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ON CONVERGENCE OF GEOMETRICALLY NONLINEAR
DISCRETIZATION AT LIMIT ELEMENT DIVISION

By Masahiro A* and Fumio NISHING**

By focusing on to what extent strain energies are approximated, this paper intends to
derive the conditions for a discrete model to converge at the limit element division to the
original finite-displacement elasticity. A criterion for that convergence is presented in a
general form. Further, especial expansions are made to find out which discretized
relations might be linearized at the limit. As a result; a natural classification of
discretizations for finite-displacement small-strain problems is proposed.
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1. INTRODUCTION

Regardless of small or large displacements, being of a variational problem is one of the most fundamental
properties of an elastic deformation. Therefore, a set of governing equations formulated are examined on
their completeness by seeing whether they are mathematically of a variational problem. For instance,
there are various theories for the beam bending such as the primary linear theory, the beam-column theory
and recent formulations for truely large displacements®# 19 While these theories are suject to their
own restrictions on displacements and/or strains regarding the actual phenomena, it is to be noted that
even beyond those restrictions, the governing equations of the above theories remain to be variational
problems, respectively, Thus, whether or not a set of governing equations are of a variational problem
depends upon analytic relations between relevant functions and/or functionals, but is not affected by how
large values they take in general. Besides the actual restrictions, the preservation of being a variational
problem is a basic necessity for the consistency among governing equations. In the recent analyses with
using digital computers, various discretizations of geometrically-nonlinear-elasticity problems were
made. While simplifying rigorous relations is sometimes effective to economically obtain useful results, in
some existing such discretizations, however, we can find the absurdities to yield variational problems,
Obviously, remaining of a variational problem is necessary for the completeness also in a set of discretized
relations, since it is so in the original elasticity.

A time has past since we recognized it useful in discretizing the geometrically nonlinear problems to
separate the degrees of total freedom of an element into the parameters of its rigid position and those of its
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deformation. There exist now many researches and numerical calculations made on that approach¢".9~9.9
910121016 - Recently, a few studies on those discretizations as for the beams were presented to find out
what simplifications can be made to obtain the exact solutions at infinitesimal divisions®9. Soon later, a
discussion about the conclusion of those studies was given?. In this paper, further considerations are made
to attain, in a general form, a criterion for that convergence. According to an especial consideration made
further on which discrete relations might be linearized at the limit, a natural classification of the
discretizations for finite-displacement small-strain problems is proposed,

2. COMPATIBILITIES IN DISCRETIZATION

Assume a set of differential governing equations for a finite-displacement elastic continuum are
prescribed, where the body’s spatial configuration is described in terms of a finite number of functions of
some or all of the Lagrangean coordinates, {y°({%), =1, -, A, A=1, -, A} (fundamental unknowns)
Denoting the remaining convected coordinates by {s?, o=1, --:, 2} where A+ =3, aset of [£!, £, &)=
{(¢£%), (s%)} are complete as 3-D (dimensional) Lagrangean coordinates : for a 3-D field problem, {£%=
{(¢*, &2, &%)} and for a problem of 2-D or 1-D kinematic field, {¢9={¢*, £?), (s))} or ={(&Y), (s, s2),
respectively. Let the domain of {{*} in the body be denoted by L, and the domain of {s% at each {£¥ | by
e, ~ |
In those equations, we can make the following summarizations : A set of coordinates {¢*} which will be
called a point in kinematic field {y°(¢*) refer to a material point (A=3) or a set of such points on C (£%) (A
<3). In the kinematic field, we can consider such a set of parameters X (£*), which will be called a spatial
position of point {{*, that their values at {{*} determine spatial positions of all the material points on C (£%).
On the other hand, the spatial configuration of domain C (&) is to be determined by the analyticities of
functions {y?(¢*) at {¢Y. Thus, in general, X (¢ is related to {y°(£*)} and their derivatives in the
form :

