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NONLINEAR ANALYSIS OF THIN-WALLED STRUCTURES
BY A COUPLED FINITE ELEMENT METHOD

By Toshitaka YAMAO* and Tatsuro SAKIMOTO**

This paper presents a finite element method which enables to analyze a large
displacement behavior of elasto-plastic thin-walled structures which fail by overall, local
or interactive instability. An incremental equilibrium equation for a thin-walled beam-
column is derived in a stiffness matrix form by using a moving element coordinate system
and an incremental variational principle. So called multipoint constraints technique is used
to connect plate elements with a beam element at the coupling nodal point in the cross
section, Numerical results of the present method are compared with the exact solutions and
experimental results, Validity and efficiency of the present method are confirmed.

Keywords : finite element method, thin-walled structures, elasto-plastic, large displace-
ment analysis

1. INTRODUCTION

In the Japanese Specification for Highway Bridges”, a relatively large width-to-thickness ratio of the
component plates is allowed to use, when the working stress is smaller than the specified allowable stress.
But, this does not mean that interaction behavior of local and overall buckling of thin-walled structures is
well clarified, The interaction behavior of thin-walled structures is extremely complex. In paticular, itis
not easy to find a theoretical solution for such a interaction problem including the effects of structural
imperfections such as residual stresses and initial crookedness of the member. To the authors’ knowledge,
a practical method of analysis for these problems is not established yet.

Although many studies have been reported in reference to the local buckling behavior and the
post-local-buckling strength of plates?~? most of those are analyses for a single plate element. IFew have
been studied on the maximum load carrying capacity of a structural member including the effects of
interactive deformations between component plates of the cross section. The ultimate strength analyses
for elasto-plastic thin-walled beam-columns with open cross section are also carried out as a beam ele-
ment®~1  but by these methods it is difficult to consider the effects of the local buckling of the plates in the
analysis. Of course, it may be possible to carry out an elasto-plastic large displacement analysis by
discretizing a whole structure into a large number of plate finite elements, but at present, it is obvious to
encounter the difficulty resulting from a long computation time and extremely large memory capacity
required for a digital computer.

The object of the paper is to present a formulation based on the finite element technique which enables us
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to connect plate elements with a beam element. In the present analysis, the part where the local buckling is
likely to occure is divided into plate elements, and the other parts are divided into beam elements. The part
of plate elements is coupled with the part of beam elements at a cross section by a single nodal point, In this
case, the total number of the freedoms of the plate elements lined up at the cross section is reduced to the
same number as that of a beam element to be connected by introducing constraints' which satisfy the
compatibility conditions. The technique is called coupling analysis in this paper. By this technique, the
total number of freedoms can be reduced remarkably and the analysis for the interaction behavior of local
and overall buckling of thin-walled structures become capable without much computational effort.

The beam element used in this method is the same one as given in Ref. 10) and has seven degrees of
freedom, Constant in-plane strains and constant curvatures for plate bending are assumed in the plate
element, but it is different from the ordinary planar triangluar element (5 degrees of freedom for one node)
in the following point, That is, the in-plane flexural stiffness of the component plates is taken into account
using a technique based on the micropolar theory” adopted by Suzuki et al. -7, Without this consideration
for the in-plane flexural component of the plate, the stiffness matrix obtained may show singularity for
spatial plate structures, By this consideration the number of freedom of the nodal point becomes six.

Since a large portion of the displacement in the postbuckling behavior of the plate element is caused by a
rigid body displacement, the nodal forces are calculated by effective displacements which are determined
by subtracting the rigid body displacement from the total one. To derive the incremental equilibrium
equation, a moving element coordinate system and an incremental variational principle are used. Validity
and efficiency of the present method are studied and shown in several numerical examples by changing the
coupling location and number of discretized finite elements,

2. DERIVATION OF EQUILIBRIUM EQUATIONS

(1) Coordinate systems and assumptions

The basic assumptions used in the analysis are : a) the elasto-plastic behavior of the isotropic material
can be modeled by the bi-linear stress-strain relationship between an equivalent stress and an equivalent
strain, b) The von Mises yield criterion is acceptable and the stress-strain relationship of Prandtl-Reuss
is valid in the inelastic range, ¢) The plane section perpendicular to the middle plane of the plate element
remains plane after bending, d) The residual stress is constant within a plate element in its plane, but
varies linearly through the thickness, e) The beam element has a thin-walled open cross section, and a
plane section remains plane under the influence of flexural moment and a warping function used in the
elastic theory of torsion is valid even after the initiation of yielding, f) The distribution of shear strain
caused by Saint Venant torsion is linear through the thickness of section plate even for a partially yielded
cross section, g) Local buckling of a beam element will not occur and distorsion of the cross section shape
may be negligible in a beam element.

