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INVERSE SCATTERING OF ELASTIC WAVES FOR A CAVITY

By Yoshiji NIWA* and Sohichi HIROSE**

The inverse scattering problems of determining the shape of a cavity from observed
waves are investigated by means of the Born inversion. The far-field amplitude of
scattered waves is related to the spatial Fourier transform of a characteristic function of a
cavity, which is equal to unity in the region occupied by a cavity and zero elsewhere.
However, this method is based on the long-wavelength approximation, and is not adequate
to the high frequency data. To improve the accuracy of inversion, we further propose the
modified Born inversion which is applicable even for the high frequency data. In numerical
examples, the data synthesized by the boundary integral equation are used to check the
effect of some factors of incident and observed waves on the imaging of a cavity.
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1. INTRODUCTION

Problems of wave scattering are mainly classified into two groups, The one is the forward séattering

k problems, which are concerned with the determination of the response when the shape and medium property

of a scatterer are given. The other is the inverse scattering problems, which deal with the findihg of the
shape and medium property of a scatterer from the response observed at a few locations.

As reviewed by Pao?, the major progress on the analysis of forward scattering problems has been made.
Among several numerical methods, particularly, the integral equation method, which seems to be the most
effective in elastodynamics, has been well developed and applied to various forward problems of elastic
waves? ¥, ;

Inverse problems are originally measurement problems which may occur in various research fields such
as seismology, ocean acoustics, ultrasonic nondestructive testing, biomedical ultrasonics, and so forth.
Therefore the algorithms of inversion depend crucially on recording techniques of scattering data and the
structure of the incident field. For this reason, even though many algorithms on inverse problems have
been proposed as the case may be, there seems to be no unified method for all of them®.

Among a variety of inversion algorithms, the POFFIS (Physical Optics Far-Field Inverse Scattering)
and Born inversion are a couple of widely used methods. The former is for high frequency data, and the

“latter is based on the low frequency assumption. In acoustics, the POFFIS has been elaborately
investigated by several authors®~9  Furthermore, Achenbach et al ' applied an analogous approximation
(Physical Elastodynamics Far-Field Inverse Scattering) to crack-scattering data of elastic waves, On the

other hand, the Born inversion has been studied both experimentally and theoretically by Rose and
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KrumhansI'” and Hsu et al'®, They used the one dimensional Born inversion algorlthm to characterlze an
inclusion in elastic media. ‘

In this paper, we investigate the Born inversion for scattering of elastic waves by a cavity, and modify
the approach to improve the accuracy of Born approximation in the high frequency range, In numerical
examples, the scattered data calculated by the boundary integral equation are used to examine the effect of
several factors of incident and observed waves on the reconstructed shape of a cavity.

2. INVERSE SCATTERING PROBLEM FOR A CAVITY

Let us consider an infinite body D with a cavity V in a two dimensional space, as shown in Fig, 1, For
convenience, the origin o is placed in the region V. Under the assumptions of infinitesimal deformation and
linear elastic, isotropic and homogeneous material behavior, the equations of motion for the body D are

Cosmntimny (20)+ petu: () + by (2)=0 2D e (1)
where w;, b;, Ciymn p and o are displacement, body force, elastic
moduli, mass density and angular frequency, respectively. From the
. assumption of isotropy and homogeneity of material, C,;,, are
expressed by Lamé constants A and y as follows

C”mn Aauamn“*‘ﬂ( im0t Oin Jm) .................................. (2)
The boundary condition on the surface S of a cavity V is written as
Lix)= N;Cijmnllmen (22)=0 O S ( 3 )

where 7, is a unit vector normal to the boundary S. Furthermore, the Fig.1 A cavity in an infinite body.
scattered field y;°, which is defined as u$°=1y,—u® (y . incident
field), satisfies the Sommerfeld radiation condition at.infinity.

