with the initial configuration as shown in Fig. 2 is analyzed as the example of
asymmetric bifurcation. The truss has three degrees of freedom and is subjected to a vertical loading at
node 1, i.e. <g, g, go™=0 0 D" Computmg the first order term yields a diagonal matrix, the
elements of which are :

Du=Duu=3 EAQ/7~1/6+05/€V/L;  Dys=3 EAQ/7—1/6+(y—F/€)/L - 26-a, b)
in which : :

Y/ B PR [y B PV OO S TR e ©27-a, b)
where Fj=x3/L ; and y=ratio between height and projected length L ; and upperscript to coordinates
(1, 2, 23) denotes node for the coordinates.

The main equilibrium path is shown in Fig. 3 for y=2 by the solid line in two dimensional space with
non-dimensionalized loading intensity and the vertical position of node 1 as vertical and horizontal axes
respectively. Also shown in the same figure are four critical points of which A and D are double critical
points and B and C are single critical points, Critical points B and C where D§; is zero are stationary
points since ¢§ is not zero. The incremental equations, Eq. 16, at critical points A and D, where D, and
D5, are zero, take the following forms

DinAziAzi+ DinATiATi=05  Din(Azi)'/2+ DinlAx/2+ DinAwiATi=0;

Dsans—Af .................................................................................................... (28.a~c)
where S e i

sz:Dg,u: —Dg,zz:Z-zs EA/(szs); 10,13= 2,23:3 EA(?"‘-I'%) (_1/$s+ 1-5/55)/142' " (29’3, b)

Since gf, g5 are zero but D, is not equal to zero, the bifurcation paths are asymmetric which are shown
as dashed line in Fig, 3. The bifurcation points are unstable due to non-zero value of Df,,. All of these
results agree with the numerically traced solution curves, which consist of three bifurcation paths of which
directions are shown schematically by arrows in Fig. 2. i

For y=4/2.375, all three eigenvalues become zero at the same point, hence it is a triple coincidental
critical point. At this point, the nonlinear incremental equations become

D\,szxlez““ 5 Z,II(AxI) /2+D2,22(Ax2)2/2=0, Ds,zs(Axa) SAS e (30’350)
where L ‘
D=9 EA(y =T [—1/E 4 (7 —Th/ €51/ L2 --vvveveeoemmsionieiiin i ORI (31)

Since g¢§ is not zero, all the intersecting paths must be stationary but due to non-zero value of Df,, the
bifurcation paths must be asymmetric which is in contrary if they exist, It can be seen that at this critical
point no bifurcation paths will emanate as the only possible solution of Eq.30 is given as

Axl= Axi=0.0, Axi= i\/m ..................................................................... (32)

Since there is only one solution, it must be the solution on the main path.
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(3)  Four Bar Space Truss ;

A four bar space truss with the initial configuration shown in Fig, 4 is analyzed to show the correlation
with the proposed number of paths. The truss has three degrees of freedom and is subjected to a vertical
forceatnodel, i.e. <g, ¢, g»"=<0 0 1T. Computing the first order term with the same notations as in
the previous examples yields a diagonal matrix, the elements of which are

D =D,,=2EAQ2/n— 2/§+1/§3)/L ......................................................................... (33.3)

Das=4 EA[1/—1/EF(y =T/ EF]/L <++-ovrerrmremmemmmeniie e (33+b)

The main equilibrium path for y=2.5 is the same as in Fig. 1, with the ordinate multiplied by two. Four
critical points A, B, C and D are obtained as for the three bar truss example, of which two A and D are
double coincidental critical points, At these points where D, and Dj, are zero, the incremental equations
take the followmg form :

Dx,walAl'z—O, msAx;Ax;:O’ DSsAX =Af ovevrereeer (34'a~c)
where ‘
”3 Dzzs——ZEA(’,V ( 2/§3+3/§ /L2 ................................................................... (35)

Since g¢, g5 and D¢y, (z, J, k=1t02) are zero, the bifurcation paths are symmetric, however, as shown
in Eq.25-a, the next third order terms must be considered in the incremental equations at these critical
points which will take the following form ; ‘

Dxc,lsAx:Axé‘f‘Dim(Ax})s/G‘*‘ Df,mAx%(Aacé)z/2+ ch,msAx}(Ax;)z/zzo """""""""""""""" (36’ a)

