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AN EXPRESSION FOR SOLUTIONS TO THREE-DIMENSIONAL
ELASTICITY PROBLEMS IN CYLINDRICAL AND
SPHERICAL COORDINATES

By Isamu A, OKUMURA* and Takayoshi ONAKA**

Solutions to three-dimensional elasticity problems in cylindrical and spherical coordi-
nates are proposed as useful solutions to non-axially symmetric deformations. The solutions
with the aid of potential functions of displacement take into account effects of heat and body
forces in general forms. A harmonic vector of potential functions based on Boussinseq’s
solution is replaced by a vector field consisted of harmonic functions according to
cylindrical and spherical coordinates. This method facilitates the determination of
potential functions enough for the theory of elasticity. Expressions for potential functions
and components of displacement of non-axially symmetric elasticity problems in cylindrical
and spherical coordinates are definitely presented in due consideration of practical
applications to stress analyses.

Keyword : elasticity, three-dimensional problem, hollow cylinder, hollow sphere.

1. INTRODUCTION

A number of studies on three-dimensional elasticity problems, even if they are restricted within finite
elastic solids such as rectangular prisms, thick plates, circular hollow cylinders and hollow spheres, have
been done by many investigators in the course of the long history of the theory of elasticity. The solutions
used in their studies are divided broadly into Boussinesg’s solution” governed by linear second-order
partial differential equations and Galerkin’s solution? governed by linear fourth-order partial differential
equations, These two solutions are classical and fundamental solutions to three-dimensional elasticity
problems and are applicable to elasticity problems in arbitrary coordinate systems included in orthogonal
curvilinear coordinates, However, after that, more convenient solutions for practical applications
according to boundary conditions or coordinate systems have been reported by some investigators.
Papkovich-Neuber’s solution?, Dougall’s solution® and Youngdahl's solution? referring to Boussinesq’s
solution have been found. Also, Michell’s solution®, Hasegawa’s solution® to axi-symmetric problems and
Muki’s solution” to semi-infinite solids referring to Galerkin's solution have been found.

Papkovich-Neuber's solution among these solutions has a defect that two or three components of the
vector potential of displacement couple with each other in cylindrical or spherical coordinates, This defect
yields a difficult subject with not only the complexity of solving differential equations but also the need for
the investigation on an independent relation between each solution. Boussinesq’s solution and Galerkin’s
solution have also this defect in orthogonal curvilinear coordinates except rectangular Cartesian
coordinates, This defect has not been settled also in the extended Neuber solution® ¥ used so far by one of
the present authors, though the investigation on an independent relation between each solution has been
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done, Youngdahl’s solution in cylindrical coordinates has a complexity that Poisson’s equation must be
solved to determine potential functions of displacement and, after that, appropriate solutions to elasticity
problems must be chosen, Though the method of analysis for axi-symmetric problems in spherical
coordinates is almost established at the present time'®, the studies on non-axially symmetric problems, by
the general method making use of potential functions of displacement seem to be a few except for the study™
by one of the present authors. This study using Boussinesq’s solution in which potential functions of
displacement have been obtained from solving a system of linear partial differential equations with three
unknowns and, after that, the investigation on an independent relation between each solution has been
accomplished has stated only the result without the process of derivation of the solutions.

As stated above, even at the present time, simple and plain solutions to three-dimensional elasticity
problems in orthogonal curvilinear coordinates, for instance, cylindrical or spherical coordinates seem to
be not clarified. From this point of view, this paper proposes simple and plain solutions to be available for
non-axially symmetric problems in cylindrical and spherical coordinates and indicates concrete expressions
for potential functions of displacement and for components of displacement. The solutions proposed in this
paper are generalized to taking into account heat and body forces in both cylindrical and spherical
coordinates, In case of the absence of body forces, a simplification that all potential functions of
displacement as well as them in rectangular Cartesian coordinates reduce to harmonic functions is
attempted. This simplification is accomplished by the investigation on an independent relation between
each solution and on decomposing the coupled governing equations of a harmonic vector?.

