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RING-PILE ANALYSIS FOR A GROUPED PILE FOUNDATION
SUBJECTED TO BASE MOTION

By Hirokazu TAKEMIYA*

This paper presents a FEM application, with use of the substructuing concept, to the
pseudo-3-dimensional dynamic analysis of soil-pile foundation-structure interaction.
The grouped piles are assumed to be in a concentric arrangement and are dealt with,
based on the ring-pile modeling, by adopting the n=0 and 1 Fourier harmonics for the
response in circumferential direction. Taking a bridge pier on a grouped pile
foundation, as an example, the investigation is addressed to the pile head impedance
functions and the associated input forces due to pile-soil-pile interaction for the base
motion, and the inertial interaction between foundation and structure.

1. INTRODUCTION

The dynamic soil-foundation-structure interaction is one of the most important area of study from the
geotechnical and structural engineering point of view, The author, applying the dynamic substrucrure
technique, presented an effective and efficient finite element formulation for the 3-dimensional seismic
analysis of a soil-foundation-structure system, and developed a computer code SUBSSIP-A 3 DV. In the
previous paper”, the case for a caisson foundation as modeled by an elastic solid revolution or by a rigid
body element is detailed. Since the soil impedance fuctions (the complex soil spring coefficients) are of
frequency-dependent nature, the complex frequency response method is adopted for the structural
response computation. The formulation is extensively used herein to focus on the behavior of grouped pile
foundations as modeled by beam elements which are connected by a rigid body cap at their heads.

The importance of pile foundations is growing as the more number of structures are under construction
with such foundations at soft soil sites, A pile foundation mostly comprises a group of piles with a cap on
top of them. Therefore, the pile-soil-pile interation occurs inevitably. The resultatnt so-called pile
grouping effect that is introduced when one makes use of single pile results, for the convenience sake,
instead is of particular interest in designing a grouped pile foundation. To evaluate this effect in the
dynamic sense, Wolf and von Arx? showed a substructure method in the finite element formulation in which
the soil flexibility with respect to the interface nodes with piles is first computed and the corresponding
stiffness as obtained by the inverse is incorporated into the grouped piles analysis. For the computation of
soil flexibility, Waas and Harman® took an efficient semi-analytical scheme (discretizing the response in
the depth and expanding it into the Fourier harmonics in the circumferential direction and adopting the
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associated analytical solution in the radial direction), and evaluated it by using a green function for a point
loading. Further, they suggested an approximate but more efficient procedure that takes a ring
deformation due to a ring loading for ring-arranged piles. The author applied the latter approximate
approach in the finite element method and implemented it into the SUBSSIP-A 3D code?. A deliverate
consideratrion is made in establishing the equilibrium condition between the discrete piles and the
continuum soils. In the phase of completing this manuscript, the author learned that Tyson and Kausel®
took the same approach to analyze the pile groups.

The points for investigation herein are addressed to : (1) the grouped piles impedance with a due
consideration on their grouping effect, (2) the Kinematic transfer function for the input motion given at
the base-effective input (or the driving force) at pile head, (3) the response transfer function at structure
through the inertial interaction with foundation, and (4) the comparison of the present results with those
from other approach (mass distributed beam analysis in viscoelastic layeres) by the author et al”.

2. PILE-SOIL-PILE INTERACTION

Appling the substructure concept for piles and near soils, one may split these as in Fig. 1 (illustratedina
2-dimensional way for the convenience sake) . Note here that the pile cavities are filled back by the soil to
make the free field before the foundation construction. The rigorous formulation therefore states that the
reduced piles’ properties by those of the filled back soils should be used to take into account of the effect of
soil cavities, However, referring to the 2-dimensional analysis”, one may use the original pile properties
in case of the conventional pile diameters, In order

to incorporate the soils extending infinite in the FOOTING

horizontal direction (far field), the transmitting T8 8.
boundary elements® are arranged at side boundary, MODEL

