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Discussion By Seizou USUKI (Akita Univ. )

The purpose of this discussion is certainly not to detract from the value of the authors’ exellent, clear
and powerful work. I hope that the authors will emphasize the differences between the authors’ work and
other works,

(1) The authors have based on the displacement field of Egs. (3) and the strains of Eq. (4-b) and
(6), for developing the explicit stiffness equation of instability. On the other hand, Roberts et al. 919
have also presented the differential equation and the stiffness equation of thin walled bars. In these works,
they have used the shear strain considering second order terms of displacements of beam axis. In addition,
the stiffness equation includes the effects of deflection of beam axis prior to buckling. What are the
differences between the authors’ fundamentals and Roberts’ results.

(2) Barsoum and Gallagher™ and Kawai® have derived the stiffness equations based on strains
obtained from linearized displacement field. The stiffness equations derived by the authors and by the
above are, then, considered to be different from each other. The differential equations governing the
lateral-torsional instability of thin walled beams subject to constant axial force N°® and constant bending
moment M and MY are, however, considered equivalent each other in Ref.17), 18) and the authors.
Then, the stiffness equations presented in Ref. 17), 18) and by the authors are also considered to be
equivalent, in spite of the differences of the strain components between Ref. 17), 18) and the authors.

(3) The stiffness equations of instability of curved beams have been presented in Ref. 11) . What are
the differences from Ref.11), when the radius R of a curved beam becomes infinitely large.

REFERENCES

15) Roberts, T.M. : Second Order Strains and Instability of Thin Walled Bars of Open Cross-Section, Int. J. of Mech, Sci.
Vol. 23, pp.297~306, 1981.

16) Roberts, T. M. and Azizian, Z. G. : Instability of Thin Walled Bars, ASCE, EM, Vol. 109, No. 3, pp.781~794, June, 1983,

17) Barsoum, R.S. and Gallagher, R.H. : Finite Element Analysis of Torsional and Torsional-Flexural Stability Problem, Int. J.
for Numerical Methods in Eng., Vol.2, pp.335~352, 1970.

18) Kawai, T. : ANALYSIS OF BUCKLING PROBLEMS, Society of Steel Construction of Japan Ed., Baifu-kan Publishers,
Tokyo, pp.75-119, 1974 (in Japanese).

(Received July 24 1985)

Closure By Akio HASEGAWA (Univ. of Tokyo), Kithsiri LIYANAGE (Univ. of Tokyo),
Toyohito IKEDA (Univ. of Toky), and Fumio NISHINO (Univ. of Tokyo)

The writers would like to thank Usuki for his interest in the paper and for his valuable comments.
Followings are the closure remarks for discusser’s respective comments
(1) Reference 15) has presented certainly an analytical scheme based on the potential energy theorem
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to determine buckling loads of thin-walled members, however, the method presented in 15) is applicable
only for uniform straight members with limited boundary conditions for which acceptable trial functions of
buckling modes are available for cases such as simply supported beams or cantilever beams. As a natural
extention from 15), Rrference 16) has dealt with the finite element formulation of the same problem, and
has given the geometical stiffness matrix in terms of prebuckling displacements, not of stress resultants,
The essential strategy proposed in 15) and 16) seems to be a total Lagrangian-like approach which is a
clear contrast to the formulation of linearized finite displacements which the writers has used to derive a
concise and explicit stiffness equation in the paper. It should be noted that 1) sum of small displacement
stiffness and geometrical stiffness happens to be identical to the tangent stiffness at a reference state of
arbitrary equilibrium position, and 2) the tangent stiffness matrix can only be obtainable consistently from
the linearized finite displacement theory of continua. For this reason, as formulated in the paper, the
second order shear strain components should not appear in the evalution of geometrical stiffness matrix,
and prebuckling displacements should be excluded from the reference state of interest. Prior deformatons
including prebuckling displacements can adequately be incorporated by successive uses of the elemental
stiffness equation (19) helped by the cordinate transformations for respective elements of the assemblage
of straight members. By the way, References 15) and 16) have not given the differential equations of the
problem, which the discusser may have misunderstood.

