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A NON-ITERATIVE OPTIMUM DESIGN METHOD FOR
CABLE-STAYED BRIDGES

By Kunio TORII*, Kiyohiro IKEDA** and Tomihiko NAGASAKI***

A computationally efficient optimum design method is proposed. Unlike conventional
optimization methods, all the optimized properties are obtained without conducting
iterations. In this method, redundant forces of a statically indeterminate structure are
computed from the condition of geometrical compatibilities, the members are fabricated so
as to introduce prestresses which nullify the incompatibilities. Such an introduction of
prestressing is compatible with conventional erecting process of cable-stayed bridges.

A series of analyses have verified that this method is practical and makes it easier to
determine economical structural types of cable-stayed bridges.

1. INTRODUCTION

Cable-stayed type of bridges, which combine economy and beauty, have been extensivelly employed in
constructing middle scale long-spanned bridges. It has been, however, problematic to select proper
structural types in designing these bridges since the bridges have many design alternatives, including : the
configuration of cables, the number of cables, and the support condition of towers, etc.

In order to make the selection easier, considerable research works have been conducted on the
cable-stayed bridges. These research works can be divided into two general categories. Firstly, there are
studies regarding the structural types?? Although these papers would be impotant in designing them, the
papers fail to compare their structural types from economical standpoints, In addition, these methods are
not easily applicable to the design of the briges, especially to those with eccentric span ratios,

Sencondly, there are a series of research works concerning the optimum design of cable-stayed
bridges®~®. Such research works are primarily concerned with the optimization of cross-sectional
properties, while demanding the optimum design technique necessitating huge and complex computer
analyses. The optimization of the structural types, however, has been somewhat disregarded in this
technique,

This paper introduces an optimum design method, conveniently applicable to the selection of economical
structural types of cable-stayed bridges. The optimum design method proposed herein extends the methods
advanced in Ref. 6 to two-dimentional frame structures. This method is easily applicable to the design and
does not necessitate proficiency in numerical analysis technique, unlike the conventional optimization
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technique developed on the basis of mathematical programing, While it is mandatory to compute redundant
forces in statically indeterminate structures from geometrical compatibility relationships, the new method,
determines these forces using the condition that the objective function for the optimum design problem is
minimized. The optimum member forces and cross sections are computed based on the redundant forces
determined in this manner, The validity of the method is verified on the basis of simple analyses on
hypothetical cable-stayed bridges and their desirable structural types are advanced.

2. FORMULATION OF NEW OPTIMUM DESIGN METHOD

(1) Basic concept of new optimum design method

The basic concept of the optimum design method proposed is explained below with the use of a simple
example structure shown in Fig. 1. This structure, a simple girder suspended at its midspan by a cable,
has a single redundancy. Choosing the cable tension, X, as a redrndant force, the member forces of this
structure are represented as follows :

M=wlLyx—x"/2—2x-X/2 (girder)

N=X (cable)
where M expresses the bending moment, N is the axial force, w denotes the uniformly applied vertical
loads, and x expresses the coordinate. In conventional design methods, the redundant forces are
calculated so as to satisfy geometrical cmpatibilities, For example, the redundant force for this example
structure can be computed from the condition that the girder’s deflection at its span center is equal to the
cable’s elongation, and is given as follows :

5w+ Ly/384EI,

X= T8t L FA. ............................. (2)

Because Eq. (2) contains the member stiffnesses EA. and EI,, the procedure of optimizing this structure

involves iterations in arriving at a solution, Mathematical programing or other technique is used for the
iterations in conventional optimum design methods,

On the contrary, the design method proposed herein does not attempt to fulfill the geometrical
compatibility conditions but redundant forces are determined from the condition that the objective function
for the optimum design is minimized.

Now, the objective function may be arbitrary defined according to the demand of the problem. Square
summation of the main girder, i. e,

Lg
f:/‘; A42 dx ......................................................................................................... ( 3 )
is utilized as an example. This objective function can be minimized by the following redundant force value.
X*=5w-Lg/8 .......................................................................................................... (4)

Figure 2 shows the member forces computed for this value. The cross-sectional properties are designied
according to these member forces. Now, the member stiffnesses can be computed from the condition that
the limits for allowable stresses must not be exceeded. The stiffness values are .