The forward scattering problem is stated as

to determine a solution of eq. (1), subjected to the boundary condition (3) and the radiation
condition at infinity, when the incident wave field and the shape of a cavity V are given,

This problem is a well-posed problem, for which a wealth of knowledge has been accumulated. In contrast,
not much is known about the solutions for inverse problems of elastic waves, and there exists no unified
analysis for them. In such a sense, the present paper deals with the special class of inverse problems,
i.e., the finding of a shape of a cavity V when the incident wave field is known and some data of the
scattered fields are given. To solve this problem, however, we need additional constraints on the incident .
wave field and the observed waves as follows . )

(1) Theincident wave is assumed to be a cylindrical wave emitted from the source point x,, That is to
say, the body force b;(x) is a point force given as

bi(x)=fid (x —x4)
where f; denotes the direction of a point force and ¢ (x) is the Dirac delta function. Then the incident wave
u?(x, x,) can be expressed by

ul™(x, x)=Uf(x, x4 fr
where U} is the fundamental solution defined later (see eq. (5)).

(2) The scattered wave is observed at the other point x, and in band-limited frequencies,

(3)  In the simulation analysis, a series of pitch-catch tests around a cavity are carried out on
condition that the distances, 7, and 7, from the source and observation points to a cavity are large
compared to the size of a cavity, and the angle § between the vectors x, and x, holds constant.

3. FORMULATION OF INTEGRAL EQUATION

To facilitate the analysis of inverse scattering problems, we briefly review the formulation of the
intergral equation in elastodynamics.
(1) Fundamental solution
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We begin with the fundamental solution which satisfies the following equation

CommnUE s (20, Y)F P U (20, J)m=— 8upd () -+oeremmsommmermmimams e (4)
where §;, is the Kronecker delta. UZ¥(x, y) indicates the displacement in the ;-direction at x due to a point
unit force in the k-direction at y. For an isotropic, homogeneous elastic medium in a two dimensional

space, U¥(x, y) is well-known in the explicit form

Uk (xy —-[H“ (ks7) 8, ,k+k?aiak{H(o”(kT?“)“HE}](kw‘)ﬂ .............................................. (‘5)

where HY(-) is the zero-order Hankel function of the first kind and r=|x—y|. k, and k, are the
transverse and longitudinal wave numbers, respectively.
(2) |Integral representation for the displacement ;
By applying the exterior Green’s formula to the scattered field in the region D and the interior Green’s
formula to the incident field in the region V| the scattered wave 4$° at the point x; in D is expressed by the
following integral equation,

uf"'(xB):f ()Cman ™ (x5, ) k(y)dsy Xpin Dot (6)

where the superscript ' " indicates the differential with respect to the second argument of U™, i.ke,,
QU™ (x5, y)/Oyn In the derivation of eq. (6), the boundary condition (3) is taken into account.

From the limiting procedure, x;in D to the boundary point x, on S, furthermore, we have the boundary
integral equation?~*-

(85— c5) us ()= ul (20, 20+ £ 75 () ComnUT™ (200, y) ury) dsy b B R RRARALIT (8)
where ¢ u; denotes the free term of the exterior limit of the double layer potential and a slash through the
integration symbol indicates the principal value integral, We can use eq. (8) in order to solve forward
scattering problems,

4. INVERSE SCATTERING BASED ON THE BORN APPROXIMATION

(1) Characteristic function and its Fourier transform

We now introduce the characteristic function of the domain V: defined as?
1 x inV

Y (x): O x in D ........................................................................................ ( 9 )
The spatial Fourier transform of y(x) is defined by
= [ 7(x)exp(~ig-x)dS,
;»/‘/‘exp(_ Zf'x)dsz .......................................................................................... (10)
If we obtain I"(¢) from observations of scattered waves, the inverse Fourier transform
-1 v ) ettt et
y (w)=gp [ T (€ explig-x) dt (an

yields the characteristic function which represents a shape of a cavity V to be determined.

(2) Born inversion

The Born approximation, which is often used in scattering theory™, replaces the exact displacement on
the boundary S by the incident fields. Then eq. (6) becomes

ufc (xB)zﬁnj (y) ijanZ."'" (xB’ y) u;”(y’ xA) dsy. .......................................................... (12)
Furthermore, applying the divergence theorem to eq. (12) yields
u (xxs)= f{CmmU " (x5, ) uRs (Y, ) p" UL (a, Y) UR (Y, X dSy. oromemmeemeeeee 13)

From the assumption, the point x; is far from the cavity, Therefore, if only the leading order terms of
Hankel function in the fundamental solution are retained in eq. (13), we have
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ui(xp)=— 1A kL, 78) Z0:Zps G5 (k) — LA (kry 16) (81— Tsns) D5 (Fop) corovvervmrmmmmmmmmnnes (14)
where % denotes the unit.vector xjz/|x;| and &, (k) and A(k, r) are defined as

2

o, (k)

=1 00t [0, ) exp(— ks ) Ayt ikEuConnn [ By, ) exp (— ikt ) dS.)

