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A STUDY ON CRITICAL STRENGTH OF THIN-WALLED STEEL
FRAMES SUBJECTED TO COMBINATIONS OF
VERTICAL AND HORIZONTAL LOADS

By Hiroshi NAKAI*, Masahiko KITAZAWA** and Toshihiro MIKP**

This paper reports the in-plane “critical strength” representing the buckling or ultimate
strength of thin-walled steel frames subjected to the combined actions of vertical and
horizontal loads. To investigate the critical strength of steel frames, an experimental
study is performed by using seven portal frame models with thin-walled box cross-section,
The critical strengths of portal frames are also inquired on the basis of elasto-plastic and
second order analysis including the approximate method for evaluating the local buckling of
thin-walled column sections. Through these results, the lower bound of critical strength of
frames is clarified in detail. Finally, two approximate methods for estimating critical
strength of thin-walled steel frames are proposed herein.

1. INTRODUCTION

In designing the steel frame structures composed of thin-walled box members, the formula for estimating
the ultimate strength of beam-column by using the effective buckling length of column has been presented in
not only the Japanese Specification for Highway Bridges? (thereafter referred to as JSHB) but also
almost all other foreign specifications. Particularly, the plastic analysis considering the effects of P— A
due to vertical loads, P, and buckling displacements, A, is recently codified as a design reccomendation of
ultimate strength of frames in DIN 18800, Teil [[? and ECCS¥-%,

However, if the plastic analysis®” is applied to the steel frames with non-compact and thin-walled
cross-section®, it may overestimate the ultimate strength of frames, because the decrease of rigidities of
thin-walled cross-section due to the local buckling can not be taken into accounts in such analytical method.
Especially, there are many unclarified problems how to estimate the influences of local buckling upon the
ultimate strength of thin-walled frames for a case where the bending moment in members is predominant in
comparison with the axial force and the difference of load capacities between the initial plastic hinge and
plastic mechanism is large.

Inoue, Takenaka, Hasegawa and Nishino? has dealt with the ultimate strength of steel frames on the
basis of the elasto-plastic finite displacement theory and they sustain the validities of design method of
frames by using the effective buckling length of column, However, the same kind of problems mentioned in
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the above can not be avoidable even in the analytical methods” ' where the propagations of plastic zone in
members are taken into considerations.

Therefore, it is necessary to make clear of the critical state for the frames containing the local buckling
of columns with thin-walled cross-section as well as the overall buckling of frames.

In this paper, an experimental study is performed by using seven thin-walled frames subjected to the
combined vertical and horizontal loads. The critical strength of portal frames are also inquired on the basis
of elasto-plastic and second order analysis™''?_ Through the examinations of these results, the critical
states and corresponding strengths of frames are inquired in detail.

Finally, two alternative design methods for predicting the critical strength of frames are proposed and
their validities are checked in comparison with the test results.

2. EXPERIMENTAL STUDY

(1) Test specimen

Seven portal frames, F1~F7 with the thin-walled box cross-section indicated in Fig.1 were
fabricated as shown in Fig. 2. Every test frames, F 1~F 4 and F 5~F 7, have the same dimensions and
their plate slenderness, R, i.e.

Rf:(B/tf)‘\/m'm ............... RPN (1)
are setas(). 5 and (). 7, respectively, where B and , . width and thickness of flange plate (common to beam
and column), respectively, k : buckling coefficient of plate

elements (=4.0), E : Young’s modulus (=2.06X10° MPa) and 224 £
u : Poisson’s ratio (=0.3). of 5 __:} W
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Fig.1 Cross-section of column (beam) in test frame. Fig.2 Details of test frames.
Table1 Dimensions, cross-sectional properties and parameters of test frames (SS41).
Items Dimensions(mm) Cross-sectional Parameters
properties
Test A (Ab) I (Ib> r (Tb ) — — —
frames B Dc Db te ty 2 h ((:cm2) c(cmé) cy(cmg' K )‘.Y >‘oy Xe Rf wa
F4 | 170|102 | 87 | 6.09 | 4.46 | 1,002 | 1,539 287 1 5307 1430 g o3 649 | 0.4 0.46 | 0.50 | 0.47
’ ) ! ! (27.7)| (370.6)| (3.66) | ’ ’ ’ ’ :
24.3 | 456.5 | 4.33
F5~F7 | 178 | 104 | 87 | 4.45 | 4.45 | 998 | 1,554 0.96 | 0.50 | 0.43 | 0.47 | 0.73 |0.62
' (22.8)|(305.5)| (3.66)