X (B D O (EP) e eeemmeeeme et (1)
where Dy is a set of nonlinear differential operators on {{*}-field. It is to be mentioned that the parameters
of X might take any values at a point, but they can not distribute independently over domain I, For, they
are restricted derivable by (1) from differentiable {y?(¢£*). Similarly, we can consider a set of strain
parameters ¢ (£) whose values at {{*} describe the strain distributions on C (¢?). These parameters are also
related to {y?(¢*)} in the form :

¢(§A)=D¢{X§(§A)} ..................................................................................................... (2)
where D, is a set of differential operators, usually containing once higher derivatives than p,. If &=
const. in a domain of {£*f, we call it a constant-stain state of the domain in the kinematic field. For given ¢
at {£*, the conventional strains, i. e, the Green’s strain components e (£%), at material points of C (&M are
assigned by their {s%-coordinates :

e(éta)zre(¢;80) ...................................................................................................... (3)

With the above preliminaries, we consider the following discretization of the original continuum :
Among various ways of element subdivisions, we choose such one that for any M of an infinite sequence {M}
of ordered natural numbers, a division into M elements is uniquely given, and that each element domain
vanishes at limit pf—oo : :

where |AZ?|, denotes the norm of maximum differences of {¢| within element (e). Let the size of an
element be denoted by

L(@(:j;) dL>:j...L) B e n A e eer e N (5)

and =3¢, L, . the total size (we use L to denote both a domain of {¢} and its size). Let the joints
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associated to M -division be numbered as j=1, -, N. ;

The spatial positions of the joints are called joint positions and denoted by |X}=|X;, j=1,--, N|. Leta
set of those X, which lie on element (e), or a set of parameters in a regular transformation from those, be
denoted by {X}., and called an element position. While, to yield a discrete model, - each element is to be
geometrically interpolated in terms of its {X},, we further separate the parameters of {X},, into the two
sets of parameters, p, and e, to define its rigid posiiion and deformation, respectively :

ve=1I"% (X}e)

Q@:‘IE(LXh@)
For instance, after constraining the element’s rigid displacements by applying a certain statically-
determinate support at its joints, we can take the remaining degrees of freedom in {X}, as €., and the
spatial position of the support itself as p,"”. In case of this separation, first, a deformed configuration of
(e) is assigned for ¢, through a certain interpolation, and, next, by translating and rotating it as a rigid k
according to p,, we obtain a final spatial configuration for {X},. Let the configuration be denoted
by {)}"({")}(@, {EM €L, in the same way to {y°(£%)|, where superimposed "~ means a quantity after
discretization. ‘ : :

For any {¥°(¢"), we estimate with the use of (1) the associated joint positions, and, by the
interpolation, we reconstruct another configuration, {¥° (e, 1&4 €L, e=1,, M. Here, we assume
the following compatibility in the discretization : when the spatial positions of the joints are estimated still
more for the interpolated configuration, they precisely coincide at limit M —co with the joint positions
used to produce the {¥? (M),

3. CONVERGENCE CONDITIONS

The strain energy of a continuum subject to the kinematic field is a functional of {¥°(¢*), and the
functional reflects any elastic properties. Then, by whether or not the sequence of }-division models
attains to reproduce the exact strain energies stored in any configurations of the continuum, we can see the
convergence of the discretization at limit Jf—co to the original elasticity. This has been a conventional
way of the proof for linear elasticity problems®#7-19, ‘

By denoting the conventional strain-energy-density function related to e (£%) by @ (e), the associated

stress tensor is represented as

0 (@)(DB ] Q)T ++++++vvssere et et ek L (7)
In the kinematic field, we define stress resultants M (¢?) conjugate to ¢ (£*) such that inner product
(M- 5¢) dL gives the real work done in domain C (£*)X dL by the stresses during infinitesimal §¢ from ¢.
By relation (3 ) and equation ( ./c. PR SedC) dL=(M-5¢) dL, the constitutive relations between M and ¢k
are represented as

M(¢)=/C::\)[8Fe/9¢]TadC ........ - (8)
Strain-energy-density function 4 (¢) defined by §4=M - ¢ on {g”‘}—field is represented in terms of @ (e) as
A(¢)=L§A)@([‘e(¢;sa))dc ...... N B LR ERAAEIAEN (9)

Here, as an allowable configuration subject to the kinematic field, we assume any {¥° (¢*)} for which A (¢) is
(piecewise) continuous in L.

