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MECHANICS OF UNSTABLE CRACK INITIATION : EFFECT
OF RESIDUAL STRAIN

- By Hideyuki HORIT* Akio HASEGAWA** ‘and Fumio NISHINO***

A model of unstable crack initiation from an original crack tip, at which a plastic zone has
been formed, is presented. The model provides an answer to the question how and when an
increasing load leads to unstable crack initiation instead of further growth of the plastic
zone. It is shown that some energy must be supplied to initiate cracking because of the
residual strain in the plastic zone, which implies that the crack initiation necessarily
accompanies an instability. For brittle materials, the required energy is small and the
Griffith criterion turns out to be valid even with the plastic zone at the original crack tip.
With increasing ductility of the material, the energy required for the crack initiation
increases dramatically, which may lead to the transition from brittle (unstable)crack
growth to ductile (stable) one. The present study seems to provide a clue to the problem of
the transition from stable, ductile crack growth to the following unstable crack growth,
The emphasis is placed on the effect of the residual strain which seems to play an important
role in all modes of crack growth. The results of this study suggest a way to estimate the
increase in the material resistance to fracture induced by generating intensive plastic
deformation at the crack tip prior to its extension.

Keyword . crack tip plasticity, monlinear fracture mechanics, elastic-plastic fracture

1. INTRODUCTION

One of the great contributions which advanced the fracture mechanics forward is the Griffith criterion.
It states that the crack growth can occur if the released energy of the system due to the crack extension
equals the required energy to separate the material, For brittle materrials, the Griffith theory received a
number of experimental supports and has been widely accepted as the fundamental concept of the linear
fracture mechanics, The relation between the energy release rate and the stress intensity factor was
proved, and the main concern of the linear fracture mechanics was led to the calculation of the stress
intensity factor for different geometry and different loading conditions and to the measurement of the
fracture toughness of materials?. :

Since the end of 1960’s extensive efforts have been made to apply the fracture mechanics to ductile
materials which involve large scale yielding at the crack tip. The J-integral? and CTOD (crack tip opening
displacement)® have been used to characterize the onset of the crack extension. The concepts of the
J-resistance curve and the tearing modulus? are introduced to study the stable crack growth possibly
followed by the unstable crack growth. ‘

Serious questions of the adequacy to use the J-integral for the ductile crack growth have been raised,
whereas it was first considered to be the nonlinear counterpart of the linear energy release rate. Rice?
pointed out that a Griffith-type energy balance for crack growth leads to paradoxical results for
elastic-plastic materials, since such solids provide no energy surplus for the material separation in the
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continuous crack advance. Hutchinson and Paris® discussed the limitation of the J-integral of the
deformation theory which does not allow the unloading. Although they aimed to show that under certain
conditions a J-controlled crack growth regime can exist, the use of J-integral turned out to be questionable
for the ductile crack growth where the unloading and the residual strain play dominant roles. On the basis
of those and related discussions, different models of crack growth and varions versions of modified
J-integral and modified energy release rate have been proposed”~? The emphasis has been cast on the
necessity of constructing a model of the crack tip separation process, on which a suitable approach to the
crack growth must be founded.

One way to set about constructing a unified model of crack growth is to answer the following
questions ; how and when an increasing load leads to unstable crack initiation instead of further growth of
the plastic zone, and how the unstable crack initiation is suppressed as the ductility of the material
increases. Even for brittle materials the plastic zone exists at the original crack tip prior to the crack
extension. The Griffith theory leaves the plastic zone out of considerations. As the ductility of materials
increases, the size of the plastic zone increases. Hence the above questions seem to be fundamental for the
mechanism of the crack growth, To answer them, we propose a model of the unstable crack initiation from
the original crack tip at which a plastic zone has grown, with the final goal to extend it for the stable crack
growth, The attention is paid to the effect of the residual strain in the plastic zone on the crack extension.