EI/L;zl (girder), EA./L.=192 (cable) ............................................................... (5)
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Fig.1 Simple girder suspended by a cable, Fig.2 Cross-sectional forces determined to minimize

a objective function,
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It must be noted that the geometrical compatibility condition cannot be satisfied by the redundant force and
the member stiffness obtained in this fashion.

The redundant force which satisfies the compatibility condition Eq. (2) is equal to :

O Qqpe L/ 8 vverrmremrrn e nen e e st ettt (6)
and the corresponding member forces are shown in Fig. 3. There exists the following difference between
the X values obtained in Eq. (4) and in Eq. (6) :

KPm= X X Cmmqe L/ 8 +vvvoverrorremreemn ettt ittt (7)
Also, there exist differences in member forces for these two cases, as shown in Fig. 4. Hence the direct
use of the redundant force and member stiffnesses computed using this method will cause geometrical
incompatibilities,

The existence of incompatibilities, however, does not limit the usefulness of the method proposed as it is
possible to satisfy the compatibility by introducing the corrective prestress, X”. Prestress is
automatically introduced to the main girder by applying additional cambers to the shop cambers of the
members at the stage of their fabrication. A question, however, may arise regarding the validity of the
introducing of such prestresses. In erecting cable-stayed bridges, it is common to prestress the main
girders by jacking up or down the saddles of cables or inserting shim plates between the sockets of the
cables and the anchor frames, Hence the optimum design method, which necessitates corrective
prestresses to be introduced, does not significantly disorder the conventional construction processes, at
the least for this type of bridges. It may rather be stated that the erecting processes will be simplified if
this design method is employed since such processes will not require the jacking up of the saddles.
Furthermore, the members usually have shop cambers so that the introduction of additional cambers
suggested herein does not require any additional efforts in the fabrication process.

For this example structure, the extra cambers required are computed from Eq. (7) as follows (see
Fig.5) :

Ay=X"-Lo/A8E]I, (girder), A.=X? L,/ EA. (Cable) -+ oeerermenmereenci (8)

Fabricating the members in this manner will introduce the prestress shown in Fig. 5, thereby completely
satisfying the geometrical compatibility of the structure after erection,

(2) General formulation of the optimum design method

General formulation of the optimum design method is introduced. The modified volume, taking the cost
of materials into acount, is adopted here as the objective function and the limits of member stresses are
employed as the constraints, Then, the problem of optimum design will read :

in which ¢, is the cost coefficient, A4;denotes the cross-sectional area, L, expresses the member length, o,
is the actual stress, ¢, denotes the allowable stress and n expresses the number of members. For the
members under the influence of axial forces and bending moments, Eq. (10) can be rewritten as follows :

Ol £
o ER
% ® g Wig
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® @ 2 !
5y ©
Fig.3 Cross-sectional forces computed from Fig.4 Cross-sectional forces caused Fig.5 Amount of prestrains.

geometrical compatibility. by prestress.
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G1=0e/ 0cat o/ onall =0/ 0ed =10 a1
9:=0c/ Gcart 05/ Tpal— 0c/ 0ed — 150 .
where g, is the bending stress, o,, expresses the allowable stress considering the Euler buckling, o,
denotes the allowable compressive stress, g, is the allowable compressive stress taking local buckling
into account and g, expresses the allowable bending stress. From these formula, the active constraint can
be obtained as follows :

G=0c/ OnaF Ou/ Oua— 1T oo (12)
in which
Onag™ Oca O  ONg™ Ocar

Ona= vl — 0c/ 0eq) O Oma™ Ucal(l 0c/ Oea)
As we will see in Sec. 3, (1), the section modulus Z, of a member ‘;’, can be expressed in terms of the
following linearized expression concerning the sectional area 4, :

Zimm Qs Ay— By veeemeeeomee e e (13)
Substituting Eq. (13) into Eq. (12), the minimum area A, can be expressed as a function of member

forces .

Aizai‘Nz/UNaz+ bi'Mi/UMa£+di .................................................................................. (14)
in which the constants g,,b; and d, used in this equation are named the coefficients of configuration and

expressed as ©

agzl—ﬂi/(az’Aog), b,;'—“l/ai, di:ﬂi/ai ...................................................................... (15)
where A°; will be refered to in Sec, 3, (1). Substituting Eq. (15) into Eq. (9), the objective function is
rewritten as follows :

f= Z’,cl{a, N Titbe d} ............................................................................... (16)

The minimizing process of thls equation can be interpreted as a problem of weighted residual method with
the residuals N; and M;, and weights c,a;L./one; and ¢;b,L;/ oye;. When the multiples of weights by
residuals are introduced as new weights, Eq. (16) can be further transformed.