2. GENERALIZATION OF BOUSSINESQ’S SOLUTION IN ORTHOGONAL CURVI-
LINEAR COORDINATES

If we let y and b a displacement field and a body force field, respectively, the displacement equation of
equilibrium for an elastic solid with a temperature field T are as follows :

—11 ) b ST UUS U
grad divu—"7"5-=grad T+=0 (1)

1
1—2v

in which G, v and « denote the shear modulus, Poisson’s ratio and the coefficient of linear thermal

Vig+

expansion, respectively. By Helmholtz’s theorem', the body force b can be expressed as ;.
b=grad,8+rotr .................................................................................................... (2)

in which g and 7 denote a scalar potential and a vector potential to be determined from given body foces,

respectively, Substituting Eq. (2) into Eq. (1), we have
. 1 RG240 . ) BN Sy SR PR
Viuty—5-graddiva—= "5 " 9grad T+G(grad,8+rotr) (3)
Though there are some solutions to Eq. (3), we employ here the following solution based on Boussinesq’s
solution :
26u=9rad(¢o+r . /\)"4(1*1/)/\**‘21"01; c9+gradx ..................................................... (4)

in which r denotes the position vector in orthogonal curvilinear coordinates, and ¢,, A, ¢ and y are a
scalar potential of displacement, vector potentials of displacement and a thermoelastic potential of
displacement, respectively. Substituting Eq. (4) into Eq. (3) multiplied by 2G, we have

grad[2(152 vigtp)+ 210 v vt 2o i) vix—aET|]
“4(1—11) 2/\+21’0t(7 §+t)=0“" ......................................................................... (5)
in which the following relations are used :
Vigrad ¢o=grad V¢, V'rotd=rotV®, Vi (r-N=r: V2A+2divA-eeeee (6.a~c)
If we have
VZ¢0=_11—_2: B, VZX:IGLE PAm=(), VEFmm g ereestrnnrensees i (7. a~d)
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equation (5) is satisfied for y=1/2. In the case where b=0, we can put that

B0, oS e (8 a b)
From the above equations, equations (7.a,d) become ; ~
V24 =0, P2 mm e ecvermnsmneseoren s e 9. a, b)

Then, equation (4) except Y yields Boussinesq’s solution,
Thus, Boussinesq’s solution has been generalized to taking into account heat and body forces.

3. SOLUTIONS TO THREE-DIMENSIONAL ELASTICITY PROBLEMS IN CYLINDRI-
CAL COORDINATES

If we consider Eq. (4) in cylindrical coordinates (r, 8, z) as
shown in Fig.1, we have

2Gu=grad (47 - N4 (1~v) A+2rot I+grad P (10)
in which s i

u“[ur, Ueos uz}y r:[f," 0’ z]i A:[Aﬁ AB, A2]9 (9:[19“ &69 &z}

...................................... (11.a~d)
24— 1—2v 2 aE o

V¢0_ 1__)/ ﬂy V)( l_V
...................................... (12. a~d)

Vi= o +l i.{.i O D e (13) Fig.1 Cylindrical coordinates.

Tor' ror rtaf 9z’ ; ;
Laplace’s equation (12.c¢) in the vector field can be expressed in the components of vector potential A as

Ar 2 Oho . Ao - 2 OAr
=0, V’As— +—~ 26

From the above equations, we finda system of linear partial differential equations with two unknowns, that

=, 72A2=0 ......................................... (14. a~c)

is, A, and A, Though the system can be solved by an ingenious method, the solutions must be checked by
independence from the solutions in Eq. (12.d). To avoid this complexity, we replace vector potential A
with a certain vector field as

- ERNS ¢ 1 O$ O¢s o :

A=grad ¢,+ = (¢3 ¢,}) [ 37 T 89 32 } .................................................... (15)

in which e, denotes the unit vector, and ¢, and ¢, are harmonic functions satisfying Laplace’s equation as
V2¢1:0, P 2 mm (e re e e (16. a b)

Relation (15) is exactly held to satisfy condition (12. c) that A must be the harmonic vector, as indicated in
the following equation :

via=V?igrad ¢+ v? {aaz (¢3‘“¢x)} =grad Vi¢,+ (V $:—V 2P @ == e 17
Substituting Eq. (15) into Eq. (10), we have
¢1 3¢3 ‘ o¢1 1 9 I

2Gu= gr‘ad(¢o+r Ey R )—4(1—u){ar,7 20 az]+2rot0+gradx ------------- (18)
The components of displacement, from the above equation, are expressed as :
3¢1 a¢s 1 0% 9% a)( ;