2. MODEL OF UNSTABLE CRACK INITIATION

One of the first models of the plastic yielding at a crack tip was proposed by Dugdale' and Bildy,
Cottrell, and Swinden™. It considers a plane of plastic flow at the crack tip coplanar with the crack. Since
the plastic zone at the crack tip in plane strain under tensile stress is of the shape shown in Fig. 1 (a), the

Dugdale model was modified as is shown in Fig. 1 (b), where two planes of plastic flow inclined to the plane

*

of the crack are considered ; see e. g. Bilby and Swinden'”| Rice'?| Vitek'®  and Riedel'® where the growth

of plactic zone at both ends of a finite crack is considered. Along the planes of plastic flow the yield
condition that the shear stress equals the yield stress is assumed, Numerical results provide various
features of the plastic zone at the crack tip ; size, orientation, CTOD, and so on. No information on the

crack growth, however, is drawn fron this model,
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Fig.1 (a) The plastic zone at the tip of a semi-infinite crack in plane strain, (b) planes OP, OP’ of the plastic
flow at the tip of a semi-infinite crack OQ, and (c) the extended crack OQ with the residual strain along the
plastic zones O'P, O'P’ at the original crack tip O,

To study the possibility of the unstable crack growth from the original crack tip, we consider a model
shown in Fig, 1 (¢). The extended crack OQ is considered where the residual strain (the displacement gap)
is distributed along the plastic zone O'P, O’P’ at the original crack tip O", The distribution of the residual
strain is obtained by solving the problem of Fig. 1(b). Since we restrict our attention on the unstable crack
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growth where the strain rate is high enough, the plastic deformation at the tip of the extended crack is
rieglected. That is, we apply the linear fracture mechanics for the extended crack. Deformation in mode I
under plane strain is considered.

We consider the growth of a semi-infinite crack in an infinite plane with plastic zones at its original tip.
It corresponds to the assumption that the length of the plastic zone is small enough compared with that of
the original crack and the specimen, but it is compatible with the size of the crack extension., [The
interaction between the outer surface of the specimen and plastic zone often observed in ductile materials is
out of focus in this paper. ] It is not only to simplify the problem but also to exclude immaterial factors such
as the variation of the stress intensity factor with the crack length, We introduce a loading parameter for
this model, “the applied K-value”, which is defined as the mode I stress intensity factor at the crack tip

when the material is assumed to be elastic, in other words, when the plastic deformation and the residual
strain do not exist, It is known that the stability of the crack growth highly depends on the geometry of the

specimen and the way of loadings. In this paper we consider the crack growth under the constant applied
K-value, Results may be easily applied for cases where the loading is the function of the crack length.

The problem consists of two parts . First we consider the plastic zone growth prior to the crack
extension ; see Fig, 1(b). The problem is symmetric with respect to the x-axis. The length of the plastic
zone, which makes an angle § with the x-axis, is denoted by [,. The boundary conditions are given by

Oy = Toy==0, OM OIQ -+e vt emt ettt (1)

ui=u3, |zrel=17y, on OP and OP -.ooooe. B S S (2)
where superscripts + and — indicate the value of the quantity on the upper and lower surfaces of plastic
zone and 7y denotes the yielding shear stress. Since stresses are bounded at the end of the plastic zone, the
condition

lim [Trelz‘l’y at P oand P/ e e e (3)

T lpt

must be satisfied. With the applied K -value, one finds the solution which satisfies conditions (1)-(3).
To solve this problem we use the Green's function technique with the solution of a dislocation near a
semi-infinite crack. Distributed dislocations along plastic zones are introduced. The condition (1) is
automatically satisfied and the condition (2) leads to the singular integral equation for the dislocation
density. It is solved numerically with the condition (3).

Next, with the obtained distribution of the residual strain, we calculate the stress intensity factor at the
tip of the extended crack, which is different from the applied K -value because of the effect of the residual
strain, Mathematical formulations are shown in the following section. Those who are not interested in the
mathematical details can skip the next section without loss of continuity. In section 4 numerical results are
shown and their physical implications are discussed. Note that the mathematical formulation is easily
modified for a finite crack since the stress functions for a semi-infinite crack are derived as the limiting
case of those for the finite crack, ;

The interaction of plastic zones and cracks is also a fundamental factor in the micromechanism of the
brittle-ductile transition under compression. Its analytical model is proposed by Horii and Nemat-Nasser'” .
The model indudes cracks and plastic zones emanating from an initial defect. Features of the brittle-ductile
transition are explained in terms of numerical results.