The local cartesian coordinate (x, y, z) for the plate element is set up as shown in Fig. 1 (a). The origin
is chosen to be located at node number 1 and the z axis, which is then perpendicular to the middle plane of
the plate 1, 2, 3, is taken upward positive. The x axis is
taken along the side 12, and the y axis is taken
perpendicular to the xz plane. The positive directions
of the increments of nodal displacements and forces for

the plate element in the local coordinate system are shown
in Fig. 1 (a). The local cartesian coordinate is also set up

. N
for the beam element and fixed to the beam element. N
Positive directions of the vectors are shown in Fig. 1 (b). a) Plate Element b) Beam Element
In the following derivation, the total quantities of ~ Fig.1 Element coordinate and increments of nodal
displacements, forces, strains and stresses are denoted forces and nodal displacements.
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by the letters with bars and the incremental quantities of those are denoted by the letters without bars.
(2) Tangent stiffness matrix for a plate element
The state of displacement of the middle plane of the plate element is defmd by three displacement
increments 1, v and w in directions of the three axes x, 7 and z. Then the incremental strain vector &g,
the incremental curvature vector g,, the incremental rotation vector ¢, and incremental in-plane rotation
vector ¢, at the middle plane of the plate can be expressed by the incremental nodal displacement vector uy,
u, as follows :

ou/ox
ov/ 3y
= Bm. el e
= ou/oy—av/ox " (v
0
0
‘ 0 ; ‘ :
PIE o e By gy e e e L L L (2)
20%—(9v/0x— du/dy)
*w/ ox*
ow'/ oy’
= w/ oy B T TR IE NS PUL O VS IOI TE NS (3)
200/ 0x3yY
0
ow/ox ‘
— B O SO S PP
e ow/ a3y ot ¥ (4) Before Deformation
where
. um:<um1 Uss um3>7’ llm;g=<u v ggz After Deformation

........ 5 . o tati
wy=<Uor U llb3>T, Up=<w 0O 9y>; k=1~3 ( ) Fig.2 The in-plane rotation.

in which the superscript T stands for transpose of the matrix, and the symbols { }and ¢ ) denote the
column vector and the row vector, respectively. The incremental in-plane rotation vector e, is described
herein as the difference between the micro rotation ¥ and the macro rotation as shown in Fig, 2. The
displacement functions for in-plane displacements 1, p and in-plane rotation ¢, are given by linear
polynomials of x, y, and for out-of-plane displacement w by cubic polynomials of the area coordinates.
The incremental strain vector ¢ of an arbitrary point in the plate element can be expressed by using Egs.
(1)~(4) as follows: ~
e=Bn-tint B tnt1/2°Cos Bo* ty— 2Bty +rrrrrrrrerssnmnsniiedii e, (6)

where
; ow/ ox 0
‘ 0 ow/ 2y
=< x " >T, = 9:‘" e S e T I R
e={ezx &y Yy Yo » Yo=2 (ov/ox—ou/ay), Co ow/ Dy Ow o (7)
0 0

The incremental stress ¢=<g; 0y 15y 7o' is related to the incremental strain vector by the
stress-strain matrix [) as :
G e e e e (8)
The matrix D can be expressed as the sum of the matrix for the elastic range ), and the matrix for the
inelastic range D,,. The matrix D, can be written by Hooke's law as
1 v 0 0
E v 1 0 0
1=v]10 0 (1—v)/2 0
00 0 (1—v)/2

in which E is Young’s modulus and » is Poisson’s ratio. Assuming Prandtl-Reuss’ equation and von Mises