Ak, 7)=v2 /(xkT)/* exp (ikT— in/4)

(U, 2= luftn (4, 2.+ Uy, ).

The right-hand side of eq. (14) is of the form of two outgoing cylindrical waves, one with a P wave speed
and polarized longitudinally and the other with an SV wave speed and polarized transversely.

Now we consider the scattered field of longitudinal motion due to the longitudinal point force (P to P
scattering), in which case the direction of a source force f;is given by f;=2%,;. Noticing that the distance
4 from the source to a cavity is large compared to the size of a cavity, the scattered P wave at the point x;

is expressed as

u (xp)= ki/(4,ow2)2/1 (ku 74 A (kw, 78) (00T 45X 55

+ kL CixmnZ sn andpi L on) /‘:exp (— ik (Rat+Zp)y)dSy

Eprﬁexp(— ilst-y) 7 L LR O R P P PP L PYP PP RP PRI PR PPN (15)

 where =3 ,+ %5 A comparison of eqs. (10) and (15) reveals that the two integrals differ only in the
exponential factor. Therefore we can rewrite the characteristic function as an integral in cylindrical
coordinates with the wave number %, and the argument o of the vector ¢. The result is

y (o= [ s () Wabexp (k8 -) d (ki)

:(22)2 ‘[” Im us® (200) Ul exp (ik8 (@) ) Kol £]7 dadhy. -+ovreoreomsmsecsec (16)

Similarly to the case of the scattering of P to P wave as above-mentioned, we can also formulate the Born
inversion for the other cases, such as SV to SV wave, SH to SH wave, and so on,

(3) Modified Born inversion ;

Originally, the Born approximation is valid for wave field in the low frequency range. Therefore, the
Born inversion becomes no longer valid for the data of high frequency. To overcome this difficulty, we
show a slight modification of the Born inversion in the following. Keeping in mind that the total

displacement on the boundary S is expressed by
u(x)=uf(x)+ul(x) x on S,
eq. (6) becomes

u (s — l 5 (Y) CrmaUT" (x5, y) ui’ (y) dsy= ﬁ 5 () CrmnU 7" (x5, y) Ui () dSy. -ooooeeeev 7

In Born inversion, we néglect the integral on the left-hand side in eq. (17), assuming that the effect of
scattered waves is small. The procedure of the modified Born inversion is as follows.

» First of all, solve the Born inversion and locate the boundary as the first approximate value.

» Using the boundary determined above, analyze the forward scattering problem by means of eq. (8)

and calculate the scattered waves on the boundary S.

 Evaluate the left-hand side of eq. (17).

o Again solve the inverse problem with the left-hand side of eq. (17) as a known quantity.

(4) One dimensional problem

If the cavity V is beforehand known as a circular cylindrical region, the problem is reduced to one
dimensional problem which is concerned with determining the radius of a circular cavity. In this case, the

factor 43° (x5 ¥, in eq. (16)-is free from the parameter ¢. Therefore, eq. (16) is rewritten as
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.
7(|x[)—(27[)

D S A
21 Jo

where J, (- ) is the zero-order Bessel function.

e Uk e [ e kit (o) 2) dad

kL!ﬂzugC(xB) 'F;; JO(kLtgi ’x])d/& ....................... (18)

5. APPLICATION OF THE INVERSION TECHNIQUE TO NUMERICAL EXAMPLES

We now show the application of the inversion technique to numerical examples. The scattered waves

observed at the point x; are calculated by the preliminary numerical analysis using the boundary integral

equation (8). In the following examples, the Poisson’s ratio of the body D is assumed to be (. 25.

First we take one dimensional problems in order to examine the effect of several factors on the accuracy

of inversion technique. Next we show some examples for cavities in a two dimensional space,

(1) One dimensional problems

a) Effect of band limiting of frequency

In numerical analysis, the improper integral of
eq. (18) is truncated in a band limit from (k) to
(k)max. Figs.?2 and 3 show the radial distribution
of characteristic functions for various band-limited
data. In these figures, dashed lines represent the
ideal characteristic function to be determined, All
these examples are carried out on the following
conditions,

o r=r3=5a (a: radius of a cavity) .