2GU,= [¢o+7' 37 8 —4(1—v) ¢1]+2< - 30 ) ............................. (19 a)

1 2] ¢ op: 9, 9192 1 ax ‘
2GUe= r 20 {¢0 or +z 22 41—=v) ¢1}+2< ) _;._a_g .......................... (19.b)
_ 3 op | O 1 2(r8 ) 199, ox
26u=%, [¢°+T or T2 5y 40—V ¢3}+2 [7 or  r o8 ]+§ """"""""""""" (19.9

in which the governing equations of ¢,, ¥, o, ¢ and ¢, are expressed in Egs. (12.a,b,d) and (16.a,b),
respectively. In the case where h=0, on considering Eqs. (8.a,b) and independence from the potential
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functions of displacement in Eq. (15), we can put that

=m0, Pgmm 0 v e e e r e (20 a, b)
Then, ¢, and 9, reduce to harmonic functions as
v? Gom=0, WG mm( cve e vr et (21. a, b)

The components of displacement in case of zero body forces and zero temperature are obtained from
putting y=0, &=0 and J=0 in Eqgs. (19.a~c) as

o, o o8,
26u,= aa,r{ ot av’;+ $s 41—y ¢1} 3 DG ©22. )
1 9 O a¢3‘ o8,
2Gu3—7“§~{¢°+7‘5¢ + 2z 5% —4(1—w) ¢1}~.2 T e e (22.b)
o, Oy ;
2Gu = aa [ o+ 7 Eys +z 32 _.4(1_1,) ¢3J ......................................................... POPPR (ZZ.C)

in which the governing equations of ¢,, ¢, ¢, and §, are expressed in Egs. (16.a,b) and (21.a,b),
respectively, Hence, it is found that all potential functions of displacement reduce to the harmonic
functions. This result yields simple and plain solutions in which the potential functions of displacement are
easily determined and no investigation on an independent relation between each solution is needed. The
harmonic functions in Eqs. (16. a, b) and (21. a, b) in the cylindrical coordinates are easily obtained by the
method of separation of variables. The potential functions of displacement for non-axially symmetric
problems of circular hollow cylinders are as follows ;

Z‘, Z 08 MO {Jn (ansTAWs cCOSh ansz+ L sinh ansz)+ Yo (ans 7 (A% coSh ansz

Mm=0 $=1

+Lms sinh amsz)}_!_mi;o; cos mé cos ﬁnz {D(T}L)n I (ﬂn?‘) (Z> o Ko (ﬂn’l" } ...................... (23. a)
¢‘:§o§“ COS MO COS Bz {F 8 In (Bat) F F &y Ky (B )l vreeveereeeeeseemeeeiececicicicieeis (23.b)
$y= 5:]0 5; €08 MOy (ansT) (Crs cOSh ansz+ My sinh apnez)+ Yo (ans 7 CE coSh ansz

T MZ S SIARN Qg2 )7 crrrreee e e r e 23.¢)

8= }i] f_‘, sin m6 {Jn (ans 7\ Biws COSh ansz+ Gis Sinh ans2)+ Yn (ans T Bs coSh ansz

+ G2, sinh aps2)+ Z] Z‘, Sin MmO COS Lo {E S In (Bat )+ EZ K (B )} -oeveeeeeeeeeeeoenes (23.4d)

in which J,, (ans7) and Y, (ans7) are Bessel functions of the first and of the second kind, respectively.
Also, I.(B,r) and K,(8,7) are the modified Bessel functions of the first and of the second kind,
respectively. Furthermore, a,and 8, are characteristic values to be chosen according to given boundary
conditions, and AYy to E%, are arbitrary constants to be determined from given boundary conditions. It is
convenient to replace circular function cos 8,z in Egs. (23.a,b,d) with sin 8,z in such a case as a
cantilever cylinder subjected to a edge load. If we affix superscripts (1) and (2) to components of
displacement derived from Bessel functions and the modified Bessel functions, respectively, the
components of displacement with superseript (1) are as follows :

2GU Z 2 COS mé {Jm 1 amST fl Jm+1 (ams"')fz (Z)+ Ynos (amsl") 91 (Z)

i“;,,,jl(amr)gz(z)} ............... (24. a)
26uf= 33 3 (=52 sin m8 -1 (ans) £ (2)+ Jnes (@nst) fo (2)+ Yo (ana?) 61 (2)

