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IN-PLANE CRITICAL STRENGTH OF THIN-WALLED STEEL FRAMES
SUBJECTED TO VERTICAL LOADS

By Hiroshi NAKAF*, Susumu EMI** and Toshihiro MIK[***

This paper deals with the in-plane ultimate strength of steel frames with the thin-walled
box sections subjected to the vertical loads. Firstly, a numerical method for analyzing the
“critical strength” of frames with the initial imperfections in elasto-plastic regions is
developed on the basis of second order analysis by approximating the influences of local
buckling of thin-walled column elements on the overall buckling collapse. Secondly, an
experimental study is performed on the test specimens of five portal frames. Finally, the
effective column lengths of frames are discussed and an approximate method to evaluate the
critical strength of frames are proposed through experimental and theoretical studies.

1. INTRODUCTION

In the Japanese Specification for Highway Bridges (JSHB)? the ultimate strength of steel frames with
the thin-walled box sections such as steel piers and pylons of cable-stayed or suspension bridges can be
evaluated on the basis of the ultimate strength curves of hinged-end column of which length corresponds to
the effective column length of frame given by the function of flexural rigidity and boundary conditions of
beam and column. The similar design provisions are provided in other foreign specifications as are
indicated in ERSC?? and DIN 18800*.

Numerous theoretical and experimental studies®~® for the centrally loaded columns have been carried
out and have proposed the several ultimate strength curves by considering the influences of initial
imperfections and local bucklings of plate elements, However, it is necessary to clarify the effective
column lengths of frames in inelastic buckling regions, because the effective column langths of frames in
the above specifications have been derived by a linear bifurcation theory”? without considering the initial
imperfections.

Although there have been many experimental works'? !V on the elasto-plastic buckling stability of frames
with the compact sections for the purpose of applications to the plastic design methods, the experimental
data on the thin-walled frames can not scarcely be found hitherto.

In this study, an analytical method”” based upon elasto-plastic and second order theory for the portal
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frames with the thin-walled box sections are predicated by approximating the influences of local buckling of
column elements on overall buckling collapse of frames. The tests on five portal frames are undertaken in
order to check the validity of this method. From these analyses and experiments, the lower bounds of
ultimate strength referred to as the “critical strength” of portal frames are clarified. Then, an
approximate method for this critical strength of frames is detailed and the corresponding formula for

determining the effective column lengths is proposed.

2. ELASTO-PLASTIC AND SECOND ORDER ANALYSIS OF FRAME WITH THIN-
WALLED CROSS-SECTION

(1) Analytical model

A portal frame consisted of thin-walled box section, shown in Fig. 1, and subjected to vertical loads,
shown in Fig.2 (a), is analyzed in this paper. It is assumed in this frame that both the columns undergo
almost the same compressive forces, P, the deflection curve of a cross-beam becomes anti-symmetrical
and this beam remains elastic up to the ultimate state of frame. Thus, the cantilever column with rotational
restraint, K, and a compressive load P at the top can be provided as an analytical model as illustrated in

Fig.2 (b).

If the stiffness ratio of column to beam, K, is defined by;

K==(Tog/ R) (L) Dpg) ++veereeessessnesmsesmntoatoie it s (1)
the rotational restraint, K, can be written as follows;

Ko==(1/ K} (6 ElLy/ B)-++++severveeeseesnsenmsamiiiienti ittt e e (2)

where [, I, : geometrical moments of inertia of column and beam, respectively, h, [ : height and span
of frame, respectively, and E : Young's modulus (=2.1X1(0° MPa).

(2) Initial imperfection and residual stress

The frames are assumed to have the initial deflection modes 7, (xx), shown in Fig, 2 (a), similar to the
elastic buckling mode,

_@o(x)zﬁo‘:'{l“COS(x/he}f .......................................................................................... (3)
in order to evaluate the lowest ultimate strength of frames, where h, . effective column length in frames

based on the elastic buckling theory'®. The values of §,, are taken as h./1 000 which corresponds to the
fabrication tolerance of JSHB for the column members with the length, 4,.. Then, the variations of initial
deflection §, at the top of column and the effective length factor 8, (= h,/h) with the stiffness ratio K can
be listed in Table 1.

The residual stress distributions adopted in this analysis is such a pattern as shown in Fig, 1, in which
the compressive residual stress, ¢, is taken as (.4 times of the yield stress, g,.