» The pulse-echo scattering of P to P wave is

carried out.

e The Born inversion is used.

In Fig,2, we can see only a slight difference
among the reconstructed results, Therefore the
data in the high frequency range have a small effect
on the distribution of characteristic function. In
contrast, Fig,3 shows that the lack of the low
frequency data causes the great inaccuracy of the
obtained results. This is because the characteris-
tic function depends critically on the Fourier
spectra in the low frequency.

b) Effect of the angle between source and

observation points

We next test the effect of the angle § between

source and observation points. Fig. 4 presents the
characteristic functions for the P to P scattering
with several angles. Other parameters used are as
follows,

o T4~ 155 a.

e The Born inversion is used,

o The frequency range considered is 0<ak,

=10.
Fig. 4 shows that the result for the pulse-echo

 (akp)gsn (ak Dy
0 ~ 10/V3
oo () A, 8//3
g () A, 6//3

CHARACTERISTIC FUNCTION

i 1 i H i i

-0

.4
. 1.0
0.0 /2

‘Fig.2 Characteristic functions calculated for several band-
limited data. (pulse-echo scattering of P to P wave,
Born inversion, 7,= 75=5 a)

(akL)min v (akL)max

0: ~ 10/V3
= 2/¥3 n 10/V3
s 4/¥3 0 10/V3

N

CHARACTERISTIC FUNCTION

CHARACTERISTIC FUNCTION

|
<}
-

r/a
Fig.4 Characteristic functions calculated for the pitch-catch
scattering with various angles. (P to P wave scattering,
Born inversion, 7,= 73=5 q, bandwidth of 0<ak,=<10)
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data (§=0°) agrees best with the ideal dashed
line. Whereas the characteristic function is no
longer reproduced when the angle § is beyond 90°.
There are two reasons for these phenomena. One is
that the effective integral interval in eq. (18)
becomes narrow for §>90° since the value |¢| is

small for a large angle. The other is that the fP

amplitudes of scattered waves decrease rapidly for Fig.5 Polar diagram of a radiation pattern of a scattered
the angle I beyond 90° as shown in Fig_5_ Fig_ 5 P wave in a low frequency subjected to an incident
depicts the radiation pattern of scattered P wave in P wave.

the low frequency subjected to the incident P wave.
These two reasons make the accuracy of inversion
for >>90° degenerate,

¢) Effect of distances from source and
observation points to a cavity

To examine the validity of the far-field approx-

imation, we show some examples for a variety of

CHARACTERISTIC FUNCTION

distances 7, and 75 as shown in Fig.6. In these

numerical simulations, we make the following

remarks,

J— Fig.6. Characteristic functions calculated for a variety of
r r g.
T B-

. . . distances between source/observation points and a
» The Born inversion is employed. / P

) cavity. (Born inversion, bandwidth of 0< ak,<10,
e The frequency bandwidth from (¢kp)min=0 to

(akpmax=10 is used.
o The pulse-echo scattering of P to P wave is conducted.
Fig. 6 shows that the far-field approximation holds true when 7r,=7;>5a. On the other hand, an

pulse-echo scattering of P to P wave)

agreement between the synthesized characteristic function and the original one becomes worse in the region
r/a<1, as source and observation points are nearer to a cavity. Apart from the quantities of the obtained
results, however, the boundary of a cavity is detectable even if the near-field data are used.

d) Effect of mode conversion

Since SH wave is independent of P and SV waves in two dimensional motions, five types of mode
conversion may occur, i.e., P-P, P-SV, SV-P, SV-SV and SH-SH. In Figs.7 (a) to (c), we consider
the cases of P-P, SV-SV, SH-SH mode conversions, respectively. The parameters used in these
calculations are as follows,

o 1= 1ry=5q. « The Born inversion is used.

s The frequency bandwidth is 0<ak,<10.