- Vrr (@msT) Ga ()} +rereerermmemmeass et (24.b)
2Guf m‘?‘ SE_] s COS mB{Jm (ans7) fi (2)+ Ym(amr)g3 ()} eermermmemenne e (24.¢)
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in which
fi(2)=(4%+2BY,) cosh ansz +H{LRs+2GRs) Sinh ansz+ Cls ansz sinh ansz
+ MY, amez COSh amez R T S e e (95. a)
o (2)=(A%,—2BY,) cosh ansz+(Lis—2G5s) sinh ansz+ Chils ansz Sinh ansz :
F MY @psZ COSI @ e eeremsersnsrem e ot (25. b)
fi(2)={A%,—(3—4v) Cid sinh ansz+{LYs—(3—4v) M7d cosh ansz
+ COs amsz COSh ansz +Mm$ UmsZ ST Qg Zreererrsrersrrmeermmsmm s (25. c)

and g, (2), 9.(z)and g, (z) are obtained from changing superscript (1) affixed to the arbitrary constants
into (2) in Eqs, (25.a~c). The components of displacement with superscript (2) are as follows :

2GuP= ZZ " c0S MmO COS Bz [Inr (Bnr) D+ (m—4+4v) Fay+2ER)

Mm=0 N=1

A+ Inor Brr) DS —(m+4—4y) FO,—2ED I+ 2F %, (8n7) In (Br7)]

+,,,Zo,{: <_—> c0S MY COS Bnz [Knr (Bn7) (Dint(m—4+4v) F i+ 2ER
+ Kns1 (Ba) (Din—(m+4—4v) Fon—2ERn—2F 50 (Bat) Kn (Bur)]ooeeeveesmeeeseeeeens (26. a)

26uy=3, 531 ( —%) Sin M0 ¢S Bz [Inr (Bur) (Dt (m—4-+4v) F it 2ES}

—Inr Brr) DI —(m+4—4v) Foy—2ES ]+ Z} Z Bn sin mé cos Bz

[Kn- l(ﬂn NDGn+(m—4+4v) an+2Emn}—Km+l (ﬂnr {DEn

—(m-+4—4y) an“ZEmn}] ............................................................................ (26. b)
2612 =33 32 (=62) COS MO Sin B2 U (BaT N Dt M F30)+ F i (Ba) I (87}

+ 35 31 (=84 COS MO Sin £z (K (a7 Dl mF 5o)— F i (BaT) Ko (Bar ) -0+ (26.¢)

The required components of displacement are the sum of two amounts with superscripts (1) and (2). If
we have components of strain in the cylindrical coordinates from the components of displacement in Eqs.
(24. a) to (26.c), components of stress can be obtained from Hooke’s law, though they are omitted here.
Thus, the generalized solution taking into account heat and body forces has been proposed as a solution
to three-dimensional elasticity problems in the cylindrical coordinates. Also, the potential functions of
displacement and the components of displacement for non-axially symmetric problems in the absence of a
temperature and of body forces have been indicated as a particular case of its solution,

4. ADDITIONAL SOLUTIONS TO NON-AXIALLY SYMMETRIC PROBLEMS IN CYLIN-
DRICAL COORDINATES

The solutions stated in the latter half of Chap.3 are fundamental solutions to non-axially symmetric
problems, However, there are some cases in which given boundary conditions are not satisfied by these
fundamental solutions alone, Hence, an additional solution as hereafter provided for is needed. However,
a certain solution, even if it is taken as an additional solution, is not always an appropriate solution. The -
.desirable solution as an additional solution is one, as much as possible, without coupling with the
fundamental solutions when boundary conditions are prescribed. From this point of view, the solution to
the state of plane strain seems to be the most appropriate solution as an additional solution. If we consider
the case of zero body forces and zero temperature, the potential functions of displacement in Eqs.
(16.a) and (21.a,b) are expressed in the following harmonic functions :

m+2
r

Z} DY cos mor™+ Z] D% cos mbr ™+ Z} D cos me[ 5 —(m+1) r”‘z’]
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o —-m+2
MZ_ D2 cos m&[ ’I‘2 +(m“l) ,rmeZ} ........................ gt (27. a)
o ,rm+2 £ T“m+2
=2, Fmcos mb'{ 5 —(m+1)r"z }+m2=2 Ficos mﬁ[ 5 —t(m=1) r""z’} ------ (27.b)
P ,’.m+2 ™ ! ,r—m+2
9z0= 25 Em sin mﬁ{ 5 —(m+1) r"‘zz}-i"g;z Ef sin mﬁ{ 5 Hm—1) r""zz]