. . . — -+
For the pseudo-3-dimensional analysis of the near ol croup
soils, one can use the Fourier harmonics expansien

e . . sk
for response description in the circumferential Tt T T Jenaiey
direction. The linear viscoelastic soils, as modeled (a) s011-Pile System (v) Soil (e) Grouped

Piles
T.B.: TRANSMITTING BOUNDARY

by solids of revolution, have translational degrees } RANSH
Fig.1 Substructuring of Soil-Pile Foundation System.

of freedom only (3 DOF/ring node), so that the
displacements in cylindrical reference are expressed as

U(r,0,z)=§H§(6)Ui(r,z)+§H%(8)U%(¢,z) ......................................................... (1)

in which the Fourier amplitudes U,{r, z) and the expansion matrix H,(6) are defined as

Ulr,8,2)=1U, U. Ud" Unlr,2)={Ur U: Usdn

H(8)=diag.(cosnd cosnf —sinnd), HY6)=diag.(sinnd sinnd cosnd)

The superfix “s” and *g” stand for the symmetric and antisymmetric terms, respectively. In case of the
soomthly deformed configuration, the n=0 and | terms would be enough to describe the response.
Namely, the n=:( symmetric harmonic represents a vertical motion in z-direction as well as a symmetric
dilatation, the n=0 antisymmetric does a torsional motion about z-axis, the n=1 symmetric harmonic
relates a coupled motion of translation along x-axis (6=0°) and rotation about y-axis (6=90°), and the
=1 antisymmetric harmonic does a coupled motion of translation along y-axis and rotation about x-axis,
When Eq. (1) is incorporated in the finite element formulation, the governing equation subjected to the
base motion of frequency w results in, as (see Ref. 2)

(_, szsoil,n+ iwCson,n+ Ksoil,n)Un: Pgoil,n+ Psoil,n ............................................................. ( 2 )
for either a symmetric or an antisymmetric motion, in which Meoin Csonn and Ksons are the mass,
damping and stiffness matrices, respectively. Plony, is the effective input force (the driving force) vector
at soil nodes to be derived for a specified wave field, and Py, is the internal force vector due to the
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presence of piles. The Eq. (2) is simply expressed, when the dynamic stiffness D=—o*M+iwC+K is
used, as

DsonnUn= Pgoil,n+ Plagippvw"nn s e o e ( 3)
Further, if the condensation process (in actual computation, the partial forward reduction process is more
efficient) is carried out for Eq. (3) to reduce the degrees of freedom involved to those of interface nodes
with piles only, then

Xéou,nU;}: pgﬂoﬂm_}. péoiw ............................................................................................ ( 4 )
in which the complex valued X%, defines the soil impedance matrix, P, does the effective input force
to the presumed pile nodes, which is alternatively obtained from the free field response premultiplied by
the soil impedance X%, (see Ref.2), and Pl is the internal force to satisfy an equilibrium with piles.

Assume that piles of circular cross sections are in a concentric arrangement as shown in Fig, 2. Note
that identical piles are used on the same radius but they are not necessarily the same between different
radii. The behavior of piles on the same radius from the center is approximated by the limited Fourier
harmonics of n=0 and 1 along the circumferential direction connecting the concerned piles axes. This
assumption will be reasonable as far as the rings of piles keep almost the original axisymmetric
configuration during the motion at any depth. Since the piles are modeled by the 2-noded 3-dimensional
beam elements, the consistent Fourier harmonics expansion for the response with soils becomes
Ulr,8,z)) 4 [Hi(@) Us(r,2)), & [ H ) Ui(r,z)
®(r,0,2) H%(ﬁ)} @3 (r,2) { H;i(e)] &3 (r,2)
in which @(r, 4, z) defines the rotation vector of #={@,, @, @,". The Fourier harmonics expansion for
the force P={P, P, P," and moment M ={M, M, M," associated with the displacements expansion in Eq.
(5) is given by

