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SIMPLIFIED ANALYSIS PROCEDURE ON DAMPED VIBRATION
EQUIVALENT TO LOVE WAVES IN
DOUBLE-LAYERED VISCO-ELASTIC MEDIA

By Tatsuo OHMACHF*, Shigeaki MORICHI** and Takumi TOSHINAWA***

Love weve propagation is essentially equivalent to shear vibration of layered media. On
this basis, with the introduction of a common assumption which has been employed in
vibration analysis of structures, a simplified procedure is formulated to evaluate ground
motion resulting from Love wave propagation in visco-elastic media. As the procedure
allows us to use vibration mode shapes of an elastic system without viscous damping, we can
easily evaluate response of a visco-elastic layered system in almost the same way as for a
damped single degree of freedom system. In addition, a new index called a modal response
factor is presented to demonstrate its usefulness and some comments are discussed for
laboratory experiments.
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1. INTRODUCTION

There are many reasons for a civil engineer to think it very important to predict earthquake ground
motion with a satisfactory level of accuracy. First, for example, earthquake ground motion is regarded as
an input excitation to which any civil engineering structures such as dams and bridges are forced to
respond. Since earthquake response of a structure varies appreciably with a change in characterisics of the
input excitation, earthquake ground motion plays a prominent role in earthquake resistant design of the
structure, Next, various functions of modern cities have been supported by the lifelinie network systems;,
and most lifeline facilities mainly consist of underground structures to which earthquake-induced ground
strain has caused a lot of serious damage. Taking into account that almost all large cities in Japan are
located on sedimentary lé&ers, accurate prediction or characterization of earthquake ground motion
especially associated with the surface wave components must be and has been one of the most fundamental
subjects of seismic disaster mitigation. ‘

Some parts of analytical and experimental difficulties in treatment of the surface waves can be attributed
to boundary conditions imposed on a layered structure, because horizontal length of layered media have
usually been supposed to be infinite. But if we can efficiently realize surface waves by means of layered
media of finite length, the treatment will be simplified to a certain extent. From this point of view; the
authors demonstrated in their previous paper? that shear vibration of an elastic surface layer of finite
length is fully characterized by Love wave propagation. In one sense, it isa self-evident matter because
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vibration and wave propagation are equivalent in principle. But, if use is made of the equivalence between
wave propagation and vibration motion, ground motion caused by propagation of surface waves may be
evaluated much easier than before by using vibration analysis technique to which civil engineers have been
much accustomed,

For these reasons, in this paper, the authors intend to derive some of fundamental shear vibration
characteristics of visco-elastic layered media which do not fail to serve greatly in evaluation or
characterization of Love wave propagation in the same media.

2. REDUCTION OF VISCO-ELASTIC MODE SHAPES TO ELASTIC ONES

Let us consider two-dimensional

L

double-layered systems of ‘visco-
elastic media and take Cartesian —
cc.)ordmates for them, as shown in SR I S ey, v b
Fig.1. In Fig.1(b), L is length of -l 2. - .- = .. S S A
the layers bounded by vertical sider =~ =~ ¢ R

. . Pos Nyw Gow v PLe N,s G, v
walls and H is uniform depth of the 2t2t 2t 2 2" 2t T2 T2
upper layer. As for visco-elasticity of (2) (b)
the media’ it is assumed to be of the Fig.1 Layered Models with and without Side Boundaries

Voigt-type. The essential properties ‘
involed in plane shear distortion in the direction orthogonal to the x-z plane (y direction) are shear
modulus G, viscosity coefficient 7 and mass density p of each layered medium. The free vibration
equation of motion of the system shown in Fig.1(b) is expressed by
o’u o'y , d'u d'u *u
e S A (1)
where y denotes horizontal displacement in the y direction. In this paper, subscripts 1 and 2 are assinged

to refer to the upper and lower layers respecti\}e}y, and shear wave velocities of each layer are assumed to
be 2,< v, for simplicity. Boundary conditions imposed on 1, and y, are;

Uy x=0:u2 x=0_ul sz___uE I=L:0 ....................................................................... (2)
Uy z:0= Uy o y and U z=_°°=0 ......................................................................... (3 )
ou, _ ou, 2'u, /. Ou, o u,

32 :H_O, and <Gl-?z~+ nr—a——t—a—z> z=o_<G2v§zﬂ+ 7725{—8—;) LT ( 4 )

In comparison with a case of an elastic layered system, it is usually much more tedious to solve Eq. (1)

under the boundary conditions in Eps. (2) to (4), and vibration mode shapes associated with the solution

are of a complex form made up of both real and imaginary components, Thus, for practical application, it
will be very useful to obtain a simplified solution having a satisfactory level of accuracy.