Notes; Bf, Dé, Dk‘)' tes by 1y hr see Fig.1~2., Ac' Ab cross~sectional area of column and beam, respec-
tivey., IC N Ib : geometrical moment of inertia of column and beam, respectlvely ) To :radius
of gyration of column and beam, respectively., K: Eq.(2), Ay Eq.(3), Xoy Eq.(4.6), Xe E{; (8.7),
Re: Eq.(1), Rp,t Eq.(A.4).
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length of column by elastic theory and r., : radius of gyration of column.

The dimensions, cross-sectional properties and various buckling parameters of test frames are listed in
Table 1.

(2) Loading condition

The vertical load, P, and horizontal load, H, are applied to the test frames in proportional to their
intensities as shown in Fig. 2. In order to know the variations of critical strength of frames due to the load
ratio, P/H, the following relative load ratio

a=(P/Pg)/(H/H9) .................................................................................................... (4)
are set within the ranges ¢=0~3. 6, in which H, means the load corresponding to the initial plastic hinge,
where a column section of the frame subjected to the horizontal load alone results in the fully plastic state.

These loads, P, and H,, of test frames as well as relative load ratio, a, are shown in Table 2. The
additional figures indicated in the test frames of this table are categorized as follows;

F2 0.7 3.257 |—Relative load ratio, o

I L Plate slenderness of flange plate, R,
No. of test frames (F1~F7)

(3) Loading device

The same loading device (seePhoto 1) as detailed in Ref. 12) was utilized for the tests, Firstly, through
the experiments in the elastic region, load ratio, stress distribution and difference between axial forces in
both the columns were checked in comparison with those of the elastic linear theory. Thereafter, the
vertical and horizontal loads were gradually increased up to the failure of test frames,

(4) Mechanical property and initial imperfection of test frames

a) Mechanical property

The test frames were assembled by eight different steel plates with steel grade SS 41, so that the tensile
tests of these plates were carried out by 44 coupon specimens, JIS No.5. The averages of mechanical
properties such as Young’s modulus E, Poisson’s ratio y and yield stress ¢,, are summarized in Table 3,

b) Initial imperfection

The initial deflections at the central line of columns and the top and bottom flange plates of columns of
test frames were measured prior to the failure tests,

All the specimens have the initial deflection of which modes are sway ones having the horizontal
deflection at the top. The magnitude of initial deflection, §,/h, at their tops are within the ranges from

Table 2 Loading condition of test frames.

Items Relative Critical
Tes load ratio] loads
frames ] (KN)
F1-0.5-3.57 3.565 P =819
F2-0.5-1.22 1.222 16
F3-0.5-0.40 0.396 P
F4-0.5- 0 0
F5-0.7-3.26 3.257 P =

=71

F6-0.7-1.16 1.156 HVZG:
¥7-0.7-0.35 0.347 P

Notes; o: Eg.(4)
P_: Squash force of column
H_First hinge load of frames
subjected to horizontal load.

Table 3 Elastic modulus and yield point of
test frames (SS41).

Elastic modulus |Yield point (MPa)
E(MPa) U F1~F4 | F5~F7

5
2.1x10 0.27 285 294

Notes; E: Young's modulus, .
u: Poisson's ratio. Photo1 Experimental apparatus.
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1/5, 130 to 1/187 and their average is reduced to 1/698. The average of the maximum initial deflections in
the flange plates is also less than that of the fabrication tolerance, B/150, of JSHB and their average is
0.752:B/150.

While, the maximum values of compressive residual stresses, g,., is thought to be (. 35- g,, because the
cross-sections of columns of test frames used in this experimental study have almost the same dimensions

as the stub-column specimens as detailed in Ref.13).
3. TEST RESULT

(1) Test frames after collapse

The collapse patterns of test frames, F1~F 4, after failure tests are shown in Fig,3. The local
bucklings are observed in the top and bottom flange plates of columns in the test frames, F 1 and F 2,
having the large load ratio, «. This means that the local buckling at the top and bottom flange plates is
taken place simultaneously at the ultimate state of test frames, because the columns are in the situation of

_almost uniaxially compression caused by the significant vertical loads.