« The pulse-echo scattering is carried out,

* As shown in Fig. 7, the accuracy of Born inversion for inplane motions (P and SV waves) is worse than the
accuracy for antiplane motion (SH wave). This is due to the fact that no mode conversion occurs in the case
of antiplane motion, while there are mode conversions between P and SV waves. We here consider the P-P
scattering as an example, Actually, the incident wave from the point force at x, includes an SV wave as
well as a P wave. Furthermore, the scattered wave observed at the point x, has not only the component of a
P wave but also the one of an SV wave, However, in the analysis of Born inversion, all of these SV waves
are neglected due to the far-field approximation (see eq. (15)).

e) Born inversion vs, modified Born inversion
We here show the comparison between the Born inversion and the modified Born inversion, The results
are shown in Figs. 8 (a) to (c) corresponding to the cases of P to P, SV to SV and SH to SH scattering,
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Fig.7 Calculated characteristic functions for the cases of (a) Fig.8 Characteristic functions calculated by Born inversion
Pto P, (b) SVto SV, (¢) SH to SH wave scattering, (——) and modified Born inversion (~=—-) ; (a) P to
(r,= =5 a, Born inversion, bandwidth of 0<ak,<10, P, (b) SVto SV, (¢) SH to SH wave scattering.
pulse-echo scattering) Other parameters used are the same as in Fig.7.

respectively. The parameters used are the same as in Fig. 7. From these figures, it is shown that the
modified method improves the results with respect to oscillating lobes, which are related to high frequency
data. Moreover, the modified Born inversion eliminates the errors caused by mode conversions of inplane
motions as shown in Figs.7 (a) and (b). '
f) Summary of one dimensional analysis
From numerical analysis of one dimensional problems; it is mainly concluded that
o In the Born inversion, the low frequency data play an important role in reconstructing the
characteristic function, On the other hand, the high frequency data have little effect on the imaging of
a cavity,
o The pulse-echo method, where the observation point coincides with the source point, is more accurate
than the pitch-catch method with § not equal to zero.
« The Born inversion for inplane motions is less valid than the inversion for antiplane motions, because
there are mode conversions between P and SV waves.
o The modified Born inversion not only smooths oscillating lobes which depend on the high frequency
data, but also eliminates the errors due to mode conversions in inplane motions.
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Fig.9 Characteristic function of an elliptic cavity in a Fig. 10 Characteristic function of two adjacent elliptic
two dimensional space. cavities in a two dimensional space.

(2) Two dimensional problems

Firstly, we consider an elliptic cavity in a two dimensional space. The Born inversion method is applied
to the following numerical data.

o The frequency up to gk,=10 is taken into account (g : the half of the major axis of an ellipes).

o The distances from source and observation points to a center of a cavity are 5Ha.

» The pulse-echo scattering of P to P wave is generated at 60 points located equi-angularly around a

cavity,

Fig.9 shows the synthesized characteristic function ¥ (x) of an elliptic cavity. Instead of a three
dimensional plot of ¥ (x), the height ¥ (x) is laid vertically in a two dimensional plane. In this figure, the
dashed curve indicates the original boundary to be determined. The shape of a cavity is well reproduced,

The second example is the case of adjacent elliptic cavities. Other numerical conditions are the same as
in the last example. The result is depicted in Fig. 10. Although the boundaries located in the shadow zone
of an incident wave are a little ambiguous, the shapes of cavities are also reproduced.

6. CONCLUDING REMARKS

In this paper, we formulated the Born inversion procedure for elastic waves scattered by a cavity and
proposed the modified Born inversion for high frequency data. In numerical examples, an extensive study
on several parameters (band limiting, angle between source and observation, mode conversion etc.) was
made using the one dimensional inversion algorithm. Particularly, it was found that the modified Born
inversion improves the results very much by eliminating the errors attributable to mode conversions as well
as to high frequency data. In two dimensional examples, the shapes of elliptic cavities were well
reproduced, ; k

Although we demonstrated the inversion technique only for the scattered waves by cavities, the method
proposed in the present paper is also available for elastic waves scattered by inclusions, In fact, the
scattered wave due to an inclusion V is precisely expressed as follows", ‘

ufc {xB):'/V{prsz(xB, y) uk(y)“ACk)an;n'n (xB, y) U, (y)} dSy ..................................... (19)

where Ap and ACy;nn, are the perturbations of mass density and elastic moduli in an inclusion from those in
a surrounding medium. Eq. (19) has the similar form to eq. (13) derived for a cavity. Therefore, we can
solve the inverse problems for inclusions, using the same procedure as in the case of a cavity. Currently we
are testing the inversion method with experimental data both for cavities and inclusions on the basis of

numerical results in this work.
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