169

Structural Eng, / Earthquake Eng. Vol.3. No.1, 157s-165s, April 1986
Japan Society of Civil Engineers (Proc. of JSCE No. 368, 1-5)

AN ELASTIC FINITE DISPLACEMENT ANALYSIS OF PLANE BEAMS
WITH AND WITHOUT SHEAR DEFORMATION

By Taweep CHAISOMPHOB*, Fumio NISHINO**, Akio HASEGAWA*** and
ALY GAMAL ALY Abdel-Shafy****

A finite displacemtment theory is developed for an arbitrary plane curved Timoshenko
beam, in which an elastic constitutive relation is defined not by tensor components of stress
and strain but by other physical components. This selection of components makes the
governing equation simple and easy to handle. The nonlinear stiffness equation, with the
use of nodal positions and the appropriate selection of local coordinates, is formulated for
an elastic plane straight beam element. Three numerical examples of plane beam problems,
involving geometrical nonlinearity, are employed as illustrative examples.

1. INTRODUCTION

An elastic finite displacement theory of the so-called curved Timoshenko beam with shear deformation
has been studied by Reissner?, in which the derivation of kinematic field applicable to one dimensional
beam theory was a major subject of investigation. Sheinman has also studied the same subject”. The
governing equation derived in his study, howver, is applicable only for a range of moderately small rotation
and in addition inconsistency seems to be present in the treatment of higher order terms of small
quantities?, Recently, the governing equation of Timoshenko straight beams in finite deformation which is
identical to that by.Reissner has been formulated by Iwakuma et al¥.

For discrete system, a total Lagrangian nonlinear formulation of elastic trusses has been made by
Nishino et al?. In their study, the stiffness equation was described as the relation between the overall
nodal forces and positions, and was solved numerically by the successive substitution procedure, which
was proved to be the same as Newton-Raphson iteration due to the equivalence between the total and
tangential stiffness matrices of the same system,

This study presents a finite displacement theory of plane elastic beams in the range of small strain
problems, and it can be divided into two parts. The first part is concerned with the formulation of a finite
displacement theory of arbitrary plane curved Timoshenko beams, in which no limitation is imposed for the
magnitude of displacements and rotations. It is emphasized that employing physical stress and strain
components rather than tensor components simplifies the expression of constitutive equation and hence the
resulting governing equation, The second part covers a total Lagrangian formulation of a plane straight
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beam element, in which its treatment is obviously easier than that of an arbitrary curved beam element.
The stiffness equation, applicable for beams with and without consideration of shear deformation, is
established. By utilizing nodal positions as basic unknowns and selecting the local coordinates along the
displaced beam axis in the stiffness equation, the total stiffness matrix is proved to be approximately equal
to the tangential stiffness matrix®. Hence, in order to employ Newton-Raphson procedure for solving
nonlinear stiffness equation, the effort to obtain tangential stiffness matrix may be ignored. Three
numerical examples are presented to show the accuracy of the stiffness equation compared with the results
available in literature,

2. FORMULATION OF ARBITRARY PLANE CURVED TIMOSHENKO BEAM

(1) Kinematic Fields

Define Cartesian coordinates (x, y, z) with a reference frame of mutually orthogonal unit vectors
(iz, iy, i) fixed in space. At initial state, consider convected curvilinear coordinate xz coinciding with
the axis of a curved beam in xz plane and straight coordinate 5 perpendicular to £.

The position vector of a general point (£,7) in a beam element before displacement is expressed as
shown in Fig.1 by

(&, D)€, 0) A 70T () +verrveemeereee et (1)
For simplicity of writing, the quantities on the beam axis are written, henceafter whenever appropriate,
omitting functional relations such as °r and i, for °r(£, () and °i(&).

Note that the geometrical relations between the tangential and normal unit vectors along the beam axis
are given as

d’r _,. d'r_,.