In the discrete model, we define deformation force f,, of element, conjugate to deformation ¢, such that
for infinitesimal §e,, from ¢, inner product £, e, gives the real internal work during §¢., done by the
forces acting at the element’s joints. Similarly, element force {F},, is defined such that for § {X},, from
{Xle, {Flo®01{X}e represents the real external work done by the forces at the joints.

In an interpolated element with the separation of {X}, into p, and ¢, the distribution of strain
parameters ¢ (%) is determined by deformation €, and we obtain its strain energy in terms of ¢ :
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_f (€3 EN) AL wereverereesesemseenenneee s e 10)

apart from the geometrical interpolation, by directly assuming a (convex) scalar function

Or

U (€), we can suppose an associated elastic element. From the above definition of £, we can relate £, to

ﬁ(e) (e) as
Fir (€1 (B f BENT, -+ ++vemversmsmesmssues bt sttt (11)

By considering the statics as a rigid on the deformed configuration (or by taking account of the reactions

s

in the statically-determinate support) (:[Qhke)), and by rotating the force components according to p,,
(:[Tre)), we can relate the element force at arbitrary {X}, to f,, in the form” :

fF}(e):[Qﬂe) (xD] fo

[Qrel=[Tre (0)][ Qe (€]
It is to be noted that matrix [ Q] is not indpendent of the ¢, —{X},, relation : by denoting the derivatives of
(6-b) as N

i =[ Qe LXD] 81X gy -+++v-vererremromsemsmenme ittt bt (13)

from the equation of virtual work, {F|}, 6 {X},=F% 0eo, we can see the contragredience :
[ Qe (XTI @y (X7t (14)

When for simplicity, each {X},, be a set of the relevant joint positions lying on (e), element positions | X5}
={Xls, e=1, -, M| are then obtained by picking out their relevant joint positions from {X}, which is
expressed in the form :

I =L Sl L - evereereerss st b s (15)
where [ Sy] is geometrical continuity matrix of elements of zero and unity. Here, joini force F, is defined, in
the similar way to f,, and {F},, such that for infinitesimal §X, from arbitrary X, inner product F;-§X,
represents the real work done by the forces on j during the §X,. For element forces {Fio}={{F},, e=1,

-, M} known, we can obtain each of joint forces {Fj}={F;, j=1,--:, N} by collecting their relevant
elements of {F;) :

e 1 1 P P PP PP (16)
where from the equation of virtual work, {F\"&{X}={F;"¢{Xz}, the force continuity matrix [S;] is
related to [S,] as

IR I L ey a7
Denoting the external forces at joints by {P | in the same way to |F'}, we obtain the equilibrium equations as
(F, X =) S {Fel= { B R EE R LT PER PP (18)

In the above relations, the existence of elements’ strain-energy functions l}(e,(e) together with
contragredience relations (14) and (17) holds the discrete model complete as an assembly of elastic
elements, or being of a variational problem.