MZ

= Zc{a, N

This transformation, based on the method of least squares, seems to be valid in that such a method is
commonly used at present, Furthermore, the transformation is advantageous from a structural standpoint
as well, since the distribution of the members’ cross section is leveled due to the property of the revised
objective function. The cross-sectional forces N, and M; in Eq. (17) can be expressed as follows :

“td, ] ............................................................................... a7

Ni:Nio+}§ N, X; , ML‘:MiO'i-é M X e (18)

where N;, and M,, are the axial force and the bending moment at member ; caused by a unit load at point j of
the statically determinate system, respectively ; X, denotes the redundant force at point j and m expresses
the degree of redundancy.

As we have seen in Sec. (2), the redundant forces X; are employed herein as the design variables since
their values can be controlled by introducing prestresses. Accordingly, the optimum design problem
advanced above is identical with the problem of minimization without constraints. It is possible to achieve
this minimization by solving the simultaneous equations that are obtained by differentiating the objective
function with respect to each redundant force and setting the resulting derivatives equal to zero, i.e.,

of _
oX,” ax,

By the way, the followmg solutmn strategy would be more advisable from both theoretical and practical

{(ZL b M; +d; Lil -—O ............................................................. (19)

=1

standpoints. The principle of least work, based on the energy method, can be expressed as follows :
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U_2 5[ N M xQ
2X; 0oX; 2EA; ' 2EL ' 2A.G;

in which U is the strain energy, Noting that the variable d; is constant and that the contribution of the

i=1

}zLi l S () e e e e e (20)

shear forces on strain energy is usually negligible in the analyses of girder systems, and setting.

EA;=0ngi/2C:0;  ANA  ELS Gyqe/2Cs by voovveseermeeesemtesie it (1)
one can show that Eq. (19) and Eq. (20) are identical. One consequence of this is that the optimum member
forces can be computed with the aids of conventional structural analysis technique with the use of the
member stiffnesses defined by Eq. (21), instead of solving Eq. (19) directly.

The section properties can be computed from the optimum member forces obtained in this manner. The
objective function, which indexes the economy of structure, can be calculated on substituting the results of
the element optimazation into Eq. (9). Prestresses and extra cambers are determined by performing
structural analyses based on the optimized cross sections. The method for calculation will be discussed in
Sec. 3. (2).

The optimum design method proposed here does not require repeated structural analyses in determining
cross-sectional properties and other values, and is performed with the use of general-purpose,
finite-element structural analysis programs. This design method, therefore, can be practically applicable
to the selection of economical structural types of cable-stayed bridges.

3. APPLICATlON TO OPTIMUM DESIGN OF CABLE-STAYED BRIDGES

(1) Computation of coefficients of cable stayed-bridges

Prior to applying the optimum design method to cable-stayed bridges, the coefficients used in Eq. (21)
must be computed. These coefficients consist of the shape coefficients g, and b,, cost coefficients ¢;, and
allowable stresses gy, and oyg;.

a) Shape Coefficients

The shape coefficients are computed based on the assumption that the girder has a trapezoidal box
section and the tower has a regular box section (see Fig. 6) .

Actually, the cable-stayed bridges with these types of Bu

sections are widely used in Japan because such sections 1 g} | :lﬂ
generally provide large torsional stiffnesses and excellent Q/\:i % W TL[_ 4
stabilities against wind. In computing the shape coefficients, [ Te | Bt |
the following assumptions are used : Fig.6 Cross-section of girder and tower.

1. All parts of the cross-section are effective.

2. The influence of the longitudinal libs is considered in determining the geometric properties.

3. Each of the deck and the web plate thicknesses of a girder is decided according to the requirement of

the minimum thickness.