(2) In conjunction with the question made by the discusser, consider the simplest case of in-plane
beam-column which is typical of the linealized finite displacement formulation. The well-known
displacements, strains and stiffness equation of beam-column can of course be extracted from Eqs. (3),
(4-b), (6) and (19) in the paper. On the other hand, the same stiffness equation is known to be obtainable
through a combined use of the kinematic field of small displacements and the equilibrium consideration at a
deformed configuration. As clear from this explanation for the beam-column, References 17) and 18) have
obtained their stiffness equations based on the equilibrium after deformation, or the equivalent
considerations in terms of external energy expressions, although the kinematic field of small displacements
has been utilized for the internal energy expression. While, the proposed formulation presented in the
paper has derived the stiffness equation through the consistent application of the virtual work equation of
linearized finite displacements of continua for thin-walled members. Therefore, as far as theoretical
formulations are concerned irrespective of the displacement fields employed, it is not surprising that the
quoted references 17) and 18) including 8) may produce the same results as the present paper for
particular illustrations. However, it may be worthwhile to mention that the present formulation including
the final expression of stiffness equation appears to be general and much more concise and comprehensive
compared with those in quoted literature. Since the kinematic fields and the stiffness equations are given in
a vague and complicated way in 17) and 18), it is neither worthwhile nor possible to make a full comparison
with the present paper. .

(3) Reference 11) has only presented the differential equation for curved members based on the
potential energy theorem, but no derivation was made for the corresponding stiffness equation, which the
discusser may have misunderstood. Therefore, no comparison is possible in terms of stiffness equation
between 11) and the present paper. It is noted from the writers’ point of view that the formulations of
curved members as they are either for differential equations or for stiffness equations tend always to be
tedius and cumbersome, and accordingly the resulting equations turn to be rather complicated as evident
from 11), even if the derivations are successful. For this reason, as stated in the paper, the utilization of
the idea of the assemblage of straight members seems useful and advantageous and is recommended to apply
particularly for practical purposes,

Those described above are the closure intended to correspond to the discusser’s valuable comments,
Stated hereinafter is to supplement the whole contexts of the original paper and discussion, As explained in
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the paper and the above closure, the stiffness equation (19) which consists of small displacement K, and
geometrical K, matrices is obtainable from the virtual work eqtation of linealized finite diiplacements, and
accordingly is interpreted as the incremental equation measured from an arbitrary reference state which is
supposed to be a known equilibrium state, Thus, K;+ K, of Eq. (19) is indentical to the tangent stiffness
K at the state. Therefore, the derivation of K;+ K is the most important not only for buckling evaluation
but also for tracing the nonlinear finite displacement behavior of structures. Under the circumstances of
computer application, the stiffness equation should play the same role of the differential equation with the
associated boundary conditions on solution procedures. As always desired for mathematical expressions,
such a key note equation should be presented as clearly and concisely as possible, On reviewing the
available literature including references quoted in the discussion in this respect, it is evident that the
stiffness equation (19) and the underlying formulation are much more clear, comprehensive and reliable
helped by its efficient and consistent treatment compared with others,

Last but not least in the closure, the writers would like to present the differential equations and their
‘associated boundary conditions which are exactly consistent with the stiffness equation (19) and are
derived with common variational procedures from the virtual work equation (14) of linearized finite
displacements for thin-walled members. The resulting differential equations are expressed as
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in which k=i, j for both ends as shown in Fig.2, and n,=—1 for i— end and n,=1 for j— end.

It should be noted for the future trend of structural mechanics that the governing equation of any problem
of concern can be expressed by an alternative form either of the differential equation with its associated
boundary conditions or of the stiffness equation. The former is useful for analytical solutions, and the
latter is appropriate for computational purpose, With the premise of computer proliferation, the
expression of stiffness equation which includes the associated boundary conditions automatically tends to
play more and more important role on practical applications, and therefore should be versatile and concise,
consistent with the related differential equation.

(Received October 23 1985)
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