By dividing the entire domain of the continuous hody according to the M -division, let the exact strain
energy in each subdomain for any [y°(¢{*) be denoted by

Ue>:Le)A (¢) QL e e e (19)

When A (¢) is continuous, by condition (4 ), quotient U,/ L., converges to the strain-energy density over
the limit domain :

}‘im Ue / Lo=Ae - JEREEE e (20)

On the other hand, with the use of (1), we evaluate the joint positibns associated to {y?(£*)}. And, by the
use of (6-b), (10) and (15), we obtain the strain energies U « of the discrete elements, Now, we assume
that the approximation is attained in each element to the extent :

z}lglo (l}mr" Ui/ Ligym=10 -++-+-ereersernsaatrmmesise st et e s (21)
Then, the difference -of the two total strain energies is developed as follows :
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lLim Zg=1 l}(e)" U (%7(0})1 _S_}LIE Z}Aefzx ] 0(9)— U(e)i =L },’{{}, ZZ:I 9(%)‘ I ﬁ(eJ_ U(e)[ /L(e) beses i (22)

where g% = L/L. Now, condition (21) together with relation Y ¥, 8% =1 leads to the convergence :
T S0, o= U (0] -+ veeeemme e e (23)

Moo

The above expansions are a little more generalized as stated in Appendix | to deal with finite jumps in

A (¢)-distribution,
4. REQUIREMENTS OF CONSTANT STRAINS AND FOR LINEARIZATION

By the assumption of A (¢) being continuous for allowable {y°(¢%)}, strain parameters ¢ ({?) are also
continuous in the body. At limit Jf—co, obviously, ¢ (¢£*) become relatively constant, say ¢, within each
subdomain, Assume that the sequence of M ~division models with the joint positions associated to |¥® (¢£*)}
attains to reproduce the same constant strains in each element :

}}12 &({A)zﬂe) . consi. ({§A§€L(e)> ................................................................................. (24)

In this case, provided that the strain energy of each element is exactly estimated for the geometrical
interpolation, it is easy to show that criterion (21) is satisfied : since (};—-»(ﬁe,, then

lim (U e — ae))/L(e)ZL;mlm Lﬂ [LA() = Algho)] AL/ Ligym00 «-wrvevrenessssnssnsesssasiiiains e (25)

Mooo
Further, it is sufficient for the above requirement that by choosing adequate values of {X},, (or ¢,), each
element is capable at limit I, —0 to produce any pertinent constant strains. For, a set of constant strain
parameters uniquely determine the deformation state of domain L, regardless of the domain being of the
continuous body or of the discrete model. As the joint positions are evaluated for {y°(¢%)} through (1)
(satisfying any compatibilities at the limit), the discrete elements with the above ability yield the same
constant-strain states ¢, e=1---, M, at M—co, by necessity.

Next, we consider that a strain-energy function Uy, (e) sufficient for (21) is decomposed into several

terms ©

[](e)(e)z l}(e)l (e)+ [}(e)z (e)+--+ L}(e)K(e) ...................................................... deeieieriiiedienas (26)
To attain the same convergence, then, we can neglect any such term [, that

l}l}g l}(e)k/L(e}zo ........................................................................................................ 27)

We make it by the Taylor expansion as

Uele)=F ewL% €0 [ o €k ATTE (€7) ++vrvereessememe st (28)

where f£%,=initial deformation force at ,=0;[k"],=initial tangent stiffness between £ and g, ; and
AU=higher term than ¢?, containing any nonlinear effects. Under the former requirement of constant
strains, we can say that if

lim A [}{;/L(e):o for €e producing any constant Straing: -« +-«+reroeesrreerrtarti (29)

HERLY

convergence (21) is held by using the associated linear interpolation :

N

UL (e)=FU em% € [T €y eeovee e (30)

5. APPLICATION TO PLANE-FRAMES

We follow the discretization of plane-frames developed in Ref. 1), and, here, emphasis is put on how the
fi— € relation can ultimately be simplified with preserving the convergence to the exact solutions.

(1 ) €(e)—{X}(e) and {F}(e)_f(e) Relations

Consider a plane-beam element (e) in two dimensions, with {x, y} as the background Cartesian
coordinates and @ as the deflection angle measured from the x-direction, We choose parameters of {X},, as
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{X}(e):{(x’ Y, Q)A, (x, Y, B)B}(e) ............ (31) 4545 B' B X, xp .