Cr

o 0 0 0 20 -1
‘fi:;= o‘p”, ddg":oi; in which %=+ Cfig: ]

The kinematic assumptions of the so-called Timoshenko beam are that plane sections normal to the beam

axis before displacement remain plane but not necessarily normal after displacement and that the
cross-sectional shape and area remain unchanged. The position vector of a general point at a displaced
position is expressed as observed in Fig.1 by ’

r(é, 7)=(x+7sinQ)iz+(z+7cosR)i. in which Q=4 (3)
where (2 is a rotation of cross-section measured counterclockwise form z-axis, £ is a shear angle, and Ais
an angle between beam axis after displacement and , measured counterclockwise, which can be defined by

A=tan"'(—z'/x')=sin"(—~z'/g)=cos (x'/8),

GV A (R -veermeeememmeeiiee i (4)
in which prime indecates the differentiation with respect
to §.

Define °g, g(i=¢,n) as the base vectors in the
direction ; before and after displacement, respectively,

beam axis

A Before Displacement

ei.t_

Utilizing Green strain tensor e;; which can be defined as
(g.g;,—" g g,)/2, and remembering the position field l'_—’
Egs. (1-4) result in the relations between non-zero

strain tensors and positions as

beam axis

eegzé[(g cosf+ UQ’)Z‘F(gSiIIﬂ)Z"'QB:;T)_jt»

After Displacement
Fig.1 Geometry of Curved Timoshenko Beam before
Here, consider another set of strain components ¢, and and after Displacement.
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ee Which will be employed in the following constitutive relation, Let *;, and *;,, denote the unit vectors in
the direction normal and parallel to displaced cross-section (Fig.1). Note that the infinitesimal element
after displacement can be described in the directions of *i, and *{, as

dr(&, 7)=18 CoSB+ nQIdE*i |G SINBAE+ dnfFiy, -+ vrererererreermrerm (6)
From Egs. (1), (2), and (6), defining the extensional strain ¢, as the difference between the
magnitude of infinitesimal element in the derection normal to cross-section before and after displacement

leads to
L]

_ %
004y

In addition, defining the shear angle ¢, as the physical component of strain tensor e,,” results in
o

oy =—t—
2Co+7)
It is emphasized that, by the above definition of the new strain components, e is a linear function of 7,

[E_'_,](x_hol;)] in which e=gcosgf—1, K==L e (7.3)

Y in Which y=g Sinﬂ ..................................................................... (7 E b)

and &, is a uniform function of 7 in case of the straight beam formulation,

(2) Equilibrium Equations

If the body and the end surface force vectors are denoted by p, and p,, respectively, the virtual work
equation for a curved beam element, employing the Kirchhoff stress tensors g;; and the Green strain
tensors e;;, can be written by

[ [todentaompent+ipsorie, 2T dade+] [Ip.7or(e, nlda ], =0 (8)

Recalling that stress vector g, acting on plane normal to £-axis is decomposed as y/°g;’ g¢(0::€c+ 0eng») in
terms of orthogonal curvilinear coordinate”, an alternative decomposition of g, to the new stress
components f and fe, in the direction of *j, and *i,, respectively, results in the relations as

0 0
+7 ; + .

Fre= ,,ﬁ__/”op igcosB+ 19, fen= Pﬂp T {5 SINB)AH Gepl ++orerereremesemsemenerinmineeee e, (9)

From the new definition of stress and strain components as given by Eqs. (7) and (9) it can be shown
that

Og;b‘eg{i“20mﬁeen=f555€5§+2fgn5£§n ............................................................................. (10)
Substituting Eqs. (3) and (10) into Eq. (8) and remembering Eqgs. (4) and (7) give

L
_[ (NSe+ Mox+ Voy + p.0x+ 002+ cOQAEH[Prdx+ P07+ COQleug =000 ereeeresnes (11)

where ;
NzlffedA’ V:lfé'ndA, Mz—/;feg,?dA .................................................................... (12)
0 [} B

- etn — e+n - —

pe=[par’s PdA, D= [ pecte A, Pe=[pudd, P.= [ pudd,
0
C:f[pdx COSQ—pszinQ]v loo+77dA, C:/‘{psx cosg—pszsing]ndA ......................... (13)
A 0 A