On the other hand, the local buckling of test frames, F 3 and F 4, having the smaller load ratio, «, are
only appeared at the bottom plate of columns. In this case, it is considered that the frames collapse due to
the local buckling at bottom plate in which the remarkable bending moment occurs,

(2) Load-displacement curves

The relationships between the horizontal load, H, and sway displacement, &, of test frames are shown
in Figs.4~5, where P and § are non-dimensionalized by the load corresponding to the initial plastic
hinge, H,, and height of frames, h, respectively, H—¢ curves according to the elasto-plastic finite
displacement analysis'¥ are also plotted by the solid lines in these figures,

These figures show that the influences of local buckling are not observed in the test frames, F 1 and F 5,
having the large load ratio, «, and these experimental H — & curves well coincide with the analytical ones,
Besides, the experimental curves of test frames, ¥ 3, F 4 and F 7, having the smaller load ratio, «, begin
to deviate from the analytical curves near 80 % of the ultimate loads due to the local buckling. The

Linear F4;0,5—0
1.0r theory Cimw—— Tm—:Experimental curve
i :j?f’ ——:Analytical curve by
£ ’,’ elasto-plastic finite
= 0.8 2 s e T displacement analysis“’)
- ’/,—’ F3-0.5-0.4 @ :Location of buckling
T s load Hyp/H
RN S d ubrte
= F2-0,5-1.22
p .
g 0.l T
< . -
N Vo<
& S
:c: Y
0.2 = Pooz====""" F1-0,5-3.5]
o
0 i L i Lo 1 ad
0 5 10 15 20

Sway displacement &/h(1073)
Fig.4 H—#& curves of test frames F 1~F 4.

Linear
1or theory:y —~~:tExperimental curve
L ¥ :Analytical curve by
elasto-plastic finite
0.8 // F7-0.7-0.35 displacement analysi§0
/'_’/,f‘"“‘ ® :Location/of buckling
4 load Hyp/H
0.6 |- Y ub/fp

Horizontal load H/Hp

(¢) F3-0.5-0.40 (d) F4-0.5-0 6.4 - F6-0.7-1.16
%: Positions of local buckling
Fig.3 Collapse modes of test frames F1~F 4, 0.2 F fo===""" F5-0.7-3.26
1 L " Loaa s i
O B 10 15 20

Sway displacement &/h(1073)

Fig.5 H—& curves of test frames F5~F 7.
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difference between both the curves has a tendency to increase in accordance with the decrease of load ratio,
a.

Therefore, it should be noted that the critical state is greatly affected by the decrease of rigidities of
frame due to the local buckling, which will not be disregarded and is an important phenomenon for
developing the design method of thin-walled frames.

(3) Critical strength

Two typical strengths can be obtained on the basis of the critical states of test frames, One is the
buckling strength, (P,,,H,,), where the sway displacement of frame begins to increase rapidly. Then, it
can be taken as the load corresponding to the intersection of linear H—¢§ curve and a tangent line of
experimental H —¢§ curve near the ultimate state as illustrated in Figs. 4~5. The other is the ultimate
strength, (P,,H,), which can be obtained as the maximum loads by the experimental studies. The
representative of these critical strengths, (P,,,H,, and (P,,H,), are referred to as (P, ,H.,) in
foregoing discussions,

The relationships between horizontal critical strength (H,,,H,) and vertical ones (P,,,P,) can be
written by using the relative load ratio, a, as follows;

Puo/ Py=co(Hyo/Hp), Pu/ Py=a(Hy/ Hp) - rvereerersereenmmensiiii e (5-a,b)

The test results of these critical strengths are listed in Table 4. The critical strengths of test frames,
FR 1-0.5-c and FR 2-0, 7-oo, in Ref. 12) which have almost the same slenderness ), and R, as the test
frames, F1~F 4 and F5~F 7, are also shown in this table.

Fig. 6 shows the interaction curve, P./P,—H../H, between horizontal and vertical strengths. The
initial yield line and the curve corresponding to the initial plastic hinge according to the elastic linear
theory are also plotted in this figure.

It can be seen from this figure that the critical strengths of test frames, F5~F 7 (R,=0.7), are
smaller than those of test frames, F1~F3 (R,=0.5), by 5~8% for the difference of plate
slendernesses, R, and the difference becomes larger in accordance with the decrease of load ratio, a.