By applying the simple support at the two ends, A O—M o L8

and B, to constrain its rigid displacements, we L Teq+en

have the following parameters for ¢, and pg, 1 1 v le, R

respectively ( : Fig. 1) : : NE " _?’_r
Co=le, on ede | L (32-a,b) | 7
V=T, Ya, T}(e) (e) 73 J

Those are related to {X}, of (31) as ! . pelotormed and B\Q% ’
e=vVX'+7 /1—1 o
pa=6,—arctan (y/m‘f) Fig.1 Parameters of Deformation and Rigid Position.
@s=Gs—arctan (/%)
r=arctan (G/X) - reeeeeeeene (33-a~d)

where (%, Gl={xs—x,, ys—yd;and [=original (arc) length of a beam element.

By decomposing the forces acting at the ends into components in the way stated in Sec, 3, we obtain the
following . {F}., conjugate to X}, of (31) :

{F}(e):{(Fx, F,, M)A, (F;c, F., M)B}(e) .............................................................................. (34)
where {F, FJ={x, yl-components of a force;and M =moment in §-direction, And, we obtain the
deformation force conjugate to ¢, of (32-a) as ~

f(er_‘{Hl, MA, MB}(e} ..................................................................................................... (35)
where H=tensile chord force between the two ends, The associated [Qp,] of (12-a) is obtained as

T —cosz/l, —sint/l, —sinz/1 ]
—sinz/l, cost/l , cosz/l

0 s 1 , 0
. [Qne> AXDI=1 - e (36)

cost/l , sint/l , sinz/l
sinz/l , —cost/l, —cos /1
L 0 , 0 , 1 _le ;
where [ (=yF+7")=(14¢) I. Now, it is not difficult to confirm contragredience (14) in (33-a~c) and
(36).

(2) A Sufficient f,,— e, Relation

When a plane beam with uniform cross-section undergoes large deformations under the Bernoulli-Euler

hypothesis, they cause only the normal strains in the logitudinal direction. Describing those strains by the
unit elongation, not by the relevant component of the Green’s strain tensor, we assume that the strains
make the associated normal stresses arise proportionally even if they are finite. Under those assumptions,
the following governing equations are obtained”

. ec({)=vxd+ys—1 }

—1v9 Relat : C L , b e 37.,})
¢~1x°) Relations k(Q)={—y6 xi+xt ydt/lad + y¢ 72 b
oo d (1 [x6, —Yo N Pef\ 100
Equilibrium Equations : dé‘(gs[y:;, z }{(M'"ﬁ)/gc;+ ﬁyp“iﬂf (38)
Constitutive Relations * N=EAes M=—FEI(k—FK") oo (39~a, b)

where ¢=Lagrangean coordinate along original length of neutral line (prime means the differentiation with
respect to ¢) ; E=Young's modulus ; 4 and ] =area and moment of inertia of cross-section ; ° (&)==initial
curvature ; {P. (£), Dy (¢) and 7 ({)=distributed external force components and moment per unit of
¢51x6(8), yo(¢)l=one-parameter equilibrium curve ; e, (¢) and % (¢)=unit elongation and curvature of a
neutral line (g;=1+¢¢) ;and N (¢) and M (¢)=axial force and bending moment.