JP(r,H,z) g [Hi(ﬂ) ] Py(r,z)|, 4 [H%(B) } P%(T,z)}

M(r,0,2) H0) UM (r,2) H:(0) I M3 (r,2)
The dynamic stiffness matrix for ring-arranged piles (termed “ring-piles” here) is easily construtedona

n=0 n=0

_n=0 n=0
cartesian reference from the knowledge of matrix structural analysis. If the dynamic stiffness of one pile
located at g, counterclockwise from the x-axis (see Fig. 2) is denoted by D, the transforming this into the
one associated with the n-th Fourier harmonic amplitudes yields

Dipn=HE(0) Doy Hop (8;)+++roveeveseemsessss et (7)
in which

—orm_ [H2(6) — o [H0)

mo=[" ey o Eo=[ "]

The use of the former matrix is simply called a symmetric transformation while the latter an antisymmetric
one hereafter. The array of the elements of D, corresponds appropriately to that of H,(4). The dynamic
stiffness of ring-piles in a distance r from the center is then found by summing Eq. (7 ) over the numbers of
piles Nr such that

DgP,nzé Dép,nz{ajk Dsp,n (]s k)] """""""""" ( 8 ) REAL PILE
in which §,, is a certain constant value to be evaluated vou
from the nature of the trigonometric functions involved. VIRTUAL

In the analysis of the interaction problem between the A . ° ) PILE o nee [;‘}3
discrete ring-piles and the surrounding continuum soils a CLOSE y
reasonable approximation should be established for their 2 sFrEcTve
bond condition. To attain this aim, the smoothing of ] —(\f"soigx,]n}
dynamic stiffness along circumferential direction is f‘ X
attempted so as to satisfy the matching over the respec- BASE_INPUT
tive ring-pile, Denoting such a fictitious dynamic stiff- Fig.2 Ring-Piles Model.
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ness per unit of angle by i)mn for a certain ring-pile, which behaves in accordance with the n-th Fourier
hamonic along the circumference connecting their axes, the integrated value along this circumference
becomes :

b;P,n:[2”ET(5)ﬁspﬁn(6)d0:[§jk«b8ﬂ(js o] eeeeeeee et (9)

in which &, is also evaluated from the nature of the trigonometric functions concerned. Comparing Egs.
(8) and (9) termwise, one can derive

Diopn (G B)= AguDpn () ++reeeereemmess e (10)
in which the coefficient A;, is defined as :

for the n=0 symmetric Fourier harmonic
N,/2 = when j and k are odd
A= .
0 otherwise
for the n=0 antisymmetric Fourier harmonic
N,/2 = when j and k are even
A= .
0 otherwise
and for the n=] harmonic,
N,;/2 = when (j+k) is even

0 when (j+k) is odd

For a pile located at center a special treatment is needed in case of the n=1 Fourier harmonic, Since the

A=

dynamic stiffness in Eq. (10) corresponds to the Fourier amplitudes of response, by noting U,= U,= I/,
(or U,), P,=Ps=P, (or P)); &,=Ps=0, (or &,), M,=Ms=M, (or M,), one-half of the original
dynamic stiffness should be used, instead of the original value.

After establishing the dynamic stiffness l~)Rm which takes account of all the ring-piles contribution, the
dynamic interaction equation of these with the neighboring soils is then expressed for a volume of unit angle
by

RP

Un Pgoﬂ,n Pg
@, 0 M

in which P%,;,, is the soil reaction in Eq. (4) to make an equilibrium at interface nodes i and P2, M:

represent the smoothed ring-pile head internal forces that include the bending moment besides shear and
axial forces due to the presence of a pile cap. Further, from Eq. (11), one can derive the governing
equation with respect to pile head nodes only by condensing out other pile nodal degrees of freedom,

Hence,

ho
n

Dh
(RP+s)m o
n

Ul P:
" }: M

in which D}, o, defines the ring-pile head impedance matrix and P}’ is the associated effective input force

vector at pile heads,
3. PILE CAP MOTION

A pile foundation has mostly a rather rigid cap (or footing) on top of flexible grouped piles to which the
latters are built in. Once the ring-pile heads impedance matrix and the corresponding effective input forces
are evaluated, its dynamic equilibrium is established in the Cartesian coordinates as in the former paper?
with including the rotational degrees of freedom together with the translational ones at pile heads,

