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SYMMETRY BREAKING BIFURCATION BEHAVIOR OF
DOME STRUCTURES AND GROUP THEORY

By Kiyohiro IKEDA* Shogo MATSUSHITA** and Kunio TORIF**

El

An advanced method for a qualitative description of bifurcation buckling behavior of
dome structures is proposed. While conventional finite displacement analysis technique is
employed to trace the bifurcation behavior, a group theoretic method is adopted to describe
the hierarchal structure of bifurcation paths,

The bifurcation behavior of polygonal-shaped truss domes is proved to be analogous to
the subgroup structures of dihedral groups, which are extensively employed to describe the
symmetry of polygons in mathematics. The categorization and description of the
bifurcation behavior of a hexagonal-shaped truss dome structure insure the applicability
and validity of the analogy in describing the bifurcation behavior. Such an analogy is able to
monitor the interrelationship between the geometrical properties of the polygonal-shaped
domes and their bifurcation behavior.

1. INTRODUCTION

It has been found that dome structures often exhibit bifurcation buckling behavior, along with sharp
reduction of load carrying capacities. Its example can be seen in the typical load versus displacement
relationships (equilibrium paths) of a spherical dome shown in Fig.1. This figure demonstrates the
existence of bifurcation path 2) branching from the path 1) at the bifurcation point A, There are apparent
differences in the deformation modes of the dome between these two paths, as shown in Fig, 2.

Considerable analytical studies"~® have been focussed on the bifurcation behavior, which has a dominant
influence on the performance of dome structures. Although these studies appear to be almost sufficient for
the analytical tracing of complex bifurcation behavior of domes represented by a number of bifurcation
points and branching paths, theoretical bases for interpreting the bifurcation behavior seem somewhat
unsecure. Thompson developed a stability theory of equilibrium paths and performed a categorization of
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bifurcation points”. However, his theory was not compatible with conventional bifurcation tracing
strategies in that it necessitated the higher-ordered derivatives of total potential energy to be computed.

Extensive mathematical studies on bifurcation behavior have been conducted by applied mathematici-
ans¥¥. They interpreted the behavior as a process of losing symmetry and called such behavior the
‘symmetry breaking bifurcation’. The behavior has been found to be analogous to the subgroup structure of
a symmetry group and a simple qualitative explanation of the behavior has been performed with the use of
group theory. However, most of these studies are concerned with the bifurcation behavior of the solution
of ordinary differential equations and only a few investigations have been made regarding the bifurcation
behavior of structures.

The objective of this paper is to combine these two completely different approaches developed in
different fields and arrive at better conceptual understanding of bifurcation buckling behavior of dome
structures, While finite displacement analysis and other methods developed in the field of structural
engineering are utilized to trace the bifurcation behavior, a group theoretic method is employed for the
qualitative description of the behavior. An emphasis is placed on identifying the geometrical symmetry of
bifurcation modes,

2. GROUP THEORY FOR DESCRIBING SYMMETRY

This chapter introduces several mathematical concepts and relevant terms used to express the
geometrical symmetry of figures', These will serve as convenient tools for describing the geometric
symmetry of bifurcation modes of structures.

A group denotes a non-empty set S satisfying the following three properties : (1) there exists an
identity element in S; (2) for every choice of the elements g,b and ¢€ S the relationship
(a+b)- c=a-(b-c)is satisfied ; (3) every element in S has an inverse in §. A subgroup of S indicates a
non-empty subset of S which satisfies all these three properties for defining a group. Isometries of a plane
can be defined as one-to-one mappings on the Euclidian plane R*= R X R that preserve the distance between
any two points in the plane, where R is the set of all real numbers, Isometries are the products of
reflections, translations, and rotations, Given a figure in the Euclidian plane, the figure is stated more
symmetric if its configuration can be preserved by more isometries, In describing the symmetry of the
figure, it is mandatory to utilize its symmetry group, which is made up of a series of isometries that
preserve the configuration of the figure?~1,

