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NONLINEAR RESPONSE OF A RECTANGULAR PLATE
SUBJECTED TO INPLANE DYNAMIC MOMENT

By Kazuo TAKAHASHI*, Yasunori KONISHI**
Torahiko IKEDA*** and Ryuta KAWANQ****

In the present paper, the vibration of the web plate under ‘sinusoidally time-varying
inplane moment is examined from the point of view of dynamic instability. The web plate is
idealized by one rectangular plate surrounded by the upper and lower flange plates and
vertical stiffeners. Inplane static and sinusoidally time-varying moments act on the edges
of the plate. The dynamic instability regions are analyzed by the small deflection theory of
thin plate. The amplitudes of unstable motions are determined by large deflection theory
considering geometric nonlinearity.

Numerical results are presented for various boundary conditions, loading conditions and
dampings of the plate.

Keywords . dynamic stabzlzty nonlinear analysis, vibration of plate

1. INTRODUCTION

Fatigue failure of welded plate girder bridges at the welded joint connecting the web and flange plates
and the generation of undesired acoustic radiation are found under dynamic loading”?, It is clear that these
phenomena are due to out-of-plane vibrations of the web plate under time-varying inplane bending moment,
caused by initial imperfection of the web plate or dynamic instability of the web plate,

As to the influence of initial imperfection, comprehensive studies have been performed by Maeda et al, ?.
On the other hand, dynamic instability of the web plate is not treated theoretically, although Kuranishi et
al.? treated this problem by time response analysis. It is still not clear whether the dynamic instability
exists or not, ; i

In this study, the dynamic instability of the web plate under inplane sinusoidally time varying moment is
examined. The web plate is idealized by a rectangular plate which is surrounded by upper and lower flange
plates and vertical stiffeners. Inplane static and sinusoidally time-varying moments caused by static and
dynamic girder bending act on the edges of the plate

The dynamic instability which are determined by the small deflection theory has been presented in
reference”, The results led to the following conclusions : (1) combination resonances are predominant
for the present case . this fact is different from those of the uniformly distributed loaded plate which has
simple resonances only : the widths of the stable regions are broad when natural frequencies are close to
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each other independently of the boundary conditions and aspect ratios; (2) the static moment has
influenced upon the unstable region : the simple resonances whose widths are narrow in the absence of
static moment become broad.

According the these results, the dynamic properties of the plate subjected to inplane dynamic moment
are clearified for various parameters. The amplitudes of unstable regions become infinite under the
assumptions of the small deflection theory. However, these amplitudes are bounded because of the
stretching of the middle plane of the plate. From this fact, the amplitudes of unstable motions must be
estimated by the large deflection theory of the plate.

The purpose of the present paper is to present an analytical approach to the investigation of nonlinear
response of a rectangular plate subjected to the inplane dynamic moment. The equation of motion
describing large deflection of the plate is analyzed by the Galerkin method. The resulting equations for
time variables are integrated by using the Runge-Kutta-Gill method. Numerical results are presented for
various boundary conditions, loading conditions and dampings.

2. GOVERNING EQUATIONS AND BOUNDATY CONDITIONS

Cartesian coordinate system (x, y) is introduced as shown in Fig.1.
Static moment M, and sinusoidally time-varying moment

M,cos Qt act on two edges, x=0 and g. Inplane force N, y
due to these moments is given by b
6
Nx:‘é?(l“?%‘)(Mﬁ‘MtCOS QF) vvreererenrennns (1) M( )M
where b is the length of the loaded edge, and Q and M, are
the forcing circular frequency and the amplitude of the ] 0 N =
sinusoidally time-varying moment. Fig.1 Geometry and coordinate system.

Assuming that the effects of longitudinal and rotatory
inertia forces and transverse shear can be neglected, then the basic equations for large amplitude free
vibrations of a plate subjected to an inplane moment can be written as

2 ¥ 2
L(w’ F):pd aa;f+DV4w~—-—b6—2—<1‘—2%> (M0+M2COS .Qt) 2;?
i aZF azw 4 82F azw— aZF aZw e T |
—d ( oy ox'  ox' oy 2 oxoy axay)—() (2)
2'w \* 2'w d'w
ar g O W O W O U e e
VE=E {(axay> ox® oy’ } (3)

where 1 denotes the plate deflection, o the mass density, d the plate thickness, { the time, D=EJ*/{12(1
— %) the bending stiffness, E Young’s modulus, » Poisson’s ratio, and F Airy’s stress function.
The following two boundary conditions for bending are considered in the present analysis :
Case ] : simply supported along all edges;i.e.,

_ow_ - _ow_ () B e :
w= 0 (x=0,0a), w e 0 (y=0,b) (4-a)
Case [l : simply supported along the loaded edges and clamped along the other edges
o'w ow
— - - =W __ () B e et e b
w=_7=0 (x=0,a), w T (y=0, b) (4-b)