(3) Analytical method

The transfer matrix method based on the second order analysis'® is adopted to an analytical model, The
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(a) I?ox_-tal frame with (b) Analytical
Fig.1 Residual stresses and cross-sectional initial imperfection model
segment in box section, Fig.2 Analytical model of portal frame subjected to vertical loads.
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Table 1 Variations of initial deflection §,/h and effective length ratio B. due
to stiffness ratio K of beam and column.

Items K 0 1 2 3 4 5 [e¢]

Effective length ratio
Bo= he/h 1.0 11.157}1.279|1.373 | 1.445|1.502 | 2.0

Initial deflection d,/h
at top of columm

1 1 1 1 1 1 1
500 | 452 441 439 442 445 500

material is assumed to be perfectly elasto-plastic and their nonlinearlity is considered by dividing the
column sections into the small segments as shown in Fig. ] and by taking the effective flexural rigidities
calculated from the elastic zones of cross-sectional segments,

(4) Ultimate strength

When a local buckling behavior of column sections is taken into account in overall buckling analysis of

frame, rigorous and troublesome procedures will be necessary. The ultimate strength of frames
accompanied by this local buckling is, then, evaluated by introducing the following two assumptions”;

(i) The decreases of flexural rigidities of column sections due to the initial deflections of plate
elements are smaller than the ones due to the propagations of plastic zones caused by the residual
stresses,

(i) The uniaxial and flexural rigidities of a column section are nearly equal to zero as soon as a
column sections reduces to the ultimate state, and then the frame reaches the ultimate state, because
of the fact that the column is composed of thin-walled box section.

The ultimate state of column sections can be decided by using a interaction curve of thin-walled box

stub-columns subjected to compression and bending as is proposed by Ref.7) as follows;

Mizﬁfp/—ﬁfy' (kpl_F)y . . Pz kpz’ Pwy
=1/ k)12 (1_pr)_(ﬁfp.ﬁwy)/})fy}.(P/-ﬁw)3 .......................... (4)an
—(1/ ko) 130 =M 1)—(M 1> Poo)/ P 1 (P/ PV + bty P<kipi* Pusy
where
M,;ZM,;/MQ,T)‘ZP/Py,—l_)_fy:P_fy/Pgthy:Pwy/PyQ-M—fPZMfP/MP
Pyy=2B* 1, 0y, Puu=2 D" to* Oy Mpp= Pfy'(Dc+ tf)/Z, Pysm Pryt Py foeereeeeeerseernnn. ( 5 )a~i

My=Pry(Dc+1,)/2+ D% by 0y/2
in which M,, P : bending moment and compressive force acting on the column element, i, of a load step,
respectively, M,, P, : fully-plastic moment and squash force of the column sections, respectively.
The parameter, f,, is the ultimate strength of stub-columns under uniaxial compression, which can be
decided by using the plate slenderness,

— 1 7,
Ra=L. _1.2];(1_”#_) \/‘f' ........................................................................................ (6)
of stub-columns and can be calculatedvfrom the following equation®;
k=10, Ra=03)] i, (7)an
=0.542 R%,~1.249° R%,+0.412* R -,+0.968, (0.3< R,,<1.3)
where
(e, +1/a)+(tw/t, (De/ B) (et 1/ aw) 1+(De/ B+ (80/ 5 13
= 1+(Do/BF-(tw/ 1) ,&=a/B, ay=a/D.,a=B" 1+(BC/D3)-(tw/t::))3 J
............................................................................................... (8)aa

in which B, £, width and thickness of the flange plate, respectively, D, #, : height and thickness of the
web plate, respectively, x : Poisson’s ratio (=0.3) and g, : yield stress of columns,

Thus, the ultimate strength of frames can be obtained by using the transfer matrix method as the smaller
load of the two ultimate states;i.e. (i) the instability of frames in which the sway displacements at the
top of columns become extreme value, (ii) the ultimate state of column section which corresponds to Eq.

).

65s



78

3.