D.=
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yield criterion in the inelasic range, the matrix for the inelastic range D, can be expressed as follows :
S S¢Sy SzSzy 0
1| SS: S SySuy 0
SzySz  SzySy  Siy 0
0 0 0 Siy

where
S:=E(o3x+voey)/(1—v?), Sy=Evoy+oy)/1—1?)
Sev=Etwy/(1+v), S=8,0%+ Sy0y+2S2y7sy
in which ¢, and ¢}, denote the deviation stress. In this analysis, the stress-strain relationship between the
stress r, and the strain 7y, is assumed to be expressed in the same manner with the relationship the shear
stress 1, and the shear strain y,, of the in-plane stress problems in both the elastic®® and inelastic?
ranges, and this relationship is considered to be independent of other stress-strain relationships.
When a plate element, starting from the initial state ; subjected to the total external loads 7, reaches to
the subsequent state ;41 after producing increments of displacement due to the load increment p, the
incremental potential energy V during deformation is written as follows

V:—{(fi-}- u)T(ﬁ+p)_’aT. } —u (p+p) p ........................................................... (12)
Assuming the linearity during an mcremental step, the incremental strain energy U is given as
U:[(ETE+1/2 era)dV=fveTEdV+1/2fveTDedV ...................................................... (13)

After substitution of Eq. (6) into this equation, the increment of the potential energy 7= U+ V can be
written in terms of the increments of the nodal displacement y. Since the stationary condition of 7 gives an
incremental equilibrium condition, first partial derivatives of n with respect to g yield the following
incremental equilibrium equation :

R kuntkes km Un |
ptp f)_[ Eom koot ko ] 3ub ~ke 14)
where
— A fatfs] — — —
fz{ - “’I, f,n:fB,zadV, f¢=fB£EdV, f,,=~—sz£EdV
fb v 14 v
~meDBde k¢¢——fB¢DB¢dV kmp=k! Z"szmDBde ........................... (15)‘
Koy= f 2’BIDB,AV, k.= f Bi7*BodV, a—-[ }

The matrix % represents the tangent stiffness of the plate element. The matrix k, is an initial stress
matrix which represents geometrical nonlinearity caused by finite displacements. Since the matrices &,
and k,, are odd functions with respect to z, these matrices are zero in the elastic range but are not zero in
the plastic range, because the stress-strain matrix ) varies the value with 2. The term (F—f) in Eq.
(14) is considered as unbalanced forces caused by the linearization assumed in the formulation and by the
vielding on the half way of an incremental load step.

(3) Tangent stiffness matrix for a beam element

Next, we derived an incremental equilibrium equation for a thin-walled beam element”. Geometrical
relations between the displacements and the rotation of the cross section are shown in Fig. 3. The axial
strain increment ¢ of an arbitrary point P (5, ¢) on the cross section can be expressed by the displacement
increments (y, p, w) and the rotation increment ¢ of the arbitrary chosen reference point ( as follows :

__(77__ §¢)U””‘(§+ n¢)w"+1/2 {(v’)2+(w/)2§+1/2(772+ é-?) (¢’)2+ w¢” .............................. (16)
in which a prime denotes a derivative with respect to x and w denotes the normalized unit warping with
respect to the point (. The shear strain increment y due to St. Venant torsion is given by
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7:2n¢’ ................................................................. (17)

in which 7 is a coordinate originates at any point on the middle plane

contour of the plate and is perpendicular of the coordinate s which is

a tangent to the middle plane contour as shown in Fig.3. The

relationships between stress increments and strain increments can be

given by the stress strain matrix D, :

o e
7 T T T R R L TESPERTRTRETS: (1 8)
T 5 . . w Z=7sinp+ScosP
The relationship between the increment of the resultant forces r 5 We
and the corresponding deformation increment d is expressed by Fig.3 Displacement of cross section.
e e e e e (19)
where
r=<Py,—M,; My M, M. T’ d=<w—v —uw ¢” ¢'>T ................................................ (20)

in which the matrix s represents the fangent stiffness of a partially yielded member of unit length. The
displacement functions employed herein are polynomials, which are usually used in an elastic finite element
procedure, Namely y and v, 1w, ¢ are expressed by linear and cubic polynominals of x, respectively. The
increment of the potential energy x can be written in terms of the increments of the nodal displacement y.
Since the stationary condition of 7 gives an incremental equilibrium condition, first partial derivatives of
s with respect to gy yeild the following incremental equilibrium equation :

IH‘(ﬁ“?) (BopTog)s e Fo v oo vmmmemmemeee e 21)

The matrix k,, represents the stiffness of an elasto-plastic member. The matrix k, is an initial stress
matrix which represents geometrical nonlinearity caused by finite displacements. Teh term (ﬁ—?) in Eq.
(21) is considered as unbalanced forces, Details of the derivation and elements of matrices D,, s, k., and
k, are given in Ref. (10).