The geometrical constraint at pile heads in connection with the motion of the gravity center of a cap, U,
is given by

U™x,y,2) ‘_ 1
o"(x,y,2)] ™

0

(Sﬁ(ﬁ)Ur*‘ Sﬁ(g)Up) ........................................................................... (13)
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in which the transformation matrices S,(6X6) are obtained from the master-slave relationship among
nodes as detailed in Appendix A. The coordinates transformation from the Fourier harmonics expansion in
cylindrical coordinates into the Cartesian ones yields that

[ G(6) ] 213 ([Hi(ﬁ) } Uys(r,z) [Hé‘;(ﬁ) ] nr,z) })
o"(x,y,2) G(6) 1n=0 HY6) 1 o7°(r,2) H0) 1l @3°(r,2)
in which G(8) is the coordinates transformation matrix. Comparing Eq. (13) and Eq. (14) termwise for the
respective mode of motion, one can get the Fourier amplitudes in terms of the displacement of pile cap.
Then,
U"x,y,2)

UMx,y,2)

:ﬁ (H(O)TE(1,2)F HE(O)TE (1, 2)) Uy ---vvvereevveeersnniommmmnnneaaniie e (15)

n==0

2"(x,y,%2)
in which the transformation matrices Ty, (6X6) are referred to Appendix A,

At the pile heads, the smoothed continuous distribution of forces, when transformed from the Fourier
harmonic expansion into the Cartesian coordinates, becomes
P"x,y,z) [G(o) ] ! ([Hi((i) } PZ'S(T,Z)} [HZ(H) ]
M"x,y,z) G(8) 1n=0 7(6) 1 Mz (r,2) H;(6)

In order to account for all the contribution from each ring-piles to the cap motion as the 6-degree of

it

freedom, the same formulation holds as in the interface modeling for an embedded rigid body foundation?,
The result is

1 ~ ~ ~ ~ 1 ~ ~
- wZMFUF'}'E an(TzT (’I;e,}fi-s),anz'{" T:T ()}t’g«»s),nTg) UF: Z_;) an(TSTP’rzoys_i_ Tszzoya)“FPsup """""" (17)

in which M, defines the mass matrix, T, is the expanded matrix of T, at diagonals as many as the numbers
of rings of concentric piles, and ¢,=2x and a;=7. The P,,, is the internal force due to the presence of the
superstructure. The Eq. (17) may be rewritten, by introducing the stiffness, K, and the damping, C-
matrices and the effective driving force P}, as !
— MU+ i0CrUe+ KrUp= P+ PPy (18)
Now the interaction formulation for the foundation and the structure is straightforward from the
component mode method. The explanation is omitted here since it is stated in the previous paper?.

4, NUMERICAL EXAMPLE

The above theory was implemented in the computer code SUBSSIP-A 3 D. As an application by using it
for the dynamic soil-structure interaction analysis, a bridge pier on a group of piles, as shown in Fig, 3, is
investigated.

The Figs, 4 depict the gross pile head impedance evaluated at the gravity center of the pile cap, the real
part of which defines the stiffness while the imaginary part the damping. One may note that these are of
frequency-dependent nature, The present solution (the chain line) is compared with the 3-dimensional one
from the mass distributed beam analysis with the independent thin layers assumption (denoted by
symbols), and with its simplified solution based on the ring-piles modeling herein (solid line)®. The
present finite element solution compares well with the 3-dimensional mass distributed beam solution in the
low frequency range, say, below 5 Hz which is most important range from the view point of earthquake
response analysis of bridge structures, Beyond this frequency the present solution fails to show a good
matching to the latter solution. The discrepancy between these solutions is due to the higher vibration
modes which the ring-piles modeling may not be able to produce. Both the finite element and the mass
distributed beam solutions based on the ring-piles assumption indicate a good agreement up to the higher
frequency than the above limit. This fact indicates that the thin layer assumption is adequate in evaluating
the soil stiffness.