.................................................................. (27‘ c)
in whlch DY, to E'Z, are arbitrary constants, Substituting the potential functions of displacement in Eqs.

(27.a~c) into Egs. (22.a~c) and putting

QG U =m0 e e e e e (28)
we obtain the following relations : ‘ ;
B%~_mpm, e S SO SRS (29.a,b)

Furthermore, eliminating the term of 2 included in two components of displacement, that is, 2G4 and
2GuY, we obtain the following relations with the aid of Egs. (29.a,b) :

E%:z( —-y) Fmo, :_.2(1...”) F(mmo .................................................................. (30 a, b)
Substituting the relations of Egs. (29.a) to (30.b) into Egs. (27.a~c), the potential functions of
displacement for the solution to the state of plane strain are obtained as : ‘

Poo Z‘. D cos mér™ —Z} mF 5 cos mé { 72 —(m+1) 7 }+Z. DYy cos mér™
—Mm+2 .
+Z mF2 cos mﬁ{ 7”2 +(m—1) ,r—mzz} ........................................... R PR (31.a)
7Il+2 —m+2

=ﬂ§ Facos mﬁ{ 5 ~(m-+1) r"‘z’}-kgz F% cos mﬁ[ r +{m—1) r"”‘zz} ~~~~~~ (31.b)

m+2

2

Seo=2(1—v) Z Fi, sin m&[ ~(m+1)r”‘z2} 201 wu)Z F, sin mé

{ 7‘"27"+2+(m_1)74—m221 ................................................................................. (31.¢)

The components of displacement obtained from Eqs. (31.a~c) are as follows :

ZGu‘”- Z cos mO{mDu, r™ ' —F2 (m+2—4v) r""“%—g‘,l cos méi{m D% r™?

—Fa(m—2+4y) ,rm+l§ ................................................................................ (32.a)
C2GuY=— i} sin mé {mDy, 7™ '+ F& (m—4+4y) r~ ™ — 2;} sin m@{mDE r—™*

F(U (m +4— 4,,) mH} ................................................................................ (32. b)

7)o | T PPN (32.¢)

Simple solutions to axi-symmetric problems are also needed for non—axzally symmetric problems as
additional solutions, They are

B 2 2 2
$000=D0s 108 T, $r00=Fuo (%“22)’ B3.00=Coo (%__7:?> ...... TS (33. a~c)
in which Dq, to C,, are arbitrary constants. From the above equations, the components of displacement are
‘ Do
2GuV= _______2 (1—2v) Fer, ZGUM)”‘O 2GuSV= _2 (1__2,’,) CgoZ wwreermremremrnmrnninnns (34. a~c)

Thus, the solution to the state of plane strain and the simple solution to axi-symmetric problems which is
also needed for non-axially symmetric problems have been indicated as additional solutions.

5. SOLUTIONS TO THREE-DIMENSIONAL ELASTICITY PROBLEMS IN SPHERICAL
COORDINATES

If we consider Eq. (4) in spherical coordinates (o, ¢, §) as shown in Fig.2, we have
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2Gu=grad (¢o+r - A—40—v)A+2rot¥+grad y - (35)
in which
u={1o, Us, Ug)y T= =[p,0,0], A= [y Aoy Ao, 9= [0y S @e}
: ORI PO P A E RN S R S (36. a~d)
‘V2¢o=—11__‘_2: B, Vix= =0, V9=—1