Transformation of Egs. (14) and (21) to the global coordinate system by the ordinary transformation
matrix T yields

KU PA (P ) veevmemsee s e (22)
where )
f:T.?’ J e AL Y LT T PPN (23)

Equations obtained by assembling Eq. (22) for a whole structural syétem are the governing equilibrium
equations to be solved.

(4) Coupling method by multlpomt constraints'

The stiffness equation is generally given as follows :

PP o [ +ov v et e et (24)
in which PP and [/ are the force vector and the displacement vector, respectively. The multipoint constraint
equation is initially expressed in the following form.

R T | R D P RRTREPETTRLRETRRRLY (25)
in which R is the matrix of constraint coefficients, The displacement vector U is partitioned into two
vectors U/, and UJ,. The vector UJ, consists of displacements of dependent degrees of freedom and the
vector [, consists of displacements of independent degrees of freedom. Since the matrix R is similarly
partitioned into R, and R, Eq. (25) can be written as

Up=— R Ry U= Gige Uy v veeemme sttt b (26)
in which G, is called herein the coupling matrix. Prior to the imposition of constraints, Eq. (24) is
partitioned in the following manner :

Pn _[knn Knm} Un
Py Kin Kun Un
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A tilde over the symbol is used to denote matrices that are replaced in the reduction process. The
addition of constraints to the displacement vector U, requires to add the constraint force ¢, to the
equilibrium equations®. Since the constraint force ¢, on U, equals to additional force — GZLq, on U,, we
obtain the equilibrium and constraint equations together in partitioned form. That is,

P, [Kw Km Gh7 (U

Pol=| KLy Kpm —I U b oveeemrmreneeet e e e (28)

0 Gn —1I 0 qm ‘
where I denotes the unit matrix and g, is the vector of constraint forces, Straightforward elimination of
U, and g, yields

{Pn+ Gm’Pm}Z[Izm‘FKnm' Gat Gho Kot GL K Gl Uy evemeeseeasenmiiece e (29)
or -

R R PP O SRI (30)
where

Kon= K+ KunGnt+ GoK o+ GhKunGo

Py=P,+GLP,

The initial partition of K and operations indicated by Eqs. (26) and (31) are performed by appropriate
modules of the program. The derivation of the coupling matrix G, for a H-section member shown in Fig.4is
described as follows. The nodal point k of the beam element at which the plate element is connected has
seven displacement components, u,, vx, Wi, Ocr, Oux, B, Orx. The nodal points (1~N) of the plate
element at this cross section are all dependent except for the independent nodal point k. Therefore, the
displacement of the dependent nodal points of the plate element can be expressed by the displacement of the
point k, according to the compatibility condition of displacement field of a thin-walled beam.

U= Uy~ YOt Z, 0 Y Z O

U= Vg~ Z O

W;=wWxt+ Yl

O = Oy,

Byi=Opc— Y, 0%

Ou=0m—Z:0%,  i=1~N (except k)
where Y, and Z; are the distance between each nodal point of the plate element and the coupled point k.

(5) Estimation of unbalanced forces ‘ :

As for the estimation of unbalanced forces, the method developed by Kitada et al. in Ref. 4) are used in
this analysis. Fig.5 shows a nonlinear load-displacement relationship of a structure. On calculating the
nodal force F, of the state ; after the j-th iteration from the equilibrium state M, it is necessary to
calculate the incremental displacement U, and the incremental strain from the equilibrium state M by using
the total displacement I/, which is determined by subtracting the rigid body displacement from the total