H, Nakai, S, Emi and T, Mik1

EXPERIMENTAL STUDY

(1) Test specimen
Buckling tests were conducted on the five portal frames F 1~F 5 with the thin-walled box sections

shown in Figs. 3 and 4. The dimensions and cross-sectional properties of test specimens are listed in Table
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Table 2 Dimensions, cross-sectional properties

Table3 Yield points ¢, of columns in test

frames,
Oy F1 F2 F3 F4 F5
MPa | 296 296 292 292 273
@
(a) Plan (A-A)
RollersB‘-1
AR
T TR o @
A @9 5 B s
®>—~o = i3} - @d
\\@
@ Test
@ frame @ Test
frame
D, e e
[ T LQE"R I i3]
| 5
Anchor 1 B T 500.mn } Test bed
bolts

(b) Side elevation (e) section B-B

@ Column of loading frame, @ Beam of loading frame, ® Load-
ing beam, @ Beam for preventing out-of-deformation of test
frames, (3 980 KN load cell, ® 9.8 KN load cell, @ Pin-shoe
(fixed), Pin-shoe(movable), @ 980 KN hydrauric jack

@ 295 KN hydrauric jack

Fig.5 Experimental device for test frames.

and buckling parameters of test frames (SS41).

Ttems Dimensions Cross-—se.actional Buckling
properties parameters
B'|De | Db | te | t 1 h | Ac(Ab)| Teo(Tpy)| Tey(Tpy) =

Test i cy byl Feylth .

Test N\ o | o) | G | Comd | comy | Comy | oy | “Cemey |Gy | Koy | K| RE | Rew | Ay
781 5208 | 430 "

F1-0.5-0.3| 170 | 102 106 | 5.88|4.46|1,000 92¢ | 5u'sl 260 %) | (3apy | 099 0-52| 0+49 0.50
581 520.4 | 4.30

F2-0.5-0.5| 171 | 102| 87| 5.88]4.46| 1,000,561 | Zo 5 S5O0 | 51g | 0.95) 0.52] 0.49) 0.50
5.5 | 462.% 5.5

73-0.7-0.3| 178 | 104 | 109 | 4.49|4.47|1,001 933 | 501 $7571 | ((l54y | 0-97| 0-70 056 0.30

F4-0.7-0.5| 178 | 104 | 87| 4.49|4.47| 999 |1,554 (gg';) (ggg'z) (g'gg) 0.97] 0.70] 0.62] 0.50

r5-0.7-0.7| 178| 77| 62| 4.36|4.36|1,000/1,628 <§é'§) <§§§'3) (g'gg) 1.00] 0.67] 0.61| 0.65

Notes B',Dé,]}é,tf,tw,l,h: see Fig.3~Fig. 4. Ac,Ap: cross-sectional area of column and beam,

respectively. Icy’Iby: geometrical moment of inertia of column and beam, respectively.
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In-Flane Critical Strength of Thin-Walled Steel Frames Subjected to Vertical Loads 79

2. The mild steels with thicknesses 4. 5 and 6 mm made of steel grade SS 41 were used. The dimensions of
test specimens are decided so as to satisfy the stiffness ratio, K=1.0, the plate slenderness of flange
plates, R,=0.5~0.7 and the slenderness parameter of columns, 2,==0.3~0. 7, based on the preliminary
survey of the actual steel piers’”, in which R, and A, are defined as follows" ;

A2Q =) | 00 e
kxt '\/l: » (9)

where f ! buckling coefficient of the isolated plate (=4.0), 7, : radius of gyration of box section.
The symbol of test specimens F 1~F 5 shown in Table 2, is categorized as follows ;

0. 5]——Slenderness parameter of columns, A,

L Plate slenderness of flange plates, R,
No. of test specimen (F1~F 5)

(2) Mechanical property

The tensile tests carried out on the coupon specimens showed that the average Young's modulus E =
2.06 X 10> MPa and average Poisson’s ratio y=10.28. The average of static yield stress of steel
materials for columns is listed in Table 3,

(3) Loading device .

The details of experimental device can be shown in Fig.5. This device is designed to test the frames

under the free condition for sway displacements. Then, the frictions by the vertical loads P at the main
jacks (@ (each capacity 100 tf (980 KN)) can be removed by not only the rollers inserted between loading
beam (2) and loading frame (3), but also the application of infinitesimal sway load P /200 by the additional
jack (@ (capacity 30 tf (295 KN)). The fixed and movable shoes (7) and were also set up so as to
unrestrain the rotations at the top of column in the test frames.