The symmetry group of a regular n-gon (n==3,4,5, ) is called the dihedral group of degree n (D,).
Dihedral groups have been extensively employed in describing the bifurcation behavior in the field of
applied mathematics®®. The elements of the group consist of the following isometric transformations :

G AN 7O JIEL, 2, e, Moot (1)
where g, is the 360(j—1)/n degree clockwise rotation about the origin and z is the reflection in the
y-axis ; the multiple of the two transformations denotes that the transformations are achieved in sequence
from the right to left. The number of the elements of this group, equal to 2 n, is called its order. The
geometrical meanings of these transformations are schematically illustrated in Fig, 3. The existence of an
element g, in a symmetry group denotes that relevant figure is point symmetric about the origin regarding a
360(j—1)/n degree rotation, while the presence of 7o, expresses the line symmetry in the straight line
intersecting with the gy-axis at the origin at an angle of 360(j—1)/n degrees.

In order to demonstrate the usefulness of dihedral groups in expressing geometrical symmetry, a
dihedral group of degree three, D, is employed here to describe the displaced states of a regular triangular
rigid plate shown in Fig. 4. This plate is supported with vertical strings at the nodes 1, 2, and 3 and initially
placed in the x—y plane. The group D, consists of the six elements ¢, , 0,,05,701,70,, and 7g3, Where g,
(j=1, 2, or3) expresses the 120X (j—1) degree rotation about the z-axis. This group has the following
five subgroups .
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Fig.3 Geometrical Transformations Caused by the Elements of Dihedral Group D,.

Table 1 Effects of the Transformations Caused by the Elements of [, on the
Geometric Configurations of the Triangular Plate.
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E=<,01> C3=<01,02,03> Df=<m,z'dj> J=1,2 O 3-errerreerereenii (2)
where the parenthesis <{ ~> is used to express the elements of a group.

Symmetric

Table 1 schematically illustrates the effects of these six transformations on the three different displaced
states of the plate. In the case where the plate displaces uniformly in the vertical direction, its
configuration can be preserved by each of the six transformations since all the nodes are symmetric. Such a
case is henceforth stated that the displaced plate has D; (with an order six) as its symmetry group. In the
case where the nodes 2 and 3 displace identically, the configuration of the plate can be preserved only by
the transformations o, and zg,. The plate deformed in this fashion has the group D! with an order two as its
symmetry group. In the case where the three nodes displace in an asymmetric fashion, the configuration of
the plate can be preserved only by the identity transformation ¢, and has a group E with an order one. As
can be demonstrated by these examples, the more symmetric a structure, the greater the order of its
symmetry group. The order will be an appropriate parameter for expressing the level of symmetry of a
structure,

3. BIFURCATION BEHAVIOR AND SYMMETRY GROUPS

A theoretical method for describing and interpreting the bifurcation buckling behavior of structures is
advanced. This method is based on the findings by applied mathematicians that bifurcation behavior, in
general, is a process of losing symmetry and is analogous to the subgroup structure of a symmetry
group” ¥, Fujii¥ found that the bifurcation behavior of certain systems is ‘G-covariant’ (covariant with a
symmetry group G) and applied symmetry groups to the description of bifurcation behavior of structures.
In explaining the term G-covariant, let us consider a problem of finding the equilibrium paths of a
discretized structural system. Such a problem can be interpreted as the problem of finding the set of
variables (f,x) satisfying the equations of equilibrium :

H( f, ) ot | L P ( 3 )
where f denotes the loading parameter and  is the unknown nodal coordinate vector. This problem can be
stated G-covariant if the following relationship is satisfied®,
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H(f, Tgx)'-: TgH(f, .’L‘) for all g,f QIUA Lo (4)
where g is an element of the group G and T, is the transformation caused by the element,

His theoretical findings with respect to a G-covariant system are summarized as . (1) The paths of a
G-covariant system are characterized by their symmetry group G, which is a subgroup of G ; (2} the path
having G as its symmetry group is called a fundamental path ; (3) a path will preserve its symmetry group
until it reaches at a bifurcation point; (4 ) when bifurcation paths branch from an equilibrium path at a
bifurcation point with a single root, the symmetry groups of the bifurcated paths are the subgroups of the
symmetry group of the equilibrium path; (5) all the single critical points on the path with a trivial
symmetry group F, in general, are the stationary points of the loading parameter f.