3. MATHEMATICAL FORMULATION

For the mathematical formulation of the problem stated in the previous section, Muskhelishvili's
complex stress functions @ and ¥ are employed®. In terms of these potentials the stresses and
displacements are given by

0ot 0,=2(8+ ), 0,— 042 it2y=2ZF "+ T), 2 (gt ithy)=1@—2 & — U --oooeeeeeeeicenes (4)
where g is the shear modulus ; x=3—4 v for plane strain, p being Poison’s ratio ; z=x-+1y with {=
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+/=1 ; overbar denotes the complex conjugate ; and prime stands for
differentiation with repect to the argument.

To solve the problem we consider a single dxs]ocatlon at z, near a
crack of length 2 ¢ ; see Fig.2. We introduce stress functions @,=
&+ &y and ¥,= ¥, + U, where @, and ¥, are stress functions for a = ~2¢ o
single dislocation in an infinite plane and @, and ¥, are the com- Fig.2 A dislocation near. a crack.

plementary potentials to satisfy the stress free condition (1) along
the crack surface., @; and ¥, are obtained by the method of Muskhelishvili®, They are given by

;s a s Q azo ‘/___. R = —
@y= Z—2° U= Z2—2  (z—z)" @Rf“ a[F(Z, Zo)+ F(Z, Zo)]—a(z—Z0)G(2, Z0),
MZEQ— Bl g Do eer et (5)
with .
_1[,_ J&Z+2c)] 1 0 la o Y et
F(z, z°)~"2 [ z(z+2¢c) lz—z’ Glz, 20)= 920 Flz, 2 (6)

~where a=g({u ]+ ilue)e®/nilx+1), [ul=u"—u", and ‘&= (Z). For a semi-infinite crack, take the
limit, ¢—>co0, and Eqns. (6) become

Flz, zo)=% [1_ /Ezi]z—l—zo . Glz, Z°>:a%) F2, Zo)eeememeomsessmnsssesinsessnanssienennns e ()

Next we consider stress functions @, and ¥, for the applied load. By the method of Muskhelishvili'®,
stress functions for a crack of length 2 ¢ in an infinite plane under uniform tension ¢§ at infinity are

obtained as

@;:}, 0'2?"“‘1‘ 02«{1”‘ _z,.+__.c<__w:1’ qr;:__l O.«;v l 0.;0 ___.____.zcz .................................. (8)
4 2 Vzz+2¢) 2 2 " [z(z+2 o)}
For the semi-infinite crack we take the limit, c—co, with K, ,=o2+/7zc fixed constant to obtain from
Eqns. (8) ‘
;_ Kis v, :l Kia
292z "

&= g (9)

K. is called, in this paper, “the applied K-value” which is the loading parameter for the semi-infinite
crack. Obviously stress functions (9), through Eqns. (4), result in the well-known crack tip stress

distribution,

Sterss functions @,, ¥, and @, ¥, automatically satisfy the stress free condltlon (1) on the crack
surface. We introduce distributed dislocations along the plastic zones OP and OP”; see Fig. 1 (b). From
the first equation of (2) and the symmetry of the problem, the dislocation density is given by

a(§)= _ iﬁ(g)eie’ at z,=é&e®, and o(8)= iﬂ(f)e"ie, at z,= §e~t9 ..................................... (10)
where g(£), which is the derivative of the shear displacement gap across the plastic zone with respect to the
‘distance £, is a real function to be determined. The remaining condition, that is the yield condition along
the plastic zone [the second equation of (2)], leads to the singular integral equation for the dislocation

density ﬂ(g)