For this purpose, it is helpful to recall the damping orthogonality? which permits us to use undamped
vibration mode shapes instead of damped ones in dynamic response analysis of a lumped parameter system,
One of the simplest examples which satisfy the damping orthogonality is so-called Rayleigh damping whose
damping matrix is expressed by a linear combination of mass and stiffness matrices. In application of the
mode superposition procedure, it is a common practice to evaluate structural earthquake response by
means of the undamped mode shape vectors and damped frequencies, assuming the damping orthogonality.
A similar simplification of vibration modes will be applied to the visco-elastic layered system concerned.
Vibration modes of the corresponding elastic system can readily be obtained by setting each viscosity
coefficient equal to zero, giving

wix, z, 1)=a, sinkx cosé’l(z—H)e“‘” (5)
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uz(x, z, t)=a0 cos §1H Sinkxeé’zzeiwt ........................................................................ (6)
where g, is an arbitrary constant, and

L=vki—k*, L=vk—ki, and

k2<=%)<k(:ﬂi’i><kl<:vﬂl\), M1, 2, Beererrrerreremeaeairait s B I TP (7)

Similarly to Rayleigh damping, let the‘viscosity be expressed by a linear combination of the mass density
and shear modulus,

M=o+ DGy ANA 75 @k BGy -veveenermrsse s et (8)
where g and b are constants, Then, introducing the vibration modes expressed by Egs. (5) and (6) into
Eq. (1), and imposing the boundary conditions in Eqs. (2) to (4) lead to conditions under which the
vibration mode shapes of the visco-elastic system become identical to those of the elastic system, with a
result ;

a=0 or wvi=uv, P L S S I eredease i enniverhaesiiae aaidernes ek itesn e isenbssdanansiiobeians (9)
The second condition in Eq. (9) is abandoned because of the previously mentioned assumption 9, < v, -
The first condition is equivalent to assume that both of the layered media have a commonly specified value
of the attenuation factor @* being inversely proportional to frequency, as can be seen later in Eq. (10).
Moreover, it should be added that if the condition holds, in other words if the viscosity coefficient is
proportional to the shear modulus, complex circular frequency * and modal damping ratio h of the system
in this case are simply given by
Thw _ Tho
| 2C.= 2G2~ ......... B ERITI I SRR SRNE (10)
in which  denotes the circular frequency of the elastic system given as a solution of the following
characteristic equation,

e G [F—F
tan k;_sz:_G_l. ]];“]]; ...... (11)

In some cases, Eq. (11) gives plural sets of %, and k, for a single value of k(=nz/L). In such a case,
among plural frequencies given by w=k,v,=k,v,, a mode number m equal to { is usually assigned to the
lowest frequency, m equal to 1 is assigned to the next higher frequency, etc. As avibration shape along the
z axis is determined by a set of k,, %, and k as seeninEgs. (5) through (7), the shape in the mode m will
be denoted by W,(z) in the following
section,

lw¥*=—hotiwyl—hF=—hotiv, and h=

From the frequency expression in '
Eq. (10), it is obvious that the
frequency of realistic soil layers
whose attenuation factor Q(=
1/2 h) is usually greater than 5, is
almost equal to that of an elastic

system having the same mass density
and shear modulus, It is very impor-
tant to note, in passing, that the

foregoing formulation on shear

vibration characteristics of horizon-

DIMENSIONLESS LOVE-WAVE VELOCITY c/vl

tal layers also applies to Love waves
in visco-elastic layers shown in
Fig.1(a) with a slight meodifica-
tion. The modification is attributed" DIMENSIONLESS PERIOD  Tvy/H

to the finite length of the layers, k Fig.2 Phase Velocity plotted against Period.
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while infinite length assumption has usually been adopted in formulation of LLove wave characteristics.