In all the test frames, the ultimate strength is larger than the buckling strength by 2~8 % and the test
frames have the redundant strength up to the ultimate state from critical state in which the sway
displacements begin to increase rapidly.

Both the critical strengths lay on the outside of initial yield line in the range where o¢<5/4 and the
redundant strengths after the initial yield load tend to become larger in accordance with the decrease of
load ratio, ¢. This redundancy may correspond to the shape-factor from initial yield state to fully plastic
state at the fixed end of columns with remarkable bending moment, While, the critical strength is smaller
than the initial yeild load by 5~15 % due to the influence of P— A effect initiated by the vertical loads in
the ranges where o>4.

The curve for the initial plastic hinge gives the upper bounds of buckling strength. This indicates that
the thin-walled frames will reduce to the critical state in which the sway displacements increase rapidly by

Table4 Test results of critical strength. Q=00 o,o: (Pu | Huy
' Py ' H
Items |Buckling strength|Ultimate strengthi Difer- E{‘E\ 1.0 a=4/1 (EZh §bu)
Tes (el J2):Pun | (3)eHy [(4):Py | ence O8N Ey Ry
frames Hp Py Hp Py E+ (%) o O.®:Rf=0.5
g a=5/4  0O,®:Rf=0.7
FR1-0.5- @@ 0 0.900 0 0.940 4.3 o
F1 -0.5-3.57] 0.210 | 0.749 | 0.222 | 0.791 5. 9
F2 -0.5-1.22] 0.430 0.525 0.465 | 0.568 7.6 e 0.5
F3 -0.5-0.40] 0.780 | 0.309 | 0.805 | 0.319 3.1 S 5
Fl, -0.5- 0 0.910 0 0.974 0 6.6 S8
FR2-0.7- @ 0 0.850 0 0.887 4.2 sy
F5 -0.7-3.26] 0.210 | 0.684 | 0.225 | 0.733 6.7
T6 -0.7-1.16] 0.455 | 0.526 | 0.469 | 0.542 3.0 0
F7 -0.7-0.35] 0.710 | 0.246 | 0.726 | 0.252 2.2
Notes; Er = (/31 2r(5) 2- A1) 2(2) 21 /(3 246y ., R
FR1 and FR2 show the test results obtained & P
from Ref.12). Fig.6 Test results of critical strength.
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the reduction of rigidity of frame as soon as a column section reachs the fully plastic or local buckling
states,

4. CRITICAL STRENGTH ANALYSIS OF THIN-WALLED PORTAL FRAMES

(1) Analytical method

a) Analytical method

The analysis for the critical strength of frames is based on the transfer matrix method? formulated by
the elasto-plastic and second order analytical theory. Then, the following three assumptions are added in
this paper ;

(i) The upper bound of critical load of frames can be approximated by the load corresponding to the
initial plastic hinge load.

(ii) The initial plastic hinge always initiates in the column members prior to the beam members of
frame.

(iii) The reduction of rigidity of beam member due to the propagation of plastic zone is so small that
the beam member always remains within the elastic ranges.

Then, referring to Ref.12), the analytical model of portal frames subjected to both the vertical and
horizontal loads can be idealized into a cantilever beam-column with rotational restraint, K, (=6 E I,,/ 1),
compressive load P’ and horizontal load H’ at the top as illustrated in Fig, 7(b), where the rotational
restraint, K, is defined as the bending moment which gives the unit rotational angle at both the ends of
beam, The induced loads, P’ and H’, can be calculated by using the applied loads P and H on the basis of
elastic linear theory as follows; :

P’=P+3H'(h/l)/(6+K), H s H Qe (6'3, b)

The boundary conditions at the top and fixed ends of this analytical model can be represented as follows ;

At fixed end of column (x=0) : u=0, w=0, 9o=0

Attopof column (x=h) : N—P'=0, Q—H'=0, M—K,p=0
where 1y : axial displacement, g : deflection, ¢ . deflection angle, N : axial compressive force and M :
bending moment,

b) Method of evaluating critical strength

In addition to the above, the following two types of critical strengths are evaluated in this analysis;

(i) (Pw/Py,Hu,/H,) : This pair of critical strength respectively represents the vertical and
horizontal critical loads corresponding to the ultimate states (hereafter referred to as the critical state-

1) in which a cross-section of column reduces to the fully plastic or local buckling states, By reffering to
Ref. 12), this critical strength can be approximated by the ultimate interaction curve'” of box stub-columns
subjected to compression and bending.