Then, the virtual work equation (11) for a one dimensional curved beam yields the equilibrium equations
(N cosQ+V sinQ) +p,=0
(—N sinQ+V cosQ)+p.=0

M,+ C bt | IR I I I R I
o, (14)

and the boundary conditions at £=(, L as

N sinf—V cosf+

x=%x or n(Ncos@+VsinQ)=P,
z=%z or n(—NsinQ+VcosQ)=P,
Q:gg or nM:C ................................................................................................ (15)
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where fx, “z and ©Q are the given position components at the boundaries, and n=-—1, +1 at £=0, L.
Note that the equilibrium equations (14) and boundary conditions (15) are identical to those by
Reissner?, and Iwakuma et al¥. for straight beams. These results can also be applied to the problem of
plane curved beams without shear deformation®® by omitting the shear kinematic terms (g, e,,).
(3) Constitutive Equations '
For a linear elastic material, the simplest form of constitutive equations can be assumed by employing
Young’s modulus E, and shear modulus G as

fse:E€ee, f.;nZZGE;n ............................................................................................... (16)
By selecting the £-coordinate along the centroidal axis, substituting Eq. (16) to Eqgs. (12) yields the

relations between stress and strain resultants expressed by

N—':EAE, M=EI(x—1/°p), V=GkA)/ ...................................................................... (17)
where
_ ‘o _ ‘o, — O
EA—E£0p+ndA, EI~—ELP+”:7 da, GkA—le0p+7}dA (18)

and the shear coefficient % is newly introduced to reflect non-uniformly distributed shear deformation
across the section?,

It may be worth to note that, partly due to the ambiguity between the experimental and theoretical
constitutive relations in beam theory, the utilization of physical stress f;, and strain components ¢, in Eq.
(16), which simplifies the expression of governing equation, may be acceptable.

3. FORMULATION OF STIFFNESS EQUATION OF PLANE STRAIGHT BEAM ELE-
MENT

As mentioned before, due to the complication of a curved beam element in FEM procedure, the following
stiffness equation is developed for a straight beam element. By neglecting the effect of initial curvature
(1/°0=0), the governing equation previously derived can be employed to formulate the nonlinear stiffness
equation of a Timoshenko straight beam element in terms of nodal positions and rotations.

Select the first and third order polynomial functions for interpolation functions of x and z,
respectively. Taking into account that the zero-th order polynomial function or constant was properly
selected for the interpolation function of shear angle 4 in the formulation of the linear stiffness equation of
Timoshenko beams!, this natural selection may also be used to derive the nonlinear stiffness equation.

In the view of finite element method, the length of each element is short enough to assume the base vector
in the direction of beam axis at displaced state i, to be constant within element. For a particular element,
choose i, of arbitrary coordinate (x, z) as shown in Fig.2 such that

P P DT T TP D (19)
where {. can be expressed by

Fe=(X/ 8)int (27 /)iy +rrrrrrrrrmmmrmmmm e e (20)
Substituting Eq. (20) into Eq. (19) leads to ‘

T e T O 0 G R PP (21)

By taking into account of the above interpolation functions and the conditions of Eq. (21), substituting
Eqgs. (4), (7), and (17) into the virtual work equation (11), neglecting distributed forces, results in
Sx‘[K'x-—F—Fo]ZO ............................................................................................... (22)
where

K=Keyvt+ Ken+ Koyt Key

x=[x; z: QL x, z; QL ALY

F=[P, P, C,/L P, P, Cj/i, o, i=xj—x,- ........................................................ (23)
and the details of Ky, Kuu, Ko, Koy, and F, are given in Appendix,
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Before Displacement

4 (xj'zj‘“j'“

" After Displacement Losal(Moving) Coor. (xi'zi'ﬂi)f
2

i
/ 4
* i{ (assumed constant along
34 -
s very small length, L) Global Coor. 8y=8-a
x 15 z v -1 z.,~z.
o = tan  (==j—i)
+ %73y
Fig.2 One-Dimensional Straight Beam Element. Fig.3 Transformation of Coordinate at Equilibrium State.