With regard to inplane boundary conditions, all edges are immovable, Since it is difficult to satisfy the
inplane constraints exactly, the average inplane constraint boundary conditions are employed as

'[budy:() (x:O, a), [avdsc:() (y:(),b) ........ O (5)

where
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3. METHOD OF SOLUTION

Taking these boundary conditions into account, we assume the solution of equation (2) by

w:dn};l Tmz(f) Wun(l‘, y) ........................................................................................... (6)

where Ty, is an unknown function of the time variable, and W,,, an eigen-function associated with free
vibrations satisfying the geometric boundary conditions of the plate, defined as

Mrx . nry

Case T : WMn:SinTslnT ................................................................................ (7:a)
Case 1 : Wu—sin xga?{cos (z—ll))zzy Cos(z+l1))7ry} ...................... R (7-b)
The general solution of stress function F of equation (2) is expressed in the form
B B b e e e ( 8 )

where F, is the particular solution and F, the complementary solution. Substituting equations (7-a) and
(7-b) into equation (3), the particular solution F, can be obtained (Appendix A) .

Let the complemetary solution F, be expressed in the form 4), 5) as

FCZA(t):c2+B(t)y2 .................................................................... L [RREEERES (9)
where A (%) and B(i) are functions of time, which should be determined so that the inplane boundary
condition (5) is satisfied (Appendix B).

After substituting equations (6) and (8) into equation (2), we apply a Galerkin method to obtain

e B (Mot M:005 08) T L Tunt 3, ) T Lo Ton Tar Tug=0 -+ (10)
where Iy, Iip Iy and Iy, are integrations that appear in the process of the Galerkin method

IMp TMp+ IMp TMp

(Appendix C) and p=], 2,---. Adding damping term and using nondimensional notations, we obtain the
following differential equation for the time variable :

.. My M
Taot 212 (28) Tt (22" Tut (o4 M cOS Te) T, Auey Tunt 5, 5} 53 Banros T T T =0

where M,=M,/M,, is the nondimensional static moment, M,=M,/M., the nondimensional dynamic
moment, M.,=A.,z’D/6 the buckling moment, 2., the eigenvalue of the buckling moment, w=0/ Q! the
nondimensional forcing circular frequency, Q!=7?/b*y/D/pd the first natural circular frequency, o} the
first eigenvalue of vibration, r=0]1 the nondimensional time, hY the damping constant, and ¢ the p-th

natural circular frequency with the half wave number M. Ay, and By.s, are given in Appendix D.
4. METHOD OF TIME RESPONSE ANALYSIS

The coefficient Ay, of parametric exciatations of the present case is shown (see chapter 4. of reference
3), p.181) :

Awnn=0.0, Au,=0.0 (n-+p=evennumber)and A,,,+0.0 (n+p=oddnumber) .- :rereer. (12)

In the present problem, the diagonal element 4, is zero. Parametric resonances occur only through the
coupling term Ay, (n#p). Therefore, simple parametric resonance® which occurs through the direct term
Aynn, would not be important for the present case. Combination resonances? which occur through the
non-zero coupling terms are predominant, As the coefficient is symmetric, Aum,=Au,, combination
resonances with sum type can be appeared only. As the non-zero elements are A,;;, Au. Ay and so on,
combination resonances such as wi4of, w+w! o+ etc. are contained.
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The combination resonance is vibration of the two degrees-of-freedom system. The two degrees-of-
freedom approach is adopted to obtain a time response. Time variables are integrated numerically by using
the Runge-Kutta-Gill method. The purpose of the present analysis is to determine the amplitudes of
unstable motions which occur under the assumptions of the small deflection theory. Therefore, the initial
conditions for time variables are Ty,=Ty,=0.01 and T,=T,,=0.00 to satisfy the small amplitude
vibration, Poisson’s ratio v of the plate is taken as (. 3.

5. NUMERICAL RESULTS

(1) Effect of boundary conditions

Fig. 2 and 3 show unstable regions of a square plate (4=1.0) for case I and case ][ which are obtained
by the linear analysis? (These figures are the same as Fig. 4 and 5, pp. 182~183). In these figures, the
abscissa & shows the nondimensional forcing frequency and the ordinate M, indicates the nondimensional
moment. Combination resonances of sum type in the vicinity of -« are obtained. The diagonal elements
of the coefficient Ay, are zero in the present problem. However, the secondary unstable regions of the
simple resonances such as ¢ occur through coupling terms, The widths of simple resonances are narrower
than those of combination resonances. Therefore, combination resonances are important for the present
problem, The widths of combination resonances with closed natural frequencies are broad such as w{+w}
for case | and it} for case [I.