Figs. 5 show the transfer functions of the effective input (driving force) from base to pile head through
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pile-soil-pile interaction when a unit time harmonic horizontal motion is imposed at the base level. The

small discrepancy of the finite element solution in the high frequency range is due to the accuracy of the
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Fig.3 Bridge Pier on Grouped Pile Foundation.
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free field response computation, since the transfer
matrix method used in the mass distributed soil
analysis gives a rigorous solution while the finite
element method gives an approximation due to the
discretization for the 1-dimensional shear wave
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Fig.6 Frequency Response Functions at Structure.

propagation, The Figs. 6 are the frequency response functions at levels of the pier structure computed by
the dynamic substructure method (the component mode method). One may note that an excellent matching
is attained between among methods of analyses despite the aforementioned result for impedance functions,
which is reasonalbly interpreted by the general fact that pile foundations are greatly affected by the soil
motion as a free field.

5. CONCLUSION

The present work aims at developing an effective and efficient formulation for the dynamic analysis of
grouped-pile foundations and at implementing it in the soil-foundation-structure computer code
SUBSSIP-A3D. Grouped piles are analyzed based on the “ring-pile” concept which assumes that piles in
a concentric arrangement follow the n=0 and 1 Fourier harmonics type displacement along the
circumference connecting their axes, From the illustrative example for a bridge pier structure on grouped
piles, the accuracy of this simplified analysis is checked in comparison with the 3-dimensional mass
distributed beam analysis with use of soil reaction from the continuum approach and is guaranteed with
excellent agreement over the frequency range which is important from the seismic analysis point of view.
Such simplified approach is not hindered by the numbers of piles as far as they are axisymmetric
arrangement and lie on the same ring since the real grouped ring piles are equivalently replaced by one
virtual pile for response computation.

As an engineering information, the dynamic response characteristics gained for the present bridge pier
will be interpreted in a more general sense.
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APPENDIX A : Transformation Matrices § and T

Since a rigid body motion is uniquely prescribed by the movement of its gravity center, the displacement
relationship between the pile cap G. C. and pile head nodes is given by a rigid linkage, i.e.,

Uen | 1 0z -y

Uy 1 -z 0 x ||U

Gl _ ly ..... T 0 s e (A1)
(" 1 L

2, 1 ?,

o, i 1 it

The value (x, y, z) is the distance measured from the gravity center in the Cartesian coordinates, When a
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cylindrical representation is used for the coefficient matrix, and further a due consideration is paid on the

‘independent modes of a rigid body motion, Eq. (A1) is expressed as

3 6 1 5 2 4

Us 0 i —rcosé I 0 i 0 Uz

Uy 0 rCcosé 0 0 1 -z Uy

U. 1 : 0 0 {—rcosd 0 | rsind U,

IOl QR i R R B EERRETEL PR 4 |- [RRERCECEEEEES I I S SPPPPPRUN (AZ)
o, 0 N 0 0 0 1 ..

a| | o o o 0o 0 |l|a

o, 0 i 1 0 0 0 i 0 o,

6X6 66 66 66

in which the first term represents a vertical translation mode, the second the torsional mode, the third the
coupling mode of translation in the x-direction and rotation about the y-axis, and the fourth again the
coupling mode of translation in the y-axis and rotation about the x-axis. One may rewrite Eq, (A-2) in the

form of Eq. (13) in which 85, 82,

t, and Sf correspond to the respective term in Eq. (A-2) in that order.

Recalling the Fourier harmonic expansion of displacement in Eq. (5), one may determine the harmonic

amplitudes through matching the respective mode of motion. The results are
3 6 1 5 2 4
0 C 0 1z 1i—-2
1 Lo 0 i—r 07
;E—*— g Ur, ; :‘—‘ g Ur, ; = (1)rf Ur, 1; = érlz Up--- (A-3)
0! Lo 0 {0 0 0
0! L0 0 i1 01
6X6 6X6 6X6 6X6

These transformation matrices define T3 and 72 in Eq. (15).
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