Accuracy of the expected performance of this device was checked by the test in elastic regions, As a
result, the coefficient of friction at the rollers on the main jacks (§) was found to be less than . 002. In the
experimental study, the vertical and horizontal loads were gradually increased up to the failure of test
specimens,

(4) Test result

a) Initial imperfections

The initial deflections at the center of columns and their flange plates were measured prior to the
collapse tests, )

All the specimens had the initial deflection modes as plotted in Fig.6 (a). The values of §,/A at the top
of frames were within the ranges from 1/940 to 1/230 and their average was ]/492 which corresponds to the

F3-0.7-0.3
/ , F1-0.5-0.3
§0=2,0mm aéo=1.8mm b 1.0 -~ J/_F‘-Z_—_Of-;o_S
a7 % o.s
! E F5-0.7-0.7
' } x:Local buck#— ’g 0.6
l ling of g
flange ~ 0.4
‘ plates -
0 4 < o :Position
() i S 0.2 of buck-
" B ling loads
(a) Initial def- (b) Buckling mode L o) TP S SR T
lection mode 0 10 20 30 40 50 60
2 -
Fig.6 Initial deflection mode and buckling mode of (8/h)" (x10 6)
test frame F 5—0.7—0.7. Fig.7 P-8? curves of test frames.
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1.0 2
L Euler’s
Table4 Test results of critical strength P.,,/P, and al z ! g R Xurve
Pu/Py. N ®
Slender— j . Difference S r
ltems | oo Buckling|Ultimate between (1) A
strength|strength o n
parame- and (2) 0.5 E imental 1t
Test - ters Ay Pcru_(l) Py L) (2)-(1) 10 —~ g | Experimenta’ resuits
frames Py ° Py’ (1) : S‘Sn L | A, 4:Re=0.5, O 8:Rg=0.7
o | | A, e :Buckling strength Pcru/Py
F1-0.5-0.3 0.30 1.010 1.046 3.6 E 2 A.0:Ultimate strength Pu/Py
F2-0.5-0.5| 0.50 0.900 | 0.946 5.2 5% N R
F3-0.7-0.3| 0.30 0.985 | 0.985 0 o 0.5 1.0
F4-0.7-0.5|  0.50 0.850 | 0.887 4.4 Slenderness 7y _ 8eh 1 /Oy
parameter Vo orey W E
F5-0.7-0.7 0.65 0.780 0.867 11.2

Fig.8 Relationships between critical strength Pcr./ Py,

P,/ P, and slenderness parameter Ao

assumed values in Table 1. The maximum initial deflections in flange plates was less than the tolerance
value, B/150, of JSHB and the average was 0.345- (B/150).

b) Buckling modes

The buckling mode of test specimen F 5 after test is sketched in Fig.6 (b) together with the initial
deflection mode. All the test specimens showed the sway buckling modes and the local buckiing at the flange
plates near the tops and bases of columns was also observed.

¢) Buckling behaviors

The relationships between the vertical loads, P, and sway displacements, &, were plotted in the form of
P-5? curves as shown in Fig, 7, where P and § are non-dimensionalized by the squash force of columns,
P,, and height of frames, h, respectively. The buckling load P.,, is also defined by the condition where
the square of sway displacement, §?, begins to increase enormously and their points are marked by the
symbol, (O, in P-§* curves,

The P-§° curves of test specimens F 3 and F 4 snap just before the ultimate loads and behave as the
bifurcation buckling, These mean that the frames will yield at the same time in the ultimate states of column

sections, since the plate slenderness, R,, are relatively large (=0.7). While, §* for the test specimen
F 5, begins to bow gradually at P/P,=0. 6 and this specimen collapses at P/P,=0. 78. By comparing test
specimen F 5 with F 3 and F 4, F 5 has much more redundant strength from the buckling loads up to the
ultimate loads. It seems that the buckling loads of frames with large slenderness parameter 7\9 become
lower, because the reduction of flexural rigidities of columns due to the residual stresses have a great
influence upon the load-displacement relationships of frames.

It is also noted from the strain distributions in column sections that the flange plates at the base parts of
frames is buckled before the ultimate loads, Their local buckling loads were prior to the ultimate loads,
P,, in the test specimens F 1 and F 2, and the values of test specimens F 3~F 5 were smaller than P, by 5
~15 %.

d) Critical strength

The test results of buckling strength P.,,/P, and ultimate strength P,/ P, are listed in Table 4. These
strengths are also plotted as a function of the slenderness parameter A, as shown in Fig, 8.