The amplitudes of these unstable regions obtained by linear analysis tend toward infinity (see Fig. 6 of
reference 3) p.183). Nonlinear time responses for the combination resonances wi+w; and simple
resonance ¢! are shown in Fig, 4 and 5. Amplitudes are bounded due to the nonlinear terms effect which is
caused by inplane forces due to the deflection of the plate. Beating can be seen in the nonlinear parametric
dynamic system. This beating is obtained in the single degree-of-freedom system as well as. in the two
degrees-of-freedom system, as can be found later in Fig, 15 in this paper. It is concluded that this
phenomenon is attributed to the basic properties of the nonlinear parametric dynamic system.

The maximum amplitudes of beating for each central frequency w!+ o} or o} of the unstable motions are
shown in Fig. 6 and 7. In these figures, the abscissa M, shows the nondimensional moment and the ordinate
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Fig.2 Unstable regions of a square plate ! case | and Fig.3 Unstable regions of a square plate : case and
p
M.=0.0. M,=0.0.
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Fig.4 Time history of the combination resonance : case I, " Fig.5 Time history of the simple resonance : case T,

Wi+ wl, M=0.5 and %==3.5, wh M,=0.5 and 5=4.0.
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Fig.6 Maximum amplitudes of unstable motions  case [ Fig. 7 Maximum amplitudes of unstable motions : case ||

and M,=0.0. and M,=0.0.

A indicates the maximum amplitude which is nondimensionalized by the plate thickness ¢. The amplitudes
of the combination resonances are greater than those of the simple resonances and become smaller in the
order of wi+w;, witwi, wrtwi for case T and witwi, witwl witwi, witol witw)for case TI.
The amplitudes of combination resonance, that is, @i+ @i for case T and ]| which occurs at the lowest
frequency range as can be seen in Fig. 2 and 3 are the maxiam. The maximum amplitudes occur when the sum
of w! and Y is a minimum and are not directly dependent on the width of the unstable regions as show in
Fig. 2 and 3. The maximum amplitudes are not much affected by the differences in the boundary conditions,
case | and case II: :

(2) Effect of static moment

Fig. 8 shows unstable regions of a square plate subjected to static moment M,=0.3 (see Fig.9 of
reference 3) p.184). Simple resonances with 2 w!, 2 w? and 2 ! occur through the fourth term
Mo 3 AunoTun of equation (11). This result corresponds to the fact that the coupling between modes
oceurs through the linear restoring force term. The amplitudes of the present case are shown in Fig. 9.
The static moment M, has influence upon the amplitudes of unstable motions. As the effect of the static
moment M, decreases the stiffness of the plate, the amplitudes of Fig.9 which includes the static moment
M, become greater in general than those of Fig. 6. However, there is one exception, i.e., combination
resonance w!+ wj. The amplitudes of the combination resonances w?-+ o? increase rapidly when the moment
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0.2 1 “’ 5‘ wi
of j2ui ’ q witwd w%;wgz
| é; - (wired)/2
Hlwi+w W g
0.1 -
! i 4!’ f 2w
1 1 1 1 1
0 ) ) §.0 0 0.1 0.2 0.3 0.4g 0.5
Fig.8 Unstable regions of a square plate . case [ and Fig.9 Maximum amplitudes of unstable motions ! case |
g g
M,=0.3. . and M,=0.3.
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Fig.10 Time history of the combination resonance : case 1[I, Fig.13 Time history of the simple resonance : case I, wj,
with, Mo=0.3, M,=0.5 and %=6.4. h=0.01, M,=0.5 and &=4.0.
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Fig.12 Time history of the combination resonance : case I,

h=0.03, M,=0.5 and %=3.5.

Fig.15 Time history of the simple resonance : case [,
wi+§a2, 2 @}, Gr=0.5 and ©=3.782.
‘M, is greater than (). 3 as shown in Fig. 9. The nonlinear time response of this type of vibration is shown in
Fig. 10. The maximum response occurs after several beatings. This pattern can be observed only in the
case of the combination resonance w?+w?. The half wave number M =2 of this unstable vibration coincides
with that of the buckling problem due to static moment M,=M,,. It is assumed that the dynamic buckling
occurs under the actions of static and dynamic moments,

(3) Effect of damping

In the linear case, the effect of damping varies depending on the width of the unstable region. Narrow
unstable regions become stable due to the damping effect (see Fig, 12 of reference 3), p. 185). Amplitudes
of the combination resonance «’-+w? and the simple resonance o} for various magnitudes of damping
constant (A¥=hY=h) are shown in Fig. 11. The damping of the simple resonance are assumed to be one
tenth of those of the combination resonance since the simple resonance is much affected by magnitude of
damping. The effect of damping decreases the amplitudes of unstable motions and this tendency is
conspicuous where the exciting moment M, is small. The unstable motion does not occur if the damping
effect is greater than the divergence (negative damping) effect of the parametric instability, The effect of
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damping becomes smaller with increase of the moment M, The nonlinear time responses of the damped
parametric system are shown in Fig, 12 and 13. The amplitudes of the damped system reach their maximum
value without beating.