These findings are applicable to the description of bifurcation buckling behavior of structures simply by
replacing the term ‘path’ used above by the ‘equilibrium path’. Of course, an appropriate symmetry group
must be selected and the covariancy of the behavior with the symmetry group must be verified in applying
the findings to the description, These theoretical findings will greatly contribute to the qualitative
description of the bifurcation behavior of polygonal domes,

4. VERIFICATION OF D,-COVARIANCY OF SIMPLE TRUSS DOMES

1t was demonstrated in the previous chapter that the bifurcation behavior of a system which is covariant
with a symmetry group is characterized by the properties of the group. In applying group theory to the
description of bifurcation behavior of structures, it is required to verify that the behavior is covariant with
a symmetry group. In this chapter, as an attempt of such a verification, the behavior of an 7-gonal
reticulated truss dome (see Fig,5) under symmetric vertical loading is proved to be covariant with the
dihedral group of degree 7, which is a symmetry group of a regular n-gon, This dome is made up of a
series of elastic truss members with identical sectional and material properties.

As we have seen, the verification of covariancy can be achieved by showing
that Eq.4 is satisfied, Using the equilibrium equations for the finite-
displacement problems of elastic truss members developed in Ref. 6, one can
write the equilibrium equations for this dome as :

Hi(f’ x):K”(x)xj_Fw(x)wf.ﬂ:O i,j=0,1,2---,n ................. (5)

where the subscripts { and j denote that the corresponding vector or matrix is

related to the j-th or j-th node, K, is the three by three sub-matrix of the . i o fow node
# fixed node

nonlinear stiffness matrix, Fy; is the three-dimensional nonlinear vector, and o
f; is the three-dimensional normalized nodal-load vector, The summation m ”
convention applies to the dummy variable j. [

For the cases of symmetric vertical loading, all the normalized load vectors  Fig 5 p-gonal Truss Dome.
for the nodes 1 through n must be equal, i.e. |

fi:j} i,jzl’z’...n ................................................................................................. (6)
Under this symmetric loading, the nodes | through n displace symmetrically until a bifurcation point is
reached. For such symmetrically displaced state, the transformation T, associated with the element of the
dihedral group causes merely a permutation among the nodes 1 through n. Hence the transformation T,
reperesents the following permutation of the node numbers :

Jrb Ly G, e oeeee e (7)
where the index , takes a value either 1, 2---, or 5. With the use of this permutation in Eq. 5, the left hand
side of Eq.4 for this dome structure becomes :

H{S, Tox)=K{ Tox) Tox;— Fol Tot)— f * fi= K100 Foyy— F « formmreererseemmeseem (8)
In this equation, the dummy variable /; can be replaced by a variable j and the vector f; is equal to f;, as
indicated in Eq.6. With the use of these relationships, Eq.8 will lead to :

Hif, Toit)=Kis2t— Fory— f * fu™ ToHA S, T) rvereerremmerssmnnnnnns G OUPINTUTOU (9)
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Thus, Eq.4 is satisfied for all the transformations initiated by the elements of a group D,. Hence the
bifurcation behavior of this n-gonal dome under symmetric vertical loading is [,-covariant and is
analogous to the subgroup structure of ,. Such an analogy is expected to hold for other types of domes and
different kinds of structures as well. The verification of the applicability of the analogy to more general
cases will be a topic requiring future studies,

5. DESCRIPTION OF BIFURCATION BEHAVIOR OF DOME BY GROUP THEORY

The Fujii’s findings regarding symmetry groups, of great assistance in describing bifurcation buckling
behavior, were proved to be applicable to the n-gonal truss dome in the previous chapter., His findings are
employed here for qualitative description of the bifurcation behavior of a hexagonal truss dome (see
Fig. 6) under the symmetric vertical loading pattern listed in Table 2. This dome is a special case (n=6)
of that n-gonal dome so that its bifurcation behavior is covariant with the dihedral group D,, whichis a
symmetry group of a hexagon, The bifurcation behavior of the dome is investigated here by means of the
group Ds.