" ‘Suppose element (e) in a plane frame which undergoes large deformations. We can see that at limit |
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—0, los @80, 0}, and the initial curva- Ha A B

oa b Fo= i :
ture becomes relatively constant. To focus 4-—-? e ) G X
e arar ar ar o v s

on its deformations, we transfer (e) as a Fx

i
rigid to the basis position and make it M {Xe (), Yo )} "Fv
subject to the simple support ( : Fig.2). (1+¢)0 [
Then, ‘y; (£)< x (¢) for small enough [. By

introducing {x%, yod—lgs, 0} with no exter- : : 1 !
nal forces, we can reduce (37-a,b) and Y
(38) as follows : ; Fig.2 Deformation of Beam Element
ec=xc—1, k=ys/xc (40-a,b) :
AN @ (MY e :
&= ¢ g,)=0 Wi*a, b)
And, the associated boundary conditions are reduced to
2c(0)=0, xc(D)=01+¢)!
Z;(O):O, yc(l):-'d"z ....................................................................... (42-a~f)
G _ aYs _
dxe §=0_¢A’ dxs | ¢= ?B
We can solve the above differential equations together with (39-a,b) as follows :
xc(§)=10+¢e) € ‘ ‘
..................................................... 43-a,b
Uel€)= 11+ O E—26+ ) gt (E— ) 1.
N(§)=EAeiconst. e, (44-a,b)
M (8)=EI{(—6&+4) a/ I+(—6£+2) @5/ 1+ k% '

where £€=¢/]  normalized coordinate. The associated f,— ¢, relation and strain-energy function are
then obtained as

Hl

EAl €
My} = AEI/L, 2EI/1 | {@a} | EIEY | ciovioemi (45)
Ms 2EI/1, 4EI/1] | s —EIk°

Uw=EIk* (01— @5)+ EAL/2 24 2ET [ 1+ (@2 @i+ @a@p) -+ v+rveveereosemeesimemaioniiii (46)
It is to be noted that excepting only y(£) in which ¢ might be finite, the above f,— ¢, relation and U (@ are
exactly same to those of the linear theory for small displacements. The limits relevant to [@,, @ at [—0
are related to the continuous quantities as follows

lim {@at o5, a— o/ 1=10, M/EI— k%

IL]E;I (pat os)/ P=—(1+ ey Q/6EI

where Q (¢)=(1+es) ' dM/d¢ : shear force in cross-section, By the use of these limits, we can estimate
limit (20) for the present U @ of (46) as

~

lim U(e)
-0 L(e)

As for the continuous beam, in accordance with the foregoing paper?, the spatial vector element
corresponding to material d¢ with distance 7 from the neutral line is given by di=(1+ ec—nk) d{i,, and
the longitudinal force acting on area element dA of the cross section is represented as dF =¢.,dA .=
EecsdAi,, where e..=unit elongation defined by (| dI|—|dI°|)/d{ ; os-==stress component conjugate to
€s¢; and i ,=unit vector into {-direction, Then, by integrating & (dU /d¢)= | dF -6 (dl/d¢)=| E (ec—
7 (E—k°)dec—ndk) dA=EAesec+ EI (k—k°) 6k, we can see that the exact limo Ue/ L(e)=dAU /d¢is
equal to the result of (48). Now, we confirm that convergence (21) holds for the interpolation defined by
(45) and (46), and that the higher terms ignored on the simplification are really negligible in the sense of

=~EIk°k+‘E24 ei_g__Ezi T L T P RS PRTE (48)
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27).
6. DISCUSSION ON FURTHER SIMPLIFICATION IN SMALL-STRAIN PROBLEMS

In the discretization into small enough elements of a finite-displacement small-strain problem, we can
see that each element is largely translated and rotated, but that its deformations are small. Then, the
matrix [Qhe(€)] of (12-b) which holds the element force in equilibrium as a rigid on the deformed
configurations does not change so much as the matrix [ Ty, ()] does for large rigid displacements. It
seems, therefore, reasonable to use the initial [Q7 ]=[ Q% (0)] . const. on any stage, instead of [Q}, (€)]

: variable. Let the alternative element force be denoted by

[FIE=[Qte (0)] Foy=[ Trie) (DI LQIE] Foy ---+vommmrmmrmmemmsmm e (49)
However, when the tangent stiffness is derived by differentiating the above {F[} with respect to {X},, the
expansion yields at least asymmetry of its geometrical stiffness matrix, with implying no path-independent
work done by {F[% on paths of {X},. In some existing studies, we can see such discretizations as employ the
above {F'}¥. In the following, we discuss the admissibility of that approximation.