In Eq. (7), the number f can be regarded as a wave number counted along the x axis. When the layer
length L is fixed, the wave number £ and the circular frequency  can take only discrete values due to the
integer n. But when the length L is continuously varied in the interval < 1< co with 5 set equal to 2, %
and ¢ will also vary continuously. Consequently, if we define a phase velocity ¢ and a period T as

C=w/k BIIA T oo /s rrerrerreeres sttt ettt et et P (12)
and plot their relation, we will obtain a continuous curve. In Fig, 2 are shown such curves for the lowest
three modes of shear vibration of the layered system with various shear modulus ratios G,/ G,. It should be
noted here that Fig, 2 which originally shows shear vibration characteristics of the layered system, shows
the dispersion characteristics of Love waves as well. This is due to essential equivalence between these
two characteristics. In fact, not only the equation of motion in Eq. (1) but also the boundary conditions in
Egs. (2) to (4) are satisfied by Love wave components whose wave length is an integer multiple of the
length L. This equivalence could serve us to evaluate earthquake ground motion associated with Love wave
propagation by means of a procedure usually adopted for shear vibration analysis of layered media of finite
length.

3. RESPONSE TO AN IMPULSIVE LOADING

The equation of motion for a horizontally layered system subjected to a dynamic loading f(x, z, t) is
generally expressed by
2'u 'u | d'u *u 2°u
— + LR, L)
o2} o Gta) o oz’ )+ a2 atow | atazz) Sz 2 2) (13)
where mass density, viscosity coefficient and shear modulus are assumed to vary with depth, and denoted

by o(z), n(z) and G(z), respectively. It is apparent from derivation in the previous section that if the
viscosity coefficient is proportional to the shear modulus,

P(Z)TE DG @) e erm e e s s s s e e (14)
in which b is a constant, a particular solution of Eq. (13) is given by
ulx, 2, i)-‘—';}; Unl ) Win(Z) @ £)- -+ coeveene S SR USROS PRUPPRRN (15)
Un(x):sinkx (ngéL) .......................................................................................... (16)
cos&i(z—H) 0sz=<L)
Wm(z): ............................................................................. (17)

costHe™ (z<0)
Substituting Eqs. (14) and (15) into Eq. (13), multiplying on both sides of the resulting equation by
G(2) Uy (x)Wn (2)/ p(z) and integrating it in the intervals 0<x<I and —co<z< H, lead to an uncoupled
equation of motion formally equivalent to that of a single degree of freedom system, with a result

Ul 1) F 200 @ mnl 1) F 0 Qi )= Foun 1)/ Mo -+ #5212t (18)
where

an(t)z-[:[L%Un(x)wm(z)f(x, 2, BNz e (19)

an=[:[L Gl U L) WE(Z)AIAZ -+ eermmeremeemeeemesemee ettt (20)

In the above process to derive Eq. (18), advantage has been taken of the orthogonality of the mode shape
functions? ‘expressed by

I U@ U (@) dz=0 (n%n)

H
[ 6)W2)Wa(2)dz=0 (mm)
When a unit impulse is applied at a point (x,, z,) pertaining to the upper layer at time #==(), the loading
function is expressed by using the Dirac delta function §(-) as
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f(.%‘, z, t):g(x_xo)g(z_zo)g(t) ................................................................................ (22)
Substituting Eq. (22) into Eq. (19), putting for simplicity p,=p,=p, and performing integrations in Eqgs.

(19) and (20) lead to

Fut)= (; SINELCOSE(Zo— H)O(1)--wwmeerermemmerneens O O OU PRSP JOE I ORI RO 23)
G,HL G
M= WK > CcoS §1H+§‘1Htan§1H+sm &LH } ............................................ (24)

Hence modal response of the layered system to the unit impulse can be readily obtained by analogy with the
unit impulsive response of a single degree of freedom system, giving

G.HA :
Qmnl 1)= ,oIf’L ! Lsinkxocosé’,(zo—H)e‘h‘”tsinwdt ..................................................... (25)
where :
AL# bl k tanbH (26)

H (G,/ G, Ycos'tH+ L Htan G H+sin*GH
A unit impulsive response in the geometrical coordinates can then be obtained by the sum of the modal

responses. When the response is observed at a point (x, z) pertaining to the upper layer, it will be