P
-ﬂsufl
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4 fﬁfp B~ TF it :
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My R, /
, Beam Element - F,
“Plate i . M '
Late B e ¥,
Element f }g' z Mz Wy o
P 2a
- 5 W
R or
N N~ :.M
4 ‘mu ﬁj?i ﬁruﬂ
Fig.4 Coupling nodal point. . Fig.5 Estimation of unbalanced forces.
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displacement of the state ;. Because if we use the incremental displacement calculated in each iteration in
- calculating the incremental strain, a trivial strain reversal which is nothing but a numerical phenomenon

and has no relation to any actual strain reversal may occur, Therefore, the true incremental strains and

stresses are determined by the incremental displacement U,=U,—U,. ,

The incremental nodal forces of each element for the state ; are calculated by the incremental
displacement [/, and added to the nodal forces of the state }f. The sum is transformed to the global
corrdinate and assembled for a whole element to obtain the nodal force F, The difference between the
applied force P,,, and the nodal force F, is the unbalanced force which corresponds to the term (P—F) in
Eq. (22). ‘ ‘

(6) Computation procedure

In the computation, in order to analyze the development of plastic zone in the beam elements, the
structure is divided into a number of member elements and cross sectional segments‘O), The rectangular
plate element is considered as composed of four triangular elements and the stiffness of the rectangular
element is determined as the average of the stiffness of the four triangular elements as shown in Fig. 6. The
plate element is also divided into a number of layers to analyze the development of plastic zone, and the
distribution of the stress and stress-strain matrix are assumed to be linear in each layer as shown in Fig. 7.
The incremental equilibrium equation (22) operated by the multipoint constraints equation (31) is solved
by using the Newton-Raphson procedure for the applied load increment. The procedure is repeated until
the unbalanced force is eliminated and an equilibrium is obtained with the desired accuracy. The
convergence in the computation is judged by the ratio of the displacement increments in the iterative step to
the total displacements and the ratio of the unbalanced forces to the corresponding stress resultants, The
computer program allows to use the load control method or the displacement control method in the
Newton-Raphson procedure.

3. NUMERICAL EXAMPLES

" Numerical examples for structures modeled by the beam elements are presented in Ref. 10) and the
validity and efficiency of the method are confirmed. Therfore, the elasto-plastic analysis of the plate
modeled by the plate elements is carried out as the first example, Then, thin-walled beam and column
modeled by both plate elements and beam elements are studied by changing the coupling point location and
the number of discretized finite elements.

(1) Elasto-Plastic square plate subjected to edge compression

A simply supported square plate with initial imperfections subjected to uniform compression in one
direction is analyzed. The boundary condition at both unloaded edges is free with respect to the in-plane
displacement, The initial central deflection ), is taken as (). 1 of the plate thickness . The distribution of
residual stresses is assumed to be rectangular and the magnitude of the stresses is assumed to be ¢,,=

0; 6000 kg/em’ =P/t
S i /0 g 22.1x10" kg/ent ar't 1s
e - + 1’5 1 =0-318 Opps—— (=}
a 2 b/t =48 12(1-) b
- . wo/t =01 Present Method
Fig.6 Rectangular plate element. t=1-0Ocm
i‘Of
(<]
! B D,
«w @ ep
‘\ 2 25 ost
N
\ X o
| 2 K TR (70 Gwt0 B X, Y
1 + - - - ; T Ty
Z :ﬂh'*b © jc. ® O =-0Ci/3 A Initial Defiection wu/.hOlcos( 5 eost D)
¢ %2 o 0l 05 1-0 15 20 (wtwl/t
z =) )
wN Fig.8 Central deflection of square plate subjected to edge
Fig.7 Layer coordinate of plate element. compression,
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—20, and constant along the direction of the applied load. The theoretical model is shown in the inset of
Fig. 8 and a quarter part of the plate is analyzed considering double symmetry. The plate is divided into 6
elements along the width and length and each element further divided into 6 layers along the thickness. The
uniform compression is applied in the computer program by giving uniform incremental displacements at the
edges. Fig. 8 shows the load versus displacement diagrams. The vertical axis represents the mean axial
stress ¢ divided by the elastic critical stress ¢.,. The horizontal axis shows the sum of the initial
deflection g, and the additional lateral displacement 1 at the central point.