4. The flange and web plate thicknesses of a tower are identical.

The section moduli Z for the girders (see Eq. (13)) are computed by accounting for only the bottom
flange plates, while those for the towers by considering the flange plates of both sides. The constants, « ,8
and A° are computed as follows :

0=(6ByTu+3BuTwt HeTwHe/6(By Tyt By Tw)

ﬂ=(Bu’+ZBu TuBuwTw+ By Tu)He/(By T+ BuwTw) (girder) ............................................. (22)

A’=2ByTy+BuTw

a=(3B,+ Bw)Bw/ﬁ(Bf‘*"Bw)

B=0 . (tower) ............................................. (23)

A*=2B,+Bu)T
The shape coefficients ¢ and b regarding the girders or towers can be computed by substituting these
values into Eq. (15). Note that the value of A°, which is actually not constant, is assumed above to be
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constant since its value does not have a large influence on the results. The shape coefficients for cables,
under the influences of only axial forces, are equal to :

a=1, [T | IR R R E e e (24)

b) Cost Coefficients

The cost coefficients reflect the difference in costs of materials on the objective function, Their values
are assumed to be : 1.00 for SS4]1, 1.12 for SM50, 4.85 for PWS, These values are obtained by
estimating the average prices through the past decade.

(2) Prestressing

The design method proposed attempts to adjust the geometrical compatibilities by introducing’
prestresses, The amount of prestresses and extra cambers can be computed with the use of the procedure
explained in Sec 2, (1). First, the redundant forces X¥ are computed such that the objective function is
minimized. This computation is achieved by following the optimum design formulation introduced in Sec. 2
(2). Next, the optimum member stiffnesses A¥ and I;* are computed. Finally, the redundant forces X¢
are computed from the geometrical compatibility condition defined based on the member properties A* and
I¥. Then the amount of requisite prestresses are computed as follows :

X§’=X§’~X,c~ (j:1, 2..., m) ..................................................................................... (25)

The amount of additional camber of the girders and the change of cable length are computed from these
values. As can be seen from Fig.7, these corrective distorsions, which cancel the incompatible
displacements caused by the redundant forces X¥, must be accounted for in designing the bridges.

(3) Problem of optimum design method

As we have already seen, the optimization method introduced herein is able to perfectly satisfy the
geometrical compatibility by imposing prestresses on structures for a single load case. In general, bridges
are designed on the basis of several load cases. It would not be possible to satisfy all the compatibility
conditions. As a consequence, the various properties of the bridge computed may be slightly deviated from
the optimum ones for several load cases since only a set of prestresses can be introduced. This problem can
be avoided if the severest loading condition can be found previously. It is empirically known that the design
of the long-spanned bridges, such as cable-stayed bridges, is mainly governed by dead loads. For this
reason, the variation of loadings, which is not expected to greatly influence the optimized properties, is
not considered here,

4, NUMERICAL CASE STUDIES

(1) Calculation model
Radial type and harp type cable-stayed bridges with a three span continuous beam system are employed

here as analytical examples for case studuies. Their general configurations are shown in Fig, 8. Dead loads
are 10.0 t/m(98 N/m) and live loads are 3.5t/m (34.3N/m). Live loads are applied to the whole main
span.

Radial~type Harp-type

&
i : "'I i
T2’50=100m 2*50=100m i Sbm l 2*%50=100m 2%50=100m ]

common method L 450m
(a)

40m

i6m

& BE
o e
f proposed method , amj bm bm b
) Girder ( S541 ) Tower { SMSO )
Fig.7 A method of prestressing for cable-staye& bridge. Fig.8 Calculation model of cable-stayed bridge.
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(2) Optimum configurations

The solid and dotted lines in Fig. 9 show the optimized configurations obtained by using the new optimum
design method and those by SLP method, respectively, The maximum difference between the design
variables (plate thicknesses) computed using these two methods was about 20 percent. Nevertheless, the
difference between the objective functions for them was less than one percent. The extra camber of girders
and the corrective length of cables to be introduced are shown in Fig, 10.