(ii) (Py/Py,Hyu/H,) . This pair of critical strength means the vertical and horizontal critical
strength representing the instability state of frame (hereafter referred to as the critical state- [ ), which

Initial deflection
mode

280c ¢ Table5 Critical strength of test frames by elasto-
b ! e / Pl oetraing plastic second order analysis.
he| n w ' _6EIpy Items |Critical strength| Errors
2|8 ,’ "";’ K(D [ Test by analysis for tes
N
e \I,\“t So /’ . I/ . frames Hcr/Hp Pcr/Py results
13
he '_g“o‘;)m" 3 x FR1-0.5- 0 0.878 2.6
e F1 -0.5-3.57 | 0.195 | 0.696 7.1
z ™ z F2 20.5-1.22 | 0.419 | 0.512 2.5
L ¥3 ~0.5-0.40 | 0.711 | 0.282 8.8
(a) Portal frame with (b) Analytical F4 -0.5-0 0.940 ¢ -3.3
initial imperfection model . 0 0.827 2.8
. . . 0.198 | 0.646 5.6
Fig.7 Analytical model of portal frame subjected to 0,410 1 0.474 5.9
combined loads. 0.705 | 0.245 0.7
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can be obtained by the divergence condition of sway displacement of frames.

Hereafter, the smaller value of either (P,,/Py,Hu/H,) or (Py,/Py,Hu/H,) is referred to as the
critical strength and is expressed by the representative symbol (P../Py,H../H,).

(2) Parametric study on critical strength

a) Critical strength of test frames

The test frames, F 1~F 7, as detailed in Tables | and 3 were analyzed by altering the relative load
ratio, a. From these parametric analyses, the critical strength (P../P,,H../H, corresponds to
(Pu/ Py, Hu/H,) for all the test frames, because the column slendernesses, Ay, have the relatively small
values. These analytical results, (P.,/P,,H../H,), are listed in Table5 and are plotted in Fig.8
together with the experimental results of buckling strength.

It can be seen from this figure that the critical strength by this analysis well coincides with the
experimental results within the errors —3~10 %. Therefore, the critical strength, which is governed by
the rapid reduction of rigidity of frames due to the local buckling, can be predicted by this analytical
method with high accuracy.

b) Critical Strength of frames with large column slenderness:

The critical strength of frames with large column slenderness, A, were investigated under the
conditions of various load ratio, . These frames under analysis have the same cross-sectional dimensions
as the test frames, F5~F 7 and the column slenderness 2w=1.0.

Table 6 shows the variations of two critical strengths, (Pu./ Py ,Hu/Hy) and (Puy/ Py, Hu/H,), of
slender frames due to load ratio, ¢. Fig. 9 also shows the relationship between the horizontal and vertical
critical strengths, P,,—H,, and P,,— H,,.

In the ranges where a=5~00, (Py,/ Py ,Hy:/ Hp) gives the lower bound of critical strength, and then
the frames reach the critical state- ][ prior to the state~ ] because of the effects of P— A by vertical
loads, Whereas, (Pu/Py,Hu/H,) gives the minimum critical strength and a cross-section of column
becomes the ultimate state before the critical state-[[ of frames in the range where o<5. It is worth to
note that the interaction curve P.,/P,— H.,/H, has the almost linear relationship.

5. PROPOSITION FOR CRITICAL STRENGTH OF THIN-WALLED STEEL FRAMES

(1) Approximation of interaction curve for critical strength of frame

u
e
2 1.0,

3” FRL ?;,
o i FRL,FI~F4 ) Critical strength g
1 curve by analysis 8
2 FR2,F5~F7 @
o ~
> o

0.5k S
~ ¥2 A
B ® ®: Experimental i
Ao o
-] results > 0.2 + Py -Hy curve
b
53 o Lower bound

r Fé4 et L jof critical
-
B e - e strength
0 P DAS, ) . & 0 b " bod .
Critical horizontal Heyr 0 0.5 T.0
load Hp .
Critical horizontal Her
Fig.8 Comparison of critical strength of frames by strength Hp
experiment with by elasto-plastic second order Fig.9 Critical strength curves of slender frame
analysis. (A=1.0).