Cl 209 1 o ,cotp 2 1 &
Q0 P Op P Ev: 3¢ o'sin’g 08*
Laplace’s equation (37.c) in the vector field can be expressed in the
components of vector potential A as ‘
2A _2cot 2 9 2 9
2[\0 p2 p2 [ /1¢_,"J_2 a¢ pz <n p 28 e S A (39 a)
As ,la/\o 2cot ¢ a/\e: ) )
o'sin’ ¢ p° 09 p’sing 90 ,
Ao 2 9% 2cotg P
o'sin’¢  olsing 00  p’sing 06
From the above equations; we find a system of linear partial differential equations with three unknowns,
that is, A,, A,and A,. Though the system can be selved by a complicated modification with great length, the
‘solutions must be checked by the investigation on an independent relation between each solution in the same
manner as the solutions in the cylindrical coordinates. To avoid this difficulty, we put vector potential Ain
Eq. (36.¢) into the following equation :

A=r (¢ +2r - grad ¢,)—( - r)grad ¢

vi=

Fig.2 Spherical coordinates,

Vil

Vi

_ 2 (o)) o (o) 1 2lo)
= i:p ap S a¢ : Sin ¢ 38 iI ...................................................................... (40)
in which ] -
T Y RN O S RT RHOEFE  F TNP Vet R R L (41)

Relation (40) is exactly held to satisfy condition (37. c) that A must be the harmonic vector, as indicated in
the following equation :
VIA=V?*{r (¢ +2r - grad ¢ E— 2y - r)grad ¢}
=2grad (¢,+2r - grad ¢,)+r 5V ¢ +2r - grad V’¢}—grad2(r - grad ¢,)
+(r - r) V?¢)—2{29rad ¢,+(r - grad)grad ¢,—r V¢,
=2{3grad ¢,+2(r - grad)grad ¢,—3grad ¢,—2(r - grad)grad ¢,
+rBVeig+2r - grad Vig)—(r - rigrad V¢, ~
=rBVi+2r - grad Vigl—(r - r)grad Vg, =0 «----rr-cieerr 42)
In the derivation of the above equation, some formulae for vector calculus and the following relations are
used :
Virg)=rv? <a+2grad o, rotr=0, divr=3, (4-grad)r=4;
Vi(r- A= T2ZAF ATV A oorerrrerrmerrmrrs e (43. a~e)
in which ¢ and A are arbitrary scalar and vector fields in the spherical coordinates, respectively.
Substituting Eq. (40) into Eq. (35), we obtain '
zau=grad{¢o+p2 8%)51)}_4(1_u)[p a(gf’), agzsl), Shll ; a(apgsl)]
F 20t G Grad Jf -oeeerrr e (44)
The components of displaceinent, from the above equation, are expressed as :
a¢o ) { 3 (pgy) 2 {a(&e sing) 9%, ox

o 720 1P B0 ’(3“4”)(”¢‘)]+psin¢ 26 30 | T 50

2G U=

J+
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19¢ 2 [ 0log) 21 1 2% é(p&) 1 9x
ZGU¢ ; 5 +a¢ [ ap +4( —y)(p¢l)}+;{sin¢ Y ap } ;)_._éa ................ (45’[))
1 o 1 2 [ oled) 3 (09) 3%,
2Guo= psing 96 ' sing 96 {'o 20 +4(1_V>(p¢‘)}+;[ o0  o¢ }
1 D
S Sin "é? ............ (45' c)

in which the governing equations of ¢, ¥, O and ¢, are expressed in Egs. (37.a,b,d) and (41),
respectively. In the case where =0, on considering Egs. (8. a, b) and independence from the potential
function of displacement in Eq. (40), we can put that

_ oleg)  2Med) 1 2lpd)
S=p ET) 9= 56 o= Sing By (46. a~c)
Then, ¢, and ¢, must be harmonic functions as
V2Bom=0, W o ymm e er et e e (47. a, b)

The components of displacement in case of zero body forces and zero temperature are obtained from
putting y=0 and from substituting Eqs. (46.a~c) into 8, 8, and & in Eqgs. (45.a~c) as

8¢o o [ 9lpg)
2Gu,= + a{pmgp__(3~4y)(p¢l)] ....................................... P (48. a)
a¢o 2 (p¢) 2 2 op,
2GUus= p o6 == Y {p R +4(1_u)(p¢1)}+m 36 <3¢2+2 50 > ......................... (48.b)
_ 1 9, 1 o[ 3l AN
26u=5 i a5 taing o 1P g AUV )| 25 5 (s9t20 50 ) (48.¢)

in which the governing equations of ¢,, ¢, and ¢, are expressed in Eqs. (41) and (47.a,b), respectively.
Hence, it is found that all potential functions of displacement reduce to the harmonic functions, This result
vields simple and plain solutions to elasticity problems in the same manner as the solutions in the
cylindrical coordinates. The harmonic functions in Egs. (41) and (47.a,b) referring to the spherical
coordinates are easily obtained. The potential functions of displacement for non-axially symmetric
problems of hollow spheres are as follows :