In the test specimens F 3~F 5, P,,, and P, are smaller than P, by 2~22 % and 2~13 %, respectively,
and decrease gradually in accordance with the increase of . By comparing the ultimate strength of test
specimen F 2 with F 4, the latter having the large plate slenderness R, (=0. 7) is smaller than the former
(R,=0.5) by 6 %.

In the specimens, F 1 and F 2 as well as F 3—~F 5, the differences between P.,, and P, are about 4~5 %
and 0~11 %, respectively. Then, the redundant strengths after the buckling loads become large in
accordance with the increase of A, This indicates that the rigidities of frames are sensitive to the
decreases of rigidities of columns due to the residual stresses as is mentioned in the above,
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4. PARAMETRIC STUDY ON CRITICAL STRENGTH OF FRAME

The critical strength of portal frames with the same cross-sectional dimensions as the test specimen
F 4 (R,=0.7) in Tabie 5 were analyzed by changing stiffness ratio K in the ranges of 1 ~5 and slenderness

parameters,
Torm i L [0 e
/Il)y_ Tey T E (11)

equal to (.15~0.9 under some variations of frame height, h.

(1) P-&curve

The P-& curves of frames for K=3 are illustrated in Fig.9, where the three critical strengths
Pery/ Py, Pu/Pyand P,/ P, (thereafter, their representatives are referred to as P,,/P,) are shown in
this figure. Pc,,/P, means the buckling strength obtained by P-§* curves and P,,/P, designates the
ultimate strength for the local buckling loads of a column section, P,/P, being the ultimate strength for the
fully-plastic state of a column section or unstable state of frame.

As is seen from this figure, the frames with Xay=0, 15~0. 45 reduce to the ultimate states caused by the
local buckling of column sections and P,,/ P, is smallest of three critical strengths, While, the frames with
Aoy=0.6~0. 9 tend to bow rapidly prior to P,/ P,, thus P..,/P, gives the smallest critical strength,

(2) Lower bound of critical strength P.,/P,

The variations of critical strengths P.,/P, due to K and A, are listed in Table 6. The relationships

Toy=0:15_
Xoy=0.30

& Joy=0.60
ey o
& Xoy=0.75
o
3 Roy=0.90

0y=0.
S 0.5 A"
‘-g P A0.@: Positions of critical strength]
ol . N
- P A U]'.tlmate strength Px}/Py Analytical
o without local buckling results
2 § h o: Ultimate strength Puy/Py

considering local buckling

Rey=0.641 @ : Buckling strength Pcru/Py
K=3
- R T

i
0 0.5 1.0
Sway displacement &/h (x1072)

Fig.9 P-§ curves and critical strength of frames.

Table5 Column section of analytical frames.

B (mm) | te(mm) | Do (mm) |ty (mm) Table6 Variations of critical strength P../P, due to
162.5 4.5 104 4.5 stiffness ratio K and slenderness parameter
Notes;oy=314MPa, Rfy=0.641, kpz=0.86l5. Rﬂy-
Y
10 b 1 P 0.90
& b Pu/Py curvt\( v o 0 0.647
~ rrm N — oy
] L A Pu 1 0.592
-9 ’ Py
& 3 0.494
,D:D 5 0.432
S o5k Dy, 0 0.644
g ° Peru/Py| N 20
o {curve ’h,’ Pul | 1 0.592
i T
3 I ™ A 0.494
= o 7w @ Lower bound of )
5 Il K=3 critical strength 5 ; 0.432
oL REO84L L L L, 0
0 0.5 1.0 Perujf 1
- P
Slenderness parameter \oy= £ L Joy )
Tey W E vl e 1D
5 10.625 }110.450 1
Fig. 10 Variations of critical strength due to slenderness Note; Values in .1 show the lower bounds of criti-
parameter of frames. cal strength
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between P,,/P, and A, of the frames for k=3 are , 10 7 Pery_ 1
plotted in Fig. 10. FE N i R4
From this figure, it seems that the lower bounds of i (1)\/\\ U ﬁiiii‘“(?ii‘?’?ﬁ?h
P../ P, are given by P,,/ P, in the ranges wh_ere Aoy=0 g:) s i . 2 /\\\\\\\ \::
~0.52 and P,,,/P, in the ranges where 1,,>>0.52. e I \\\\\} Buckling
Therefore, it is important to clarify the buckling g - Y ™ :i:irelgth
strength in order to set the lower bounds of critical 355 Re=0. 641 (FeralEy)
strength of frames, = 0 gttt
(3) Variation of buckling strength Slenderness parameter Joy= 1+ L. [0
The buckling strength P.,./P, is plotted as a “