Dg,zsAx;Axé‘*’Dg,zzz(Ax;)a/ﬁ“i‘ Dg,nz (Axi)zAx;/z+D§,233AZC;(A$;)Z/2:0 """"""""""""""" (36b)
where

Diii=D522.=6 EA@2/§—6/6+5/¢€)/L%; Diy=D511=4 EA(l/fs'“s/fs)/L3 """"" (372, b) )

D“33 Dzw3 2EA[2/§3 3/55 6/(}’ 53)2/55_*_15 y— 53)2/57]/]43 ............ B N (37.c)

Four symmetric bifurcation paths are obtained by solving Eqs. 36 and 34 : ¢ of which directions are shown
schematically by arrows in Fig, 4. The number of bifurcation paths of 4 for y=2.5 exceeds the maximum
number given as 2°—1=3 proposed in Refs. 2 and 3 but satisfies the proposed formula in this paper which is
given as 32—128, When y=4/2.375, critical points A and B and also C and D coincide and the critical
point is a triple coincidental critical point as that in the Example 2. Four symmetric bifurcation paths
emanate from this point, which is also a symmetric, 1. e., stationary point of the main equilibrium path.

5. SUMMARY AND CONCLUDING REMARKS

There are numerous works on the study of elastic stability and behavior at critical points but most of
them are based on the potential energy theorem and utilize the perturbation technique.

During the work of tracing bifurcation paths as reported in Ref, 8, it was found that Taylor expansion is
a simple but sufficiently powerful tool to study the state of stability of equilibrium and the behavior at the
critical points, ~ , ‘ :

In this study, only the Taylor expansion is utilized to investigate the stability of equilibrium states and
the behavior at critical points, This procedure is much simpler compared with the previous works by the
perturbation method together with the potential energy theorem?9, On the other hand, Ref.5 employs the
Taylor expansion directly on the energy function, of which result is not so simple as reported in this study
but more or less the same as in Refs. 2 and 3. In this paper, the nonlinear governing equations are used
directly as the basic governing equations rather than utilizing the potential energy theorem. These
equations so used also contributed to simplify the explanation. One of the examples of this simplicity is due
to the expression of the loading in the form of Eq. 2, which may be proposed for the first time in this sort of
study. In this study the loading pattern f; is treated as a given quantity and in addition it is treated as
piecewise constant function of the loading parameter, This treatment does not loose any generality.
Because of this, no derivative of variables with respect to the loading parameter appear in this study. On
the other hand, derivatives of not only the first order but also higher orders with respect to loading
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parameter appear in Refs 2, 3 and 5. This expression of the loading could also cover the so-called
multi-parameter loading system studied in Refs.2, 3 and 5 as a separate subject. To derive definite
conclusion on this multi-parameter system, a further study is needed.

It was found that the results of this study of the state of stability of equilibrium mostly agree with those
analyzed by the perturbation method? ¥ except the result expressed in Eq.13. The reason for this
difference has not yet been clarified, but left for the future study.

Not only the behavior at single critical points but also of coincidental critical points are studied by the
same method. For single critical points, the results of this study agree with those reported in Rels. 2 and 3
based on the perturbation method. On the same subject, Ref. 5 takes into account the second order terms in
all of n incremental equations at the critical points, which is not necessary and makes the formulation
complicated. The study of the behavior at the coincidental critical points is very primitive and indicating
further study is needed, Nevertheless it has not previously been reported.

The stability condition of Eq. 9 for multi-degrees of freedom system has been proved. This condition of
stability has been proved only for single degree of freedom system, but the result has been extended
without proof and used as an axiom for multi-degrees of freedom system?-¥. The stability condition, when
the tangential stiffness matrix is positive semi-definite, is yet to be proved. This paper has employed the
stability condition of this case as an axiom as employed in all other references.

The maximum number of bifurcation paths reported in Refs. 2 and 3 has been shown not to be sufficient by
simple examples while the one reported in Ref.5 is overestimated. The maximum number of bifurcation
paths proposed in this paper depends on the degree of the Taylor expansion that should be considered to get
non-zero value of Jacobian in the incremental equations at the bifurcation point,
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