¢0=g‘$ g’;‘o COS MO P2 (1) (Annp™+ Dy ™) eeviemmeiiii (49. a)
gﬁo COS MO P2 (14) (Erm0+ Copfp ™™ )00t (49. b)
E 75\; SN 76 P (1) (Lo 074 Mign™™*V) -+ vt (49. ¢)

in which A,, to M,, are arbitrary constants and
den (ﬂ)

du™ ;
The associated Legendre function of the second kind, that is, QT () is eliminated from Eqs. (49, a~c),

HECOS @, PI(u)=(1— )™/ ol st (50. a, b)

because its function is not bounded at =41, Substituting the potential functions of displacement in Eqs.
(49. a~c) into Eqs. (48. a~c), the components of displacement excluding the rigid-body displacement are
as follows :

2GU,= Z gj Amm e cos m PE(u )+i‘, fl Em(n+1)(n—2+4v) 0" cos m6 P (u)

N=1 M=0

—Z(I—ZV)EOQ,O—ggocos mﬁP,’f(ﬂ){Dnm(n+1) D — Comn (n+3—4v) o7

D0 e e e (51.a)
2Gu¢>:“'§m§=; cos mé {Anmp sin ¢ dl; ( ) Zan (2n+3)pn WLSIIJI;LQ(S#)}
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in which the solutions with possitive powers and with negative powers to base p are solutions to internal and
to external problems, respectively. If we have components of strain in the spherical coordinates from the
components of displacement in Eqs. (51. a~c), components of stress can be obtained from Hooke’s law,
though they are omitted here.

Thus, the generalized solution taking into account heat and body forces has been proposed as a solution
to three-dimensional elasticity problems in the spherical coordinates. Also, the potential functions of
displacement and the components of displacement for non-axially symmetric problems in the absence of a
temperature and of body forces have been indicated as a particular case of its' solution.

6. CONCLUDING REMARKS

As mentioned in Chaps.3 and 5, Boussinesq’s solution, Papkovich-Neuber’s solution and Galerkin’s
solution heretofore in use have a defect that a determination of potential functions of displacement is
complicated and an independent relation between each solution must be investigated, when their solutions
are used in orthogonal curvilinear coordinates, for instance, cylindrical or spherical coordinates. Paying
attention to it, this paper proposed simple and plain solutions to non-axially symmetric problems in both
cylindrical and spherical coordinates and generalized Boussinesq's solution to taking into account heat and
body forces. Relations (15) and (40) which replaced harmonic vector ) with the vector field consisted of
harmonic functions facilitated the determination of potential functions of displacement and needed no
investigation on an independent relation between each solution. Therefore, we can say that these relations
are available for constituting some solutions and are a new approach to three-dimensional elasticity
problems. Also, the solutions in case of the absence of body forces have an advantage that all potential
functions of displacement become harmonic functions like those in rectangular Cartesian coordinates,
Furthermore, the solutions in Eqs. (22. a~c) in cylindrical coordinates have a wide range of application
such as extends to the solution to a transversely isotropic body. Though the complexity that rising and
falling of the degree of Legendre polinomials according to internal and external problems is needed even for
axi-symmetric problems is usually found, the solutions in Egs. (48. a~c) do not have this complexity even
in case of non-axially symmetric problems by virtue of the replacements of Egs. (40) and (46.a~c). The
body force b, without its direct use, was expressed in the sum of the gradient of a scalar potential and the
rotation of a vector potential with the aid of Helmholtz’s theorem, because the replacements of A alone
without coupling with b were aimed throughout. Though some studies on elasticity problems of an
anisotropic body have been recently reported, appropriate solutions to various types of an anisotropic
body, needless to say, can not be found except for definite solutions to an isotropic body. In consideration
of the premises, the present authors may conclude that the solutions proposed in this paper are fully
available for three-dimensional elasticity problems.
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