a_
2[ 5 d§+f /9 f /R H)df‘i“ 2 sin 8 cos— T Ty (H)
where
N 136 2 2insin26 ., S "y =
K&, n; 3)——Re{ e [5_77@2 R p— “+4 1 sin’® 6Rele* F'(z, zo)+ F'(z, Z0)
— e BG (2, Bo)F €0G (2, Zo)]J}+wivrrrrrrreresrens s (12)
with Re{ |} for the real part of the argument ; F’:% F. The first term of Eqn. (11) is the shear stress
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on the plastic zone OP due to the dislocation on OP, the second term due to the dislocation on OP’ and the
complementary functions @;, ¥, and the third term for the applied K-value;
The singular integral equation (11) for the dislocation density B(¢) [see Eqns. (10)] is solved
numerically by the method of Gerasoulis and Srivastav'® with the condltion: (3) resulting in
KIA

v/ iy

which provides the relation between the applied K-value K, and the plastic zone length [, where f(8) is
obtained numerically for a given value of §. From the obtained distribution of the dislocation density, the
crack tip opening displacement & and the dissipated plastic work W, are obtained as

0=2sin 6 (X_H)f B(&)dE, Wp=2zy———" "+1 flpflp (E)AEdy +++vrvrrerenreeneeeeaeeins (14)
which are calculated in the forms
o m Wl e e e e
tylp 7r(x+1)—d(0)’ 315 n(x+1)_w(0) (15)

The obtained distribution of the dislocation density is used as the residual strain when the extended
crack is considered ; see Fig. 1(c). We calculate the stress intensity factor AK, at the tip of the extended
crack due to the residual strain along the plactic zones O’P and O’P". The total stress intensity factor at
the extended crack tip is given by the summation, K,~K1A+AK, From Egns. (4), (5), (7), and(10),
AK, is given by

ip 0
AK,=—4+/2 n sin gﬁ /g(f)Re[x/l— Zjef]df’ with Zg=— [;4 £@%0+-rrrrrmrrivinsiniinn (16)
0 D
which is calculated in the form
AK;
o/l =g(l/ 1,5 8) e 17

In the following section, numerical results are shown and the growth of plastic zone followed by the
unstable crack growth is discussed.

4. RESULTS AND DISCUSSIONS

In the previous section it is shown that by solving the singular integral equation numerlcally, one

obatains
K S Y /S W AR e,
m/m_f(g)’ wvly pr s A8 F:IA (x+1 ul6) y/7ly =9/ 1,3 0) 18)

where & and W, are the crack tip opening displacement and the dissipated plastic work prior to the crack
extension, respectively; AK, is the stress intensity factor at the extended crack tip due to the residual
strain, The total stress intensity factor at the extended crack tip is given by the summation, K,=K,,+
AK,. The quantities £(8), d{(8), w(g), and g(l,/l,; 6) are the nondimensional values calculated for given §
and [,/1,. ‘

Now we determine the orientation of the plastic zone such that the dissipated plastic work W, is
maximized for a constant applled K-value K, ; see Fig, 1(b). Eliminating [, from (18), [the first equation
of (18)] and (18);, one obtains W, normalized with K,, which is plotted in Fig. 3 together with the length of
the plastic zone. It is seen that the orientation which maximizes the length of the plastic zone is slightly
less then that does the dissipated plastic work. From this result the orientation of the plastlc zone @ is
fixed at 76, 1° for which we have [see Eqns. (18)],

Ku_ o5, OB _ose5 WeEST _
&/—7; IA(I ) 1.4(1 -V 2)
where 5;=2 7y and E denotes the Young’s modulus. Corresponding to this orientation and the associated
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Fig.3 The dissipated plastic work and the length of the Fig.4 The stress intensity factor at the tip of the
plastic zone as a function of the orientation of the extended crack due to the residual strain,

plastic zone.

distribution of the residual strain, one calculates the stress intensity factor AK, at the extended crack tip
for different values of [,/[,;see Eqn. (18), and Fig. 4.