(3) Suggestion of desirable structural types of cable stayed bridges

The new optimum design method is employed here for the study of economical structural types of
cable-stayed bridges with radial or harp type. Economical structural types are identified on the basis of
the objective function values. The prameters utillized for a series of structural types for the bridges is
shown in Table 1. For simplicity, cables are installed with a same interval and symmetric about the tower.
The parameters G ,H and F used in this table express the support condition that the towers are fixed to the
girder, fixed to the substructure, and pinned on the substructure, respectively. The cables are connected
to the tower for all of these cases,

The influence of these parameters on the objective function is shown in Fig. 11 (a), (b), and (c). As
can be seen, the values of objective function computed for the radial type were smaller than those of the
harp type for all parameter values, For example, their difference is about two percent in the case where N,
=4, H,=50 and S,. The objective function tended to become smaller as the number of cables increased,
but the decrease ratio of the objective function attenuated as the increase proceeded. The objective
function was minimized when the height of the tower was approximately equal to from 45 to 50 m for the
radial type and from 50 to 55 m for the harp type. For these two cases, the ratio of tower height to main

1935 1877 &
{1956} 1908} E 1939 1723 l
538 1633 {1929} 1712)
(156 53} 900 1151 H
P L P (878) | (1135) !
Axial forces of cable (t) { } :sLp H
Axial forces of cable {t) { } :SLP!
-4000 % - ~4000
~2000 _2000 +
! INEAY
o 7 < 0
2000 | e e 2000 [_
4000 4000
Bending moments of girder (t.m) Bending moments of girder (t.m)
~4000 - -4000
i
-2000 T_————.J———"I‘I ~2000
o s s ' L s . L ° N " . s . s
Axial forces of girder (t) Axial forces of girder (t)
Proposed method Proposed method
———————— S.L.P. method == ==--=S.L.P. method
{a) Harp-type {b) Radial-type

Fig.9 Confignrations of the Optimized sections.

0. 087 .—‘{),—055_ - Table ] Parameters assoslated with a structural type.

Shape of cables : Se Radial~Type, Harp~Type
Number of cablas : Ne z, 3, 4, 5

Haight of tower : Ht 40, 45, 50, 55, &0
Support condition of tewer : St ¢, H, F

(b) Harp Type
Fig. 10 Extra Cambers (m).
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(a) Number of Cables (b) Height of the Tower(m) (c) Support Type

Fig.11 The Influence on Obj. Function by Parameters,

span length dropped in the range from (. 18 to . 20 and from (. 20 to 0.22, respectively. There were only
small variations in the values of the objective function with respect to the support condition of the tower,
especially for the support types G and H. The optimum values for F type were greater than those for the
other two types. Since F type bridges must furnish expensive pin joints, it is not preferable to adopt this
type. Judging from the fact that the detailed structure of the G type bridge is simpler than those of other
types, it can be concluded that this type is the most ecconomical. The validity of this conclusion can be
insured from the fact that G type is often adopted in cable-stayed bridges.

Based on these observations, one can state that a radial type with as many cables as possible and 45-50 m
tall towers fixed to the main girder can serve as the most desirable structural type. This economical type
proposed herein is obtained based on the optimization method developed in this report. Since the method is
based on several assumptions, the economical type may slightly differ from the ideal one. However, it was
confirmed that the economical type was in very good accordance with those from references and actual

examples, Hence this method appear to be valid and reliably applicable to the design of cable-stayed
bridges.

5. CONCLUSION

It is important but difficult to appropriately select the structural types of cable-stayed bridges. This
paper proposed an optimum design method easily applicable to the slection of an economical structural
type. Unlike conventional structural analysis technique which necessitates iteratrions so as to satisfy
geometrical compatibilities, redundant forces of structures are computed from the condition that the
objective function is minimized without conducting any iterations. Consequently, the new method was far
more computationally efficient than conventional techniques. In order to satisfy the geometrical
compatibility, the amount of incompatibility is computed based on the optimized cross sections, and the
members are fabricated so as to introduce prestresses which cancel the incompatibility, The validity of
this method was insured from the fact that it is mandatory in erecting cable-stayed bridges to introduce
prestresses by implementing extra camber to girder members,

For the verification of the new method, it is applied to the optimum design of cable-stayed bridges. The
optimized objective function values of the bridges obtained by the method were compared with those
obtained by the SL.P method, There was no more than one percent diffenence between their values so that
the new method is likely to present as accurate optimum values as the SLP method does. In addition, the
authors determined an economical structural type of a cable-stayed bridge based on the comparison of the
values of objective function for various structural types. The economical structural type derermined in this
manner tended to be similar to what was reported in relevant references or designs. This optimum design
method would be practical enough and simplify the comparison design for cable-stayed bridges. Currently,
this method is not applicable to multiple load cases. It is a problem settled in the future to make this model
applicable to such load cases.
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