A solid curve in this figure is the exact solution as the elastic problem by Coan? and a broken lines is the
results of the elasto-plastic analysis by Kitada et al.¥. The result of the elastic analysis by the present
method corresponds to the solution of Coan fairly well and the results of the elasto-plastic analysis by the
present method correspond to the results of the Kitada et al. fairly well in both cases with and without the
residual stress. The convergence with satisfactory accuracy is obtained after 5~6 repetitions in the

iterative calculation,
(2) Large deflection of cantilever beam ;
Large deflection of an elastic cantilever beam with H-section subjected to the transverse load at the free

edge is analyzed and the results are shown in Fig. 9. The part of the clamped side of the beam is modeled by

the plate elements and the rest of the part is modeled by the beam elements. The flange plate of the former
part is divided into 5 elements along the length and 6 elements along the width and the web plate is divided
into 5 elements along the length and 4 elements along the width., The rest of the part is divided into 9
longitudinal beam elements. Each beam element is further divided into 192 cross sectional segments (8
divisions along the width or the height and § layers along the thickness for both flange and web plates).

Since the aim of this example is to test the method for a large displacement behavior of the beam, imaginary
material as described in the inset of Fig. 9 is assumed. The distance DL between the clamped end and the
coupling point location is taken as (). 2 or (. 3 of the span length ', Although the results of the present
method vary slighty with the change of the coupling location DL, those show fairly good correspondence
with the analytical solution by an elliptic integration. It is found from this example that even such a coarse
discretization gives practically sufficient accuracy.

(3) Elasto-Plastic analysis of H-section column
Ultimate strength of a H-section column is analyzed and the results are shown in Fig. 10. The central

part of the column is modeled by the plate elements and the rest of the part is modeled by the beam
elements, The computation was carried out for the half of the column considering the symmetrical condition
at the midheight, The manner and the number of the discretization are the same as the former example. The
material properties and the initial crookedness are given as obtained by the experiment by Fujita et al. 1.
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Fig.9 Large deflection analysis of cantilever beam. ' Fig. 10 . Elasto-plastic analysis of H-section column.
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The shape of the initial crookedness is assumed as the sine curve with the central value of 3.21 cm. The
vertical axis P in Fig. 10 represents the compression load applied and the diflection p at the intersection
point of the flange plate and the web plate at the midheight is plotted along the abscissa. The result of the
present method corresponds to the finite element solution by Yoshida et al. ? fairly well, but both results
overestimate the maximum load of the column in comparison with the experimental result of Fujita et al. .
The total number of the freedom of the equilibrium equation to be solved is 485 (DL=15) and 495 (DL=
10) in the former example and 543 in this example, If we discretize whole of the half of the column into plate
elements, the nodal points required to analyse increase by 9 times of those of the coupling model used
herein, By this fact and the results shown in Fig. 10, the efficiency of the present method can be
recognized. The axial compression at the end nodal point is given by controlling the incremental axial
displacement in the computer program.

4. CONCLUSION

A finite element method with the multipoint constraints technique is developed for a useful analysis of a
large displacement behavior of elasto-plastic thin-walled structures. The validity and efficiency of the
present method are studied in the numerical examples and the following facts are confirmed. 1)
Consideration of the in-plane flexural stiffness in the plate element makes it possible to analyze the
structure composed of spatially assembled plates. 2) By using the method of subtracting the rigid body
displacement, a large displacement behavior of the structure can be analyzed in surfficent accuracy. 3)
The compatibility conditions at the coupling nodal point are satisfied sufficently and the efficiency of the
multipoint constraints technique is shown. 4) The validity of the evaluation of the elasto-plastic tangent
stiffness is confirmed. 5) Although the use of the plate element of constant in-plane strain makes the
theoretical formulation easy, it should be noted that the results of the in-plane bending analysis of the plate
is affected to some extent by the manner and number of the discretization both along the width and along the
length of the plate. :

The special advantage of the present method is that this method is able to analyze the behavior of the
ultimate load carrying capacity of thin-walled structures considering the effects of local failure of the
component plates without much increase in the number of the freedom of the equilibrium equation to be
solved. Since the validity and applicability of the present method are well confirmed by the illustrative
examples, it is now possible to investigate the complex interaction behavior of local and overall buckling of
beam-columns etc. by using this coupling analysis,

The computations for numerical examples were conducted by digital computer FACOM M-382 of the
Computer Center of Kyushu University. Part of this investigation was supported by the Funds of Aid for
Scientific Researches from the Japanese Ministry of Education, Science and Cluture,
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