Table6 Variation of critical strength of slender frames due to load ratio a.

a
Strengt’ ® 3 1 1/3 0

(y1 /Py, Hy1/Hy) - 526193,0.1"62")1 1’(?)73“6‘326?3’633}[(70150‘8“,5‘_555)“}

...........

(PuZ/Fy,Huz/Hp) (0.505,0.168) | (0.381,0.381) | (0.223,0.669) | (0, 1.0)

Notes; Values in shows the lower bounds of critical strengths.
K=0.96(Eq.(2)}, Ay= 1.0(Eq.(3)), Dimensions of column section are
equal to test frames F5~ F7.
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a) Approximation of interaction curve

Based upon the above discussion, the relationship between critical load and initial plastic hinge load of
frames can generally be plotted as shown in Fig, 10. Then, the following approximate method for estimating
the critical strength of thin-walled frames can be proposed.

At first, the vertical critical load, P,, can be calculated from Eq. (A-1)® in Appendix. The critical
load, H,, can be given as follows, since the critical state of frames subjected to the horizontal load alone
corresponds to the critical state-T ;

HumFprs Hp oo emee e (8)
in which %, is the reduction factor for taking into accounts of the local buckling as detailed by Eq. (A-5) in
Appendix, : '

If the interaction curve, Pc,/Py,— Hcr/H,, which modifying the interaction curve, P,,/P,—H,,/ H,, is
assumed to coincide with the initial plastic hinge curve, the critical loads of frames can be deduced by the
following equation ;

Her/Hy=Ho/Hpy Per/ Pym=Po/ Py ceoreremseentiiiiiiiiiiiii it (9-a, b)
where P,/ P, and H,/H, respectively correspond to the vertical and horizontal loads as a point, Q, on the
initial plastic hinge curve through the change of relative load ratio into o’ as shown in Fig. 10, which gives;

a,:a'(Hu/Hp)/(Pu/Py) .............................................................................................. (10)

b) Comparison of approximate method with test results

The approximate interaction curve is plotted by using Eq. (9). Fig. 11 shows the comparisons of this
approximate interaction curve with test results listed in Table 4. This figure shows that the approximate
interaction curve well coincides with the test results.

Since the initial plastic hinge curve and the critical strength, H, can easily be obtained, it is the
important problems how to estimate the critical vertical strength, P,, in applying this method to the design
of various types of frames,

(2) Method for evaluating critical strength by beam-column formula

a) Beam-column formula

The ultimate strength of beam-column in the frames subjected to combined loads is generally given by the
design formula in JSHB and other foreign specifications as follows ;

(N/Pu)'i'(M/Mu)/(l‘N/Pe):l .................................................................................. (u)
where N ,M : compressive force and bending moment applied to beam-columns, respectively, P, :
ultimate strength of column and M, : ultimate bending moment of beam-column.

In the test frames, the applied stress-resultants, N and M, have the maximum values at the fixed end of
right hand side of column in Fig.7(a), which lead to;

N=P+3H-(h/1)/6+ K)’ M—_—Hh'(3+K)/{2(6+K)} ................................................ (12'3, b)

Although the bending moment, M, in Eq. (11) should be taken as the equivalent moment by modifying the
bending moment with triangle distribution into the uniform distribution, the maximum bending moment in

1.0 Initial plastic hinge curve

s}
tj 51.0 - -
. e Proposed interaction
~
> Pu L H curve (Eg.(9))
- Py ) 3
ERRAS P g
5 0.5 g O :Rfy=0.47 | Experi-
5 Q,(_Pcr’)_{_g};) : > 051 0 :Rfy=0.62 | mental
8 Py Hp Critical - results
- % strength S &
& - g
2 L tan }(!' curve s
L
0 PR i (S
Vo 0.5 w10 o \
tan"q T{& 0.5 .0
P Critical horizontal Her
Horizontal load l!/Hp strength Hp
Fig. 10 Approximate method for evaluating critical . Fig.11 Comparison of approximate interaction curve of
strength of frames, critical strength of frame with test results,
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Eq. (12-b) at the fixed end of column is used in this paper for the sake of simplicity.