So far the introduced material parameter is only the yielding shear stress z, [except for E and y]. To
discuss the crack extension, we require the fracture toughness G, or K, which are related each other
through the relation between the energy release rate G and the stress intensity factor K,

Gzl_"’ P PP PP (20)

Then the material property is represented by two parameters zy and K.. The characteristic length of the

material 7, is defined by

K e
8ty (21)

which is the Irwin’s plastic zone correction” with K,=K,. Each material has its own characteristic length.

Tp=

For example, the value of 7, is larger then 135 mm for low strength Carbon steel and about (. 1 mm for
4 340 steel. Quantities whose dimensions include the length are non-dimensionalized using r,. With this
characteristic length it follows from Eqn. (19), that

KIA l
KC =(.83 [e P A (22)

which gives the relation between the length of the plastic zone and the applied K-value. From Eqns. (18),,

(21), and (22), one obtains the stress intensity factor at extended crack tip as a function of [,/ 7, and
lo/ T,

7% Ky AK’ [[083+glt/lp/2f] iAW I
2/rp Kia/Kg

............................... (23) 20 | // 2 12
which is shown in Fig. 5 where lines for constant values ;%/ ke /K = 10
of K,/ K. are plotted. Above the critical line for K,/ K, 1% //// 777 77 1o
=1, the stress intensity factor K, at the crack tip is 1o _;7 //// K’”( ////// o5
larger than the fracture toughness K.. Once the crack ’ '
is extended beyond the critical line, the crack grows in ///////////// ///// // o8
an unstable manner, This instability is possible if the. 7 24

0
applied K-value is greater than the fracture toughness © g/t
as is seen in Fig.5. However, the shaded area below Fig.5 Lines for constant values of the stress intensity
the critical line where K, is less then K. obstructs the factor at the tip of the extended crack.
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Fig.6 The energy release rate vs. the extended crack
length for the indicated applied K-value.
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Fig.7 The energy required for the crack extension
vs, the applied K-value,

crack growth, To jump this obstacle some energy must be supplied since the released energy due to the
crack extension is less than that required for the material separation. Once energy required to jump the
obstacle is supplied, the unstable crack growth is materialized.

To calculate the energy required to initiate the crack extension, we plot the energy release rate as a
function of the length of the crack extension for different values of the applied K-value in Fig.6. [The
stress intensity factor and the energy release rate are related through Eqn. (20).] It is seen that the
energy release rate reaches the straight line, G=@G,, when K,, is greater than K.. The energy required
for the crack extension is calculatec as the area surrounded by the corresponding curve, the straight line
for G=G,, and the vertical axis; the shaded area for K,,=K,. As the applied K-value increses, the
associated area, that is the required energy, decreases. Calculated energy per unit thickness required for
the crack extension, E; 1is shown in Fig.7 as a function of the applied K-value.

Asis seen from Fig. 7, the maximum energy required for the crack extension at K,,/K.=1 is given by E,
=0.25 Gerp. It is equal to the energy for the material separation of length a quarter of r,. It increases
drastically as the ductility of the material increases. For example, E, is (.26 J/m for 4 340 steels and
7 300 J/m for Carbon steels. In Fig, 8 the characteristic length r, and the maximum energy required for the
crack initiation E; are plotted as a function of 7, and K together with data for typical metals? ; to calculate
E;, E=20X10"Nm™ and y=(.3 are used. '

For brittle materials such as Maraging steels, the energy required for the crack extension is so small
that the crack extenslon is supposed to occur at the minimum value of the applied K-value which is the same
as the fracture toughness, Therefore it is concluded that the Griffith criterion is valid for brittle materials
even with the plastic zone at the crack tip prior to its extension,

As the ductility of the material increases, the

required energy for the crack initiation increases so0 | / S //

drastically and it may not be possible to jump the K car?::o;’ sl 7 S

obstacle at K;,=K,. Then two cases are possib- 600 | §/A5338 &e// o2 P
le. In the first case the required energy for the  ymm 9// /\7 A~ -
crack extension decreases with the increasing K, 400 t / _ o og/m

as shown in Fig. 7, and at a certain stage the un- / - Maraging Is;i
stable crack extension is materialized. In the. 200 (/] 7 Ay M
second case, with the incresing K, a stable crack “f; {s_’,,—i A= —OTmm 4340 steel
growth occurs where the applied K-value must be o s 00