Table2 Vertical Loading Pattern.
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Fig.6 Hexagonal Truss Dome (unit in cm).

This group consists of the 12 elements ¢; and v, (j=1, 2, ---6), where ¢, denotes the 60X (j—1) degree
rotation about the z-axis. The authors have obtained all the subgroups of this group by investigating all the
possible subsets of the group on the basis of the aforementioned three basic properties for defining a
group. Consequently, this dihedral group had the following 15 subgroups :

Ce=<01,03,03,0:,05, 05> Ca=<an 01,05 C,=<o, 0. E=<o>

1=<01,03,05,70;, 70542, T03.4>  J=1,2
1=<o1,00,705,7055>  J=1,2,3

Di=<oy, 705> JTE1,2,0756 v veeeeerntnei ettt e (10)

Figure 7 illustrates the deformed configurations of the dome associated with these subgroups. As can be
seen, the three subgroups D;, C, and D} represented the symmetrically displaced configuration, Such a
configuration should be represented by the group D,, which has the greatest order among them.

It was noted that some of the groups denote basically the same configuration, For example, the deformed
states corresponding to the subgroups D}, D} andDj are identical since the configurations for DI and D3
can be obtained by rotating the configuration for D) about the z-axis through an angle of 120 or 240
degrees, The notation D] is employed here for representing these three subgroups for simplicity.
Likewise, the notation D¥~! can be utilized for representing the three subgroups D}, D} and D} ; and D¥
for p?, D! and D% Consequently, the configuration of the dome can be represented by the seven
subgroups ; D, D%, Di, D¥7', D¥, C, and E. The subgroups defined in this manner, named the ‘effective
subgroups’ of D, by the authors, are henceforth employed in place of the subgroups of D, so as to simplify
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Fig.7 Deformed Configurations of the Dome Associated with the Subgroups of D.

the discussion,

Every other node displaces identically for the mode having a group D? as a symmetry group. The group
D} represents a bifurcation mode which is line symmetric in two axes and point symmetric regarding a 180
degree rotation about the origin, The groups D¥’~* and D%/ express the modes which are line symmetric in
an axis, while the group C, does what is point symmetric regarding a 180 degree rotation, The group E
denotes a completely asymmetric mode with no axis or line symmetry.

The following inter-group relationships exist among these seven subgroups :

DGQD:?)(OI’ D;)QD?QE DSQDQQD?—‘(OI' Cz);E ...................................................... (11)
where the symbol AD B denotes that the group B is a subgroup of a group A.

As a numerical example, the analytical bifurcation behavior of this dome (see Fig. 8) was obtained with
the use of the analysis strategy and the computer program developed by Nishino et al®. At the same time,
the deformation modes of the dome were investigated. This investigation made clear that each bifurcation
path can be characterized by one of the effective subgroups. The equilibrium paths of the dome, therefore,
were categorized on the basis of these effective subgroups and illustrated in Fig.8. In this and the
subsequent figures, the bold-solid lines express the equilibrum paths which have the group D, as their
symmetry group, the long-dash lines denote those having D? the short-dash lines do D, ete. The symbol )
denotes the equilibrium path, the symbol @ expresses the bifurcation point with a single root, and O
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Fig.8 -Equilbrium Paths for the 6—gonal Truss Dome,
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denotes that with a double root.

This analytical bifurcation behavior displayed the existence of seven different types of paths
corresponding to the seven effective subgroups defined above. Thus, the effective subgroups are able to
categorize the bifurcated paths and the number of effective subgroups appear to express the number of
different types of bifurcation paths.