We focus on the difference between the works done by {F},, and by {F[¥, during a common change of { X},
within small strains, For precise discussion, consider the plane-beam element dealt with in Sec,5. For
the exact [ Qqe] of (36), we can obtain the associated [Q¥,] by replacing [ (=(1-+¢) I) by [ in the matrix.
Consider a typical element position {Y}w, in a largely deformed plane-frame, {x.(¢), 7, (&), within small
strains, with €, and 7, being its deformation and rigid position. Let the element be displaced from the
basis position, eq=0 and p,=0, to the {X}, in the following way : first, be deformed to &, with
preserving p,,=0, which we denote as e, (0), 0=<0=<1 (¢, (0)=0 and ¢, (1)=7¢) ; and next be displaced as a
rigid to B, with|e=€,, which be denoted as (o), 0<p'<1 (v (0)=0 and v, (1)=7,), see Fig.1. On
the first path, the element position is represented in terms of the independent ¢, (o) as

{(x$ v, 0)/19 (x’ Y, s E {() 0, ¢A( ) i(1+e( )), 0, ¢3(,0)E .................................................... (50)

Trivially, the work V,, done by {F},, is equal to the stored strain energy [ . By integrating § V=
{FIE 6 | Xlo=F o[ Qkel” 6 |X], with the use of the [QF,], we can see that the work V7% done by {F[¥ is also
equal to U,, exactly. On the second path of rigid displacement, the element position is expressed as

o, v, 6)a, (X, ¥, Oshe=1x4(0"), 44 (0"), Bat 7 (o)), 24 (0")+(1+F) L cos 7 (¢),
Ya (o) (14+7E) Isin 7 (o), Btz (o) v (51)

The exact {F},, obviously does no work on (51). While, since {Ff% is slightly out of equilibrium due to
ignoring the effect of deformation, it does a work on the rigid displacement. By integrating § V=
FLIQ%] 81X} on (51), we estimate it at —¢ 7 (M ,+ M), where M, and M, are associated to e by a
sufficient f,,— ¢, relation. Then, the total work done by {F}% is written as

VE= l}(e)_g? O 2 RSP (52)
Here, it is to be mentioned that the work done by [F}¥ depends upon the paths of {Xle; for,
{F ({XDIE & | X)e is not in the exact differential form. For instance, if the element is, first, displaced as a
rigid to P, and succeedingly deformed to €, with p,=7,, then exactly Vi= I7(e>= U « after the two
paths, k

We introduce (46) into (52) as a strain-energy function sufficient for the convergence. By taking limit of

VE/l at |[—( with the use of (47:-a b), we can estimate in the sense of (21) the negligibility of the

. additional work

V(e) e

tim 5 k02+% N-e_(;"“% M (E__ kﬁ)_'_a?(;g (1H B ) rrrrrrrrmrrmrre s (53)

-0 l
where a quantity with superimposed bar means associated to X, (%), T (¢). Since the present shear force
Q (¢) and axial force N (¢) are of the same order, with § (¢) being finite, the last term related to using \FE,
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instead of {F},, is comparable in magnitude at least to the second term of axial elongation. As long as the
second is to be taken into account, the additional work is thus also innegligible.

As for a general discrete element, roughly, we can say as follows . The work done by the
slightly-out-of-equilibrium | FI%, during a large rigid displacemeni is innegligible compared with such a sirain
energy as stored by the exact {F, for an equally small deformation.