G, H
ulx, z, I)= Z]Z‘, 4 In sinkxocosé‘;(zg——H)sinkxcos{l(z~H)e"““*sinwdt -------------- @n
pHL Wa

In Eq. (27), symmetry between each pair of coordinates (x, z) and (x, z,) can be regarded as a
statement of Maxwell’s reciprocal theorem. ;

It should be noted here that A, defined by Eq. (26) is the same that referred to as medium response or
amplitude response factor of Love waves”~?. From Eqs. (24) and (26), it is obvious that 4, derives from
the integration for M,, which is independent of loading. Making A, dimensionless by multiplying G, H, we
will call it a medium response factor, In Fig.3, the medium response factor is plotted against a
dimensionless period Ty;/H for the lowest three modes of vibration, from which we can easily draw some
of findings analytically obtained in the early study on Love wave in multilayered media,

In order to evaluate contribution of modal response to total response, it is much more useful to discuss in
detail the medium response factor after dividing it by the modal frequency, as may be seen from Eq. (25) or
(27). Since the damped modal frequency w, is practically equal to the undamped modal frequency w, a
dimensionless factor G,1;4,/ w defined for elastic media can also serve to indicate modal contribution to
the total response of visco-elastic media. Thus the factor G;v,4./ w will be called a modal response factor
in this paper, and it is plotted against the dimensionless period as well as against the dimensionless wave
length in Fig.4 and 5, respectively.

It is apparent from Fig. 4 that when the shear modulus ratio G,/ G, is infinite, a peak period at which the
modal response become its maximum is simply given by T,=4H /v;,. Note that the peak period becomes

1.2
& L 12 g 1.24
= G, /G == ] -
o 104 MODE 0 (m = 0) S 1.0 1.0
64 <04 L
g 2 (py=p,) g &
g 0.8 | 17P2 & 2 ]
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Q a 16 2 B
B 2 e o @
8 0.6] = 2 0.6
z g’ 0.6 s 7
5 S H
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=
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Fig.3 Medium Response Factor plotted against Period.
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Fig.5 Modal Response Factor plotted against Wave Length,

shorter than T, with a decrease in the shear modulus ratio. These are consistent with the so-called quarter
wave-length law of Love waves®. Moreover, when the shear modulus of the upper layer remains constant,
response amplitude decreases with a decrease in the shear modulus ratio. As for response of higher modes,
contribution to the total response decreases by roughly 1/3, 1/5, - of the fundamental mode with an
increase in mode number m. This is also consistent with the ILove wave characteristics described
elsewhere?. The modal response characteristics illustrated in Fig, 4 and 5 will be useful in practical
evaluation of ground motion caused by Love wave propagation, since the motion can be evaluated by
summing up the modal responses appropriately as stated earlier.

4. DISCUSSION FOR EXPERIMENTS

Well-designed experiments serve so greatly for us to understand the before-mentioned equivalence
between Love wave propagation and shear vibration of a surface layer, that some comments for the
experiments are added in the following,

In case of the shear modulus ratio G,/G, being infinite, the equations and resulting characteristics
mentioned in the foregoing sections are drastically simplified and provide a useful guide to vibration
experiments, In this case, the modal response in free vibration is reduced to

—hwt

qmn(t)=;}ﬁ)~;sinkxosinszoe SN g dweverereeneeee s PSPPSR - (28)

where k=nz/L, s=@m+1)x/(2H), and
wa= l_hz .................................... et ereaatahoaeacoe e aeaaan, ‘; ...... P fetseseetanniecnencnenanans (29)
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at \
13.0 Hz T (n=1) (n=3)
(a)
at .
= +
13.8 Hz (n=1) (n=3)
(a) at 13.0Hz (b) 'at 13.8Hz (b)
Photo1" Standing Waveforms observed in Experiments. Fig.6 Decomposition of Observed Waveforms.
5 3 Thw
w= 011/ k + s and h_——-__ 2G ................................................................................... (30)
1

It should be noticed that the above expressions are valid for any homogeneous layer with visco-elasticity of
the Voigt-type resting on a rigid basement, because the damping proportionality in Eq. (16) is always
satisfied implicitly. ,