(4) Effect of loading condition

Fig. 14 shows the nonlinear response of a square plate subjected to unlformly distributed load. As the

simple parametric resonances are contained only in the present case”, amplitudes of the simple parametric

’

resonances are obtained, Fig, 15 shows nonlinear time response of 2 (7. As the simple parametric
resonance is unstable motion of the single degree-of-freedom, the only one time variable is excited.

6. CONCLUSIONS

The present paper shows the nonlinear dynamic instability of a rectangular plate subjected to inplane
dynamic moment,

The conclusions are as follows :

(1) Amplitudes of the out-of-plane vibrations of a rectangular plate subjected to an inplane dynamic
moment are bounded due to geometric nonlinear term effect. Nonlinear time responses of unstable motions
accompany beating.

(2) Amplitudes of combination resonances are greater than those of simple parametric resonances for ;
the present case. This fact is quite different from those of the uniformly distributed loaded plate which has
simple resonances only.

(3) Effect of static moment increases amplitudes of unstable motions in general. Amplitudes of the
combination resonance whose modal shape is similar to that of the buckled mode is much affected by static
moment,

(4) Effect of damping decreases the amplitude of unstable motions. This effect is conspicuous where
the parametric excition moment is small,

Appendix A : Particular Solution F, of Equation (8 ).

=Ed* Y 2 TunTusF s

n=1 8=1
where
Case T .
Fins=Ans cos (n—s) nn+ Bl cos (n+s) an+cos 2Mré {Cls cos (n—s) np+ D¥ cos (n+ s) 77}
A = M’s w__ M's ch — 1M (n+s)s A
gt n—sP T 4t (sl T 4AM+(n—s) WA
w__ MM (n—s)s

CTAUM A+ (n+ 8P A in which ~ 42,=0 (n=s),

é=x/a, 7=y/b, n=a/b (aspect ratio)
Case [ :
ns™ ZZazaJ[A”cos(z—J)m7+B”cos(z+j)m;+cg(i+j—2)my

+Dfcos{i—j+2) mp+ELcos(i—j—2) mp+F¥cos(i+j+2) mp

+cos2r8{Ghcos(i—j)mp+HY cos(i+j) anp+I%cos(i+j—2) m

+Jhcos(i—j+2) mp+K¥cos(i—j—2) m+ LY cos (i+j—2) ml]
e MU MY M=)

208G —7) T 2t GG Y 4t i+ 2%

42 (i —j+20 A2 (i—j—20" 77 4t (i+ 2

253s



86 K. TakaunasHr, Y., KonisHi, T. IKEpA and R, KawaNoO

WM+ 7 +2)

LM —J0=2) o M=)

Gh= HY= I3 -
b {4M R S )i Vs {4M +(i+ 2t T UM 2P

gu— MU A=) e M (+)A+))  pu_ —uM+j)A+])
VUM G — 2P Y AMMA G2k Y A UM (i 2P

in which A%=0 (i=]),

Ch=0 (i=j=1), D=0 (i=j—2), E{=0 (i=j+2)

Appendix B : Complementary Solution F. of Equation (9).

=Ed* 2] Z TwunTusF ms

n=1 §=1
where
Case [ :
R 7 0ns
16 (11— 1Y)
Case 11 .

Fins= -—‘—16(

“;3 atai (i—1)

(ins+ vM?) E24+(M?/ 12+ vns) ¥

[[a%a$ 4 +3vM >+2§3 atasiu Z(‘i2+1>+ uM2}-§ aral,, Wt (i+1)+ vM?Y

P+ uM Y] £+ [atal (4v+3M*/ 1) +2 g‘; aradiv (P +1)+M*/ 1

— % alata v+ MY = 3 alais by (i 1+ MY i ']

Appendix C : Integrations of the Galerkin Method

L= [ Wi, dedn

2 O'Wy  O'Wip

b [ [ (320

Tuno= 1ff1277

Tynrap= —120=%0 f f <a Furs ° WMn 3*Furs 8 Wun _ 8" Furs 0" Win

FMRS—FMHS+FMHS

v oo +550%) Waudédn

WMpdfd??

Appendix D : Coefficients of Equation (11)

Aynp= Ian/u;wp (a })27[2}

Byno= IMnTSp/iI;m (0’})2 71'4;

e [T D
® Ii&ﬂ ,Odb‘
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