. T (kg/mm?)
increased to advance the crack., Large plastic )
’ ge plast Fig.8 The characteristic length and the maximum energy

zones follow the crack tip as it advances. The
prediction requires a criterion of the stable

for the crack initiation together with data for
typical metals,
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(ductile) crack growth which must be based on the micro-events ahead of the crack tip such as the void
growth and their coalescence. :

As is shown above the stress intensity factor at the tlp of the extended crack is less than the applied
value. It is because of the residual strain in the plastic zone and it abstructs the crack initiation, In other
words, the apparent toghness is increased. Our results suggest that the material resistance to fracture is
increased if we generate artificially intensive plastic defomation at the crack tip prior to its extension. The
same effect in fatigue crack growth is well-known as the retardation effect of overloads, This study shows
a way to estimate the increase in the fracture toughness due to the residual strain,

Although the mechanism of the stable crack growth is out of focus in this paper, the residual strain is
considered to play an important role in the stable crack growth and in the possibly following unstable crack
growth. As the crack continues the stable growth, the plastic zone follows the advancing crack tip
accumulating residual strains behind the crack tip. The resistance to fracture continues to rise due to the
accumulated rasidual strain, With increasing crack length the applied K -value incrases, and the required
energy for the unstable crack growth decreases similarly to the case shown in Figs,6 and 7. [The
accumulated residual strain might complicate the situation, ]

In this paper the applied K -value is introduced as a loading parameter and is fixed constant for the crack
extension to simplify the problem and to shed light on the most fundamental mechanism. In the actual
situation, the applied K -value changes as the plastic deformation proceeds and as the crack extends, Their
relation depends on the way of the loading in a very complex manner, Our results are easily modified for
those cases if their relations are given. As is well-known, the stability of the crack growth depends on the
way of the loading, the stiffness of the loading machine and other factors. However, it is seen from our
results that the brittle crack initiation necessarily accompanies an instability because the crack initiation is
accomplished by jumping the obstacle due to the residual strain.

5. SUMMARIES AND CONCLUSIONS

In this paper the plastic zone at the tip of a semi-infinite crack under the plane strain condition is
modeled by symmetric planes inclined to the crack surface. Distributed dislocations are introduced along
the plastic zones, The distribution of the dislocation density is obtained such that the yield condition along
the plastic zone is satisfied. The orientation of the plastic zone is obtained to maximize the dissipated
plastic work for the constant applied K-value which is introduced as the loading parameter. The
configuration of the extended crack is considered and the stress intensity factor at the tip of the extended
crack, which is different from the applied K-value due to the effect of the residual strain, is calculated.
Numerical results are shown and their physical implications are discussed. The obtained conclusions are
summarized as follows :

(1) The stress intensity factor at the tip of the extended crack is reduced because of the residual
strain in the plastic zone at the original crack tip. As a consequence, some energy must be supplied to
initiate the unstable crack growth which is possible if the applied K-value is greater than the fracture
toughness.

(2) For brittle materials, the required energy for the crack extension is so small and the Griffith
criterion turns out to be valid even with the plastic zone at the original crack tip.

(3) With increasing ductility of the material, the required energy for the crack initiation increases
drastically, which may prevent the unstable crack extension and lead to the stable crack growth.

(4) The residual strain plays an important role in the unstable crack initiation as well as in the stable
crack growth followed by the unstable crack growth.

(5) It seems to be the next step to extend the present model for the stable crack growth where the
accumulated residual strain is one of the major factors which increase the resistance to fracture, The
criterion for the stable crack growth, which must be based on the micro-events ahead of the crack tip such
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as the void growth and their coalescence, seems to be necessary.

(6) Althongh perfect plasticity is assumed in the present study, the strain hardening can be

introduced by assigning a relation between the amount of slip and the shear stress along the plastic zones.
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