The condition that Eq. (22) holds for arbitrary §x is

g Ay I Rl R P PPN (24)
Eq. (24) is the nonlinear stiffness equation of a plane straight Timoshenko beam element with respect to
the local coordinate system which satisfies Eq. (19). Note that, due to coupling terms of shear angle g, an
independent nodal component £ has to be introduced for each element, In case of straight beam element
without shear deformation, the stiffness equation (24) can be employed by neglecting the shear angle and
shear rigidity terms (8=0, GkA=).

It is noted that the local coordinate identical to the so-called moving coordinate which has been employed
to derive the element stiffness equation (24) must satisfy the condition of Eq. (19). Hence, in order to
obtain the transformation of coordinates, the transformation of rotational angle has to be taken into
account as shown in Fig, 3.

4. NUMERICAL PROCEDURE

Due to the nonlinearity of the stiffness equation, an iteration procedure is necessary for obtaining
numerical solutions, A Newton-Raphson procedure was selected for iteration scheme, For general
numerical treatment, the external force vector F is expressed by the product of constant vector £ and.
variable scalar f, which are called loading pattern and loading intensity, respectively, Hence, denoting
the incremental loading intensity and nodal positions between two iteration steps as Af" and Ax™,
respectively, the numerical scheme for the stiffness equation can be written as .

K;(x”)Ax"—"Af”f=f"f—'[K(x")x”—Fg(x")] ............................................................... (25)
where K;{x) denotes the tangent stiffness matrix. Since it was theoretically proved that the total stiffness
matrix K(x) is approximately equal to tangential stiffness matrix K{(x)®, K(x) is employed instead of
K{x) in Eq. (25). Also, numerical proof of this approximation is presented in the next section.

Since the number of unknowns is larger by one than that of the stiffness quation, an additional condition
must be introduced among variables Ax and Af. In this treatment, two techniques for controlling these
variables are utilized. The first is the load control technique, which can be expressed in the form of® 9

A fn__. P | R R (26)
where ¢ is a constant parameter for obtaining the next solution,

And the second is the path length control technique in (j+ 1) —dimension space, which is given by

g} ai(xi——x‘})’-F a?,ﬂ(f__f‘))'—’_ CoEm() reervre s e (27)

5. NUMERICAL EXAMPLES

The first example is a cantilever beam under a transverse tip load in Fig, 4. Also shown in Fig. 4 is the
analytical finite displacement solution of beam without shear deformation by Mattiasson'”?, The present
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0.0 0.2 0.4 0.6 0.0 o1 Y0.2 Y 0.3
Fig.4 Results of Cantilever Beam under a Transverse Tip Fig.5 Results of Circular Two-Hinged Arch under a Point

Load, Load.

solution obtained by the stiffness equation of Eq. (24) neglecting shear deformation agrees well with the
analytical solution, In order to show the validity of the stiffness equation of beam with shear deformation
(Eq.24), this problem is calculated by assuming shear modulus equal to one half of Young’s modulus,
There exists some difference between this result and the analytical result®® due to the effect of shear
deformation, k

The second is a symmetrical circular two-hinged arch under a point load at crown as shown in Fig, 5. The
present analytical solutions by Runge-Kutta-Gill Method for Eqs. (14) and (15) are given in Fig. 5 for two
different values of shear stiffness, and compared with the FEM solutions obtained by Eq. (24). The
results show a good coincidence between the finite element solutions of a series of straight beams and the
analytical solutions of the curved beam.

Lastly, Fig.6 shows the present FEM solutions for the relation between a point load and deflection at
the crown of unsymmetrical circular clamped-hinged arch, in which the effect of shear deformation is
neglected. The present results are compared with the results of Yoshida et al'. The first equilibrium path
starting from the origin point to point A is in good agreement with the results by Yoshida, Yoshida also
found another equilibrium path starting from point B, However, he did not compute any numerical results

~ between point A and point B, but only connected them by dash line shown in Fig, 6. By using the path length
control method in this study, it is found that point A and point B lie on the different equilibrium path, In
order to start tracing the second equilibrium path, it is noted that the equilibrium configuration of arch at
point B obtained by Yoshida is employed for initial guess solution, and the displacement in the direction of
applied load at crown is prescribed in the iterative procedure. The equilibrium configurations at different
states are shown in Fig.7.