7. CONCLUDING REMARKS .

As long as the compatibilities at the joints, stated in Sec. 2, are held in the .discretization, it is
sufficient for the present convergence that the strain-energy density of each (dominant) element attains at
limit M—+co to the corresponding value of the associated continuum in any configuration, or at L,—0 to
the exact value for any constant-strain state of the continuum’s corresponding portion (while those of the
vanishing elements may converge to any finite values). Alternatively, provided that the estimation of strain
energies is correct for given configurations, it is sufficient that the geometrical interpolation of each
(dominant) element is capable by choosing adequate values of its element position (or deformation) to
produce at the limit any pertinent constant strains (while the vanishing elements may yield any finite
strains). On this criterion, we can deduce which terms can be eliminated in a strain-energy function to
attain the same convergence ; e. g. by estimating the nonlinear-term’s contribution to the strain-energy
density with the use of (29) within the frame of constant strains, we can see whether or not the
deformation force-deformation relation might be linearized, ;

From the discussion made in Sec. 6, we can say that if the inequilibrium due to ignoring an element’s
deformation be estimated by the work, that amounts comparable to its strain energy even in small-strain
problems ; in the way of the deformation being smaller, the two energies are of the same order. The {F},—
f. relation of a discrete element corresponds in their role to the differential equations of equilibrium for
the continuous body. Those differential equations describe, literally, the equilibrium conditions on a
deformed differential volume element, an absolute infinitesimal element. And, we know that we can not
make them linear by choosing any small subdomains and any local coordinates. It is the same way with a
discrete element : the effect of the element deformation is to be taken into the {F},—f,, relation. The
disregard leads to the contradiction as an assembly of elastic elements, with getting out of a variational
problem. In addition, the discrete £, —¢,, relation corresponds to the continuous constitutive equations,
And, we know the validity of linear constitutive equations even for large displacements, if restricted
within small strains. We can expect the similarity for the f£,—e¢,, relation,

By the existence of elements’ strain-energy functions together with the relations of contragredience,
(14) and (17), the discrete model is assured complete as an elastic assembly. Then, in accordance with
ordered numbers of element divisions, {M}, there are an associated sequence of the complete assemblies. It
is another and our final proposition to find out such actual strain-energy functions as make the sequence
convergent to the original elasticity, Now, if there are such strain-energy functions obtained that reflect
at the limit the exact constitutive relations only within small deformations, as a natural classification, we
can call them discretizations for large-displacement small-strain problems.

APPENDIX I. A GENERALIZATION OF CRITERION (21)

Consider elements of }f-division are distinguished into two groups, e=]1,:+, M’ and e=M"+1,
-« M, where number M’ is dependent on M, in such a manner that the sum of the latter elements’ domains
vanishes at the limit ;

M M '
L%EEL(Q:L.}}EE.; QUL mm L evreee e (A-1)
M M
WM D) Lig=L-lM D) GFm0reereeorneresersmmsettriniiitt ettt (A-2)
Mso e=M+1 Moo e=M+1 .
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Let the former and latter elements be called dominani and vanishing, respectively. We apply criterion
(21) only to the dominant elements :

l}in’%(l}(e)—l](e))/ld(e):o for =1, s, M/ooreerrerenennnnsd e eeireieeanaan O S ( A.3)
[had

While, densities U 1/ Lie) of the vanishing elements are allowed to converge to any finite values. In this
case, the difference of the two total strain energies is expanded as follows ;

l](e)]/L(ey .............. (A-4)

Now, i) by the use of (A-1) and (A-3), the first sum converges to zero ; and ii ) since densities (LAf(e)m

M ~ M ~ M7 M
[lim 2} Ue—U (x°D<lim 2| Ug— Ugl=L-lim (22+ > )6
Moo e=1 Moo e=1 Moo e=1 e=M-+1

Ue)/ L of the vanishing elements converge to finite values, the total of their domains vanishing, the
second sum also converges to zero. Those lead to convergence (23).

When the distribution of strain-energy density A (¢) has finite jumps in an entire continuum, those jumps
can be covered by the vanishing elements. Thus, we can take any {y°(¢*)} producing piecewise continuous
A(¢) as an allowable configuration of the body. i
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