There existed an apparent hierarchy among the equilibrium paths. When two or more equilibrium paths
intersect at a bifurcation point, the path with the higher-ordered symmetry group can be defined as the
main equilibrium path and the other paths the bifurcation paths. For example, the path A3) is the
bifurcation path of the path O) at the bifurcation point k. However, at the same time, the path A 3) is the
main path of the branching path D 6) at the point . Thus, the terms ‘main’ path and ‘bifurcation’ path have
only relative meanings. '

The equilibrium path O) had D; as its symmetry group so that this path can be stated the fundamental
equilibrium path from the Fujii’s theorem (2). A series of bifurcation paths branched from the
fundamental path, at the bifurcation points @, b, ---, and k. These consisted of (1) the paths A1), A 2)
and A 3) with a group D? as a symmetry group; (2 ) the path B) with DJ; (3) the paths D1), D2), and
D 3) with D¥; (4) the paths D1"), D2"), and D 3") with D!, The paths D4), D5), D6), and D7)
with a group D¥ further bifurcated from the paths A 1), A 2), and A 3) ; the path D 4) then intersected
with the path B) with a group Dj. Such a feature is associated with the fact that a group D} is a subgroup
of a group D? as well as of DJ. The paths E1), E?2), and E 3) with a trivial subgroup E further branched
from the path D6). One consequence of these is that the bifurcation process among these sets of
equilibrium paths followed the inter-group relationship (11). Moreover, the other bifurcation paths
satisfied this relationship as well. It can be stated that the hierarchal structure of equilibrium paths is
analogous to the subgroup structure of the (effective) subgroups. In addition, it was noted that the Fujii’s
theorem (4 ) holds for the cases of double roots as well, that is, the symmetry groups of the bifurcation
paths are the subgroups of the symmetry group of the main path for both single and double roots.

The reduction of the order of symmetry group was observed in association with the progress of
bifurcation buckling of the dome. For example, in the course of a branching process represented by a
series of equilibrium paths 0), A 3), D6), and E1), the order of symmetry group was constantly reduced
from 12 to six, two, and finally one, Similar reduction processes were observed for the other bifurcation
paths as well. Such a feature is based on the Lagrange’s theorem'®, which states that “the order of a group
is divided by the order of its subgroup”. The bifurcation buckling behavior of the dome can be
characterized by the reduction of the symmetry of the dome associated with the decrease of the order of
symmetry group.

No bifurcation path branched from the bifurcation paths E1), E2), and E 3) with a trivial symmetry
group E, as can be expected from the Fujii’s theorem (5). The deformed states of the dome represented
by the trivial group E, which have completely asymmetric geometrical configurations, cannot lose any more
symmetry. Hence they should not have any further bifurcation paths from the standpoint of ‘symmetry
breaking bifurcation’ advanced by applied mathematicians® .

As can be seen from these investigations of the analytical bifurcation behavior of the truss dome under
symmetric vertical loading, the behavior is analogous to the subgroup structure of effective subgroups
and the Fujii’s theorems are capable of qualitatively explaining the behavior. The effective subgroups,
which have much simpler subgroup structures than the original dihedral group does, appear to be
efficiently applicable to the qualitative description of bifurcation buckling behavior of dome structures,
The theoretical bases of effective subgroups are currently somewhat unsecure so that more studies should
be required prior to arriving at general conclusions.
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6. BIFURCATION BEHAVIOR OF POLYGONAL—SHAPED DOME STRUCTURES

Conventional dome structures are often constructed to be polygonal shaped, or analogous to it.
However, the effects of geometric configurations of such domes on the bifurcation behavior have not been
made clear. As an attempt to address this problem, interrelationships between the bifurcation behavior of
polygonal-shaped domes and the degrees of polygon are investigated,