Fig. 6 also includes the relation between displacement and the smallest eigenvalue determined from the
total stiffness matrix K(x) along the first equilibrium path. It can be seen that the line of eigenvalue in the
range of both limit points D and C passes the horizontal axis, i. e. | zero eigenvalue line, From the fact that
the tangential stiffness matrix K{x) becomes singular at limit point, the deviation of the limit point and the
point of zero eigenvalue shows the error due to the approximation between K{x) and K(x). In order to
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Fig.6 Results of Circular Clamped-Hinged Arch under a Point Load.

Original Shape
Original Shape

A ‘Ng B
1% Equil. Path 284 Equil. Path

Fig.7 Equilibrium Configurations of Circular Clamped-Hinged Arch.

check this error numerically, the difference of displacement (corresponding to applied load) at the limit
points and at the zero eigenvalue points are calculated, and the values are less than1 % and 3 9% in the
range of points D and C, respectively.

6. CONCLUDING REMARKS

This study formulates an analysis of elastic finite displacements of plane curved Timoshenko beams,
with rigorous consistency of kinematics through the application of the virtual work equation, The adoption
of stress and strain components defined in Eqs. (7) and (9) and the constitutive equations (16) makes the
expression of the governing equation much simpler and easier to solve compared with the governing
equation in Ref, 2.

By utilizing a total Lagrangian approach, the finite displacement stiffness equation of an elastic plane
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straight beam with and without shear deformation is presented in terms of nodal forces and positions. As
shown in the second example, the stiffness equation of a plane straight beam element in this study is
applicable for an arbitrary plane curved beam by dividing a curved beam into a series of straight beam
elements. In the last example, it has been checked numerically that, with the selection of local coordinates
along the displaced beam axis, the approximation between the total stiffness matrix in Eq. 24 and the
tangential stiffness matrix in Eq.25 is acceptable. Therefore, the tangential stiffness matrix can be
replaced by the total stiffness matrix in Newton-Raphson procedure. From the viewpoint of numerical
analysis, a path length control technique seems to be an effective tool to follow the equilibrium path.
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APPENDIX, STIFFNESS MATRICES

The detailed forms of stiffness matrices appeared in Eq. (23) are given below

1 0 0 —1 0 0 O
6 0 0 0 0 0
6 0 0 0 0
KENZ(EA/L)+(G;CA—EA)/?2/L Sym. 1 0O 0 0
0 0 0
0 0
0
B1 0 0 —Bl 0 0 0
12 -6 0 —12 —6 12
. 4 0 6 2 —6
Ku=EI/(LL?) Sym. B. 0 0 0
12 6 —12
4 —6
12+(1/D)
Bz 0 0 —~ B, 0 0 0 h
6/5 —1/10 0 —6/5 —1/10 1/5
. 2/15 0 1/10 —1/30 —1/10
Ky=P/L Sym. B, 0 0 0
6/5 1710 —~1/5
2/15 —1/10
—4/5 ¢
1 6 0 =1 0 0 01
6 6 0 0 0 0
. 0 0 0 0 0
Kou=[M{Q,—B8)— M,Q,—p))/L* Sym. 1 0 0 0
0 0 0
0 0
0-

Fo=EA1—@B*/2} [-1 00100 0F

where

i=x,~x,, D=EI/(GkALY), P=EA(L—L)/L
B.=4(Q+ 2,0,+ Q1+38—3Q.8—30,8), B.=2Q}—2,0,+2Q:+38°—32,8—32,8)/15L
M,=|—2EI(2Q,+Q,)/LI+6EI8/L, M,=REI29Q,+Q,)/L}—6EI8/L
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