It has been well known that a frequency response function and an impulsive response function are one of
the Fourier transform pairs. Thus, for a sinusoidal excitation applied at the point (x,, 2,), the modal
ampiitude g%, at frequency w, is directly obtained by calculating the Fourier transform of Eq. (28), witha
result

- 4 1 ‘ ‘
R P PP 31
q oHL \/(w— wo P+ 2ha ) 81

In practice, however, it is not easy to apply a concentrated loading at a point inside the layer, whether

the loading is impulsive or sinusoidal, Instead, it is much easier to give rise to vibration modes by means of
a shaking table, When the layer mounted on a shaking table is put into vibration by sinusoidal table motion
1o exp(iwet), the loading function is given in the form

U 2, B)m DUa@R @+ (32)
In this case, the definite integrations for F,(t) and M,, result in
_ 2= (=14 2 iwot —PHL k
Fuid1) 2m T ne® pHLu,wie and  Mn=" (33)

By analogy with sinusoidal vibration of a single degree of freedom system, the modal amplitude g%, is found
to be

« _ 81— (=1} UoWD e
Gmn @m+1n7" yf(w— o P+ 2hw, (34)

Note that two expressions for ¢, in Egs. (31) and (34) have a formal resemblance, but that there is a
significant difference between them; that is, the factor {1—(—1)*}/(2m+1)n is present in Eq. (34). This
implies that, in vibration experiments using a shaking table, vibration modes corresponding to even

numbers of n are hardly induced, and that higher modes are more difficult to be observed than in
experiments applying a concentrated loading. Thus, one who intends to observe higher modes of vibration
should be very careful in the experiments, otherwise he is likely to misunderstand them.

Photo 1 shows two examples of standing waveforms observed in a series of viration experiments using a
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shaking table. A description on this experiments such as material properties and dimension of the specimen
can be seen in our previous paper?. ‘At a first look, the waveform in Photo1(a) appears to show a
vibration shape in the mode for m =0 and n=1, but it should be noticed that the middle part is appreciably
longer in wave length than side parts, The waveform shown in (b ) looks a little strange because there is no
node showing zero displacement between the two clearly observable antinodes. Each of these waveforms
can roughly be decomposed into two vibration mode shapes, as shown in Fig, 6. Note in Fig. 6 that both
observed waveforms are made up of the same two components, but-that the vibration mode shape for n=3 is
reversed one another. Hence it is reasonable to think that a modal frequency for m =( and n=3 should lie
between the two frequencies 13. ) Hz and 13. § Hz. But a purified vibration shépe in this mode can hardly be
observed even just at the modal frequency because there will be a considerable amount of contribution of
the fundamental mode (n=1) to the total response, unless damping of the medium is very low and the modal
frequencies are wide apart each other,

5. CONCLUSION

To simplify a tedious process of ground motion evaluation associated with Love wave propagation or
shear vibration during earthquakes, free vibration and impulsive response of double-layered visco-elastic
media have been investigated, with the following conclusions :

(1) If it is permitted to assume that every layered medium has a commonly specified value of the
attenuation factor @ which is inversely proportional to the frequency, the evaluation process is drastically
simplified because vibration mode shapes of a visco-elastic layered structure become identical to those of
the corresponding elastic structure.

(2) Even if viscous damping is involved in elastic media, the frequency of the layered structure is
practically equal to that of the purely elastic structure. Thus, all we have to do in the evaluation is to take
account of amplitude decay with time and space, which can be done in almost the same way as a response
analysis for a single ‘degree of freedom system.

(3) Instead of the medium response, a newly defined factor which is tentatively referred to as a modal
response factor has been presented here. The factor has proved to be useful in direct evaluation of modal
contribution to total response or spectral amplitude of impulsive response.

(4) Careless observation of vibration mode shapes is likely to lead us to misunderstanding of higher
modes, This is mainly due to the fact that the modal contribution usually tends to decrease rapidly for the
higher mode, This should be beared in mind especially in a vibration experiment using a shaking table.

(5) After all, since there is essential equivalence between Love wave propagation and shear vibration
of layered media, a lot of Love wave characteristics can readily be derived from a viewpoint of vibration
analysis of structures. ‘
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