According to Ref. 12), the ultimate strength of column, P,, by JSHB may underestimate its strength,
because the effective buckling length of column, A, is determined much more conservatively. Then, the
rational ultimate strength, P,, can be calculated by Eq. (A-1) in Appendix. While, the ultimate bending
moment, M, of columns in Eq. (11) can be decided from the fully plastic moment, M, and the reduction
coefficient, k,, by referring Eq. (8) as follows;

b) Comparison of beam-column formula with test results

For the sake of simplicity, the following beam-column formula ignoring a term;, 1/(1—P/P,), in Eq.
(11), which corresponds to the nonlinear behavior of beam-column, is compared with the test results listed
in Table 4,

(N/Pu)+(M/Mu>=1 .................................................................................................. (14)

The comparisons of the above equation with test results
and JSHB’s curve given by Eq. (11) are shown in Fig. 12. AL 1.0 Proposed interaction
This figure indicates that the approximate method by using E / formula (gq.(14))
Eq. (14) gives the excellent results for the test results. § NG Experimental
While, the JSHB’s curve gives the more conservative g 05F X% rg?‘;;gsF "
strength for the test results, because the ultimate strength = m x%,)}) G {,D :FR2, F5~F7
of column, P, is more or less underestimated and the o i N

M0 y

ultimate bending moment, M, is taken as the yield moment T g g %“l '
instead of fully plastic moment. Critical bending moment JE

This approximate method can be utilized as a beam- . ) o
Fig. 12 Comparison of test results with interaction

column formula based upon the ultimate strength formula of formuala of b |
ormuia o eam-coiumn,

JSHB without complicated procedures in comparison with

the above interaction curve,

Accordingly, this design formula will also be useful for the design method of frames,

6. CONCLUDING REMARKS

In this paper, the collapse behaviors and the critical strength of thin-walled steel frames were reported
by conducting the experimental and theoretical studies. The main conclusions can be summarized as follows ;

(1) Inall the test frames, the load corresponding to the initial plastic hinge gives the upper bound of
the critical load, which is governed by the decrease of rigidity of frame due to the local buckling.

(2) An approximate interaction curve between vertical and horizontal loads applied to frame is
proposed for estimating the critical strength of thin-walled frames.

(3) The beam-column formula for the critical strength of frames according to JSHB is conservative
against the test results.

(4) By modifying the beam-column formula given by JSHB, an alternative approximate method is also
proposed for estimating the critical strength of frames,

(5) The validities of two approximate methods in (2) and (4) are checked by the comparison with
the test results,
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APPENDIX-CALCULATION METHOD OF CRITICAL STRENGTH OF STEEL FRAMES
SUBJECTED TO VERTICAL LOAD

The critical strength of steel frames under the vertical loads, P, can be obtained from Ref. 12) as

follows; A ,
Pu/Pyzmin{Pco/Py;Pm/Py} ................................................................................... (A‘l)
where P,/ P, and P, /P, are the ultimate and buckling strengths of frames, respectively, which gives;

Po/Py=1.0 ~ , A<0.2
=1.0—0.545(A—0.2), 0.2<ASLL0 | everremssemsmessemen s (A-2-a~c)
=1/0773+2)  , A>1.0
_ . SHt

Po/Py=Peo/ Py s ka1 (0'4853) .............................................. (A-3-a, b)
= Poo/ Pyl +(0.484)%, kou<1—(0.487.)

and k,, is the non-dimensionalized ultimate strength of box stub-column under the axial compression.
If the plate slenderness, R,,, of box cross-section is defined as
waz(B/if)‘m‘m .................................................................... (A-4)
then k, can be given as follows"™ ;
ka=1.0 , Rw=03 }
=0.542R5,—1.248 R5,+0.412R ;,+0.968, 0.3<R,,=1.3
where %, is the elastic buckling coefficient of box stub-column®.
Furthermore, if the column slenderness x,g is given as the function of height of frames, A

s

/\ay:(h/"'cy)(l/ﬂ)'m ......................................................................................... (A-6)
then A, can be calculated from the following equations;
Ae™ Aoy p AwS03 , (A-7-ab)
= A8+ K)/7—(3/70)1+K), 0.3<A,=<0.9

where K is the relative stiffness of column to beam of frame in Eq. (2).
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