The hierarchal structure of the subgroups of a dihedral group is highly dependent on the algebraic
property of its degree since the order of a group is divided by the order of its subgroup 1. Therefore, the
number of the subgroups of dihedral group is expected to be directly proportional to the number of factors
of the order. In the case where the degree of a dihedral group 7 is equal to a prime number, the order of its
subgroups is equal to either 1,2, or, n, which is a factor of the order of the dihedral group, 2 n. By
contrast, the subgroup structure of a dihedral group is more complex for the case where the degree is not a
prime number associated with the increased number of factors of the order of a group, Such a fact can be
monitored from an interrelationship between the number of effective subgroups for a series of dihedral
groups and their degrees (see Fig, 9). This interrelationship was obtained by following the same procedure
employed for finding the effective subgroups for the group D;. As can be seen, the dihedral groups of
prime degrees D,, D;, and D, had only three effective subgroups, while those of non-prime degrees
D.,D,, and D, had significantly increased number of effective subgroups. Hence the polygonal domes
represented by the dihedral groups of prime degrees are expected to possess much simpler bifurcation path
structures than those of non-prime degrees.

These discussions can be confirmed from the comparison of the bifurcation behavior of six-gonal and
seven-gonal domes, While Figs.6 and 10 illustrate their geometrical configurations, Figs.8 and 1]
demonstrate their bifurcation behavior, The seven-gonal dome (with a prime degree) exhibited the simpler
hierarchal structure of the bifurcation paths, expressed by the decrease of the types of paths and the
reduction of the order of symmetry groups of branching paths, despite the fact that the dome had a more
complex geometrical configuration than the six-gonal dome (with a non-prime degree) did.

These conclusions were derived with the aids of simple example truss-dome structures so that it will be a
natural course of the future research to treat more general cases and to investigate the quantitative
influence of the geometrical symmetry on the strength of polygonal domes, Group theory will be of great
assistance in such an investigation and provide us deeper insights into bifurcation behavior,

7. CONCLUDING REMARKS

This paper has advanced a group theoretic method for describing the bifurcation buckling behavior of
dome structures. While the theoretical findings by applied mathematicians, especially by Fujii, formed the
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basis of this method, these findings were extended and revised herein so as to make them applicable to
structural engineering problems.

Several mathematical concepts used to express the geometrical symmetry of figures were introduced.
Especially, the usefulness of dihedral groups in describing the symmetry of displaced state of figures was
demonstrated with the use of a simple example.

The Fujii’s findings regarding the bifurcation behavior of systems covariant with a symmetry group were
introduced, along with the definition of a term, covariancy. The bifurcation behavior of simple
polygonal-shaped truss domes under symmetric vertical loading was proved to be covariant with the
dihedral groups and analogous to the subgroup structures of these groups,

A dihedral group of degree six was applied to the qualitative description of analytical bifurcation
behavior of a hexagonal truss-dome structure, which was proved to be Dg-covariant, The ‘effective
subgroups’ of D), representing potential bifurcation modes, were advanced through an investigation of the
deformation modes of the dome, As can be expected from Fujii's theorems, the hierarchal structure of
bifurcation paths was analogous to the subgroup structure of effective subgroups. The effective subgroups
could serve as a convenient tool for describing the bifurcation behavior of dome structures, In addition, a
method for distinguishing the difference between the main and the bifurcation paths at a bifurcation point
was advanced,

The effects of geometrical configurations of domes on their bifurcation behavior were investigated for a
series of polygonal-shaped truss domes. The algebraic properties of the degrees of the polygons exerted
great influences on the bifurcation behavior of the domes. For example, the polygonal domes with prime
degrees exhibited much simpler hierarchal bifurcation path structures than those with non-prime degrees,
represented by the decrease of the types of paths and the reduction of the orders of symmetry groups of
branching paths,

These conclusions were derived on the basis of many hypotheses and their verification was performed
with the use of simple axis-symmetric, truss-dome structures. Future studies should be required to verify
these for more general cases, such as actual dome structures or non-axis-symmetric structures. When
fully developed and verified, group theory could be valuable in describing the bifurcation behavior of dome
structures, without necessitating costly computations,
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