. — . ) A Fig. 11 Relationships between buckling strength P,/ Py,
function of A, as shown in Fig.11 from Table 6, in stiffness ratio K and slenderness parameter Joy.

which the fundamental ultimate strength curve of
centrally loaded hinged-end columns by our analysis is also shown in this figure.
It can be seen from this figure that the decreases of P.,,/P, are predominant in accordance with the

increases of K and Ag.

5. EFFECTIVE COLUMN LENGTH AND CALCULATION METHOD FOR CRITICAL
STRENGTH OF FRAME

(1) Effective column length based on buckling strength

In order to obtain the effective column length, A, of frames, the variations due to two slenderness
parameters, A, and \,, were investigated from Table 6. These results can be plotted in Fig. 12, where the
column strength is obtained by the curve P,,/P, in Fig. 11. From this figure, the effective length factor,
B, can be defined as the slope of a line between origin (0,0) and point ows Ay .

Although 8=1. 0 in the ranges where Joy<0. 3, becomes somewhat large in accordance with the increases
of K and ,,. Therefore, the effective column length factor 8 should be found as a function of K and Doy
These results are quite different from the elastic buckling theory such as £ remains constant when K is
constant k(see Table 1), because the flexural rigidities of columns are considerably small rear the buckling
loads by the propagation of plastic zones and then the rotational restraints at the tops of columns are
variable. According to JSHB, 8 is constant (=1.5) in the ranges where 0<CK <5, and this criteria seems
to be conservative in case where K and A, are small.

From numerous analytical results, the relationships between A, and A, can be set as follows;

—~=: Proposed effective
- length formula /VK=5
15k (a2
K=3 Test results e
GE . //« B 10rg. F-o.5—0.3,o.5} S
. - - . P-0.7- T ey
i I /! J.’K‘l ne w: F-0.7-0.3 0.7]
| 4 <& L i/ v
o L //. [ 59 0.8 R4
,
=1H1.0 FTTshp 2V S - oK
5 P — 4 [ < © e
=< y=1.5%0y, /&% Soa 0.6 e
I 17/ 2D K
: | 25 ¥
. L L= el 0.4 K R=
g3 o5 b Ay=hoy] @@ U vt v : 0 ] Analytical
3 % . K= =8 o o : 1 | results
& - . . -
. 0 pmatyes 3% g.2b A: 3 [{Roy=0.15 0.90
ae 1 z. 1l cal 2 o: 5 J\Rgy=0.641
r : [ 1
L : g: 5 results © o« 0 PR RN UV WP S
0 P U B | 0 0.2 0.4 0.6 0.8 1.0
0 0.5 1.0 *
Slenderness —  h 1 /ﬁ Approximated critical strength Pcy/Py
aramet T ey M
parameter fey T VE Fig.13 Comparison of critical strength P¥,/P, calculated
Fig.12 Relationship between slenderness parameters by Eq. (16) with analytical and experimental results
oy and iy. P.r/ Py,
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A= Aoy, (Aoy=0.3 and 0< K <5)
= hoy*(8+ K)/7—(3/70)*(14 K), (0.3< Ay =<0.9 and 0< K <5)
Then, the factor B can be calculated by the following equation;
ﬁzig /XM, ................................................................................................................. 13)
(2) Approximate method for critical strength considering local buckling
As the critical strength obtained by using Egs. (12) and (13) is the strength of buékling instability of
frame, it is necessary to evaluate the critical strength by considering the local buckling of column sections
in the extents of smaller slenderness parameter A, The critical strength P.,/P, in this region will be
approximated by the ultimate strength curve of column in Ref.7) by considering the local buckling as
follows ;
Poy/Py=Pe/ Py, kn=1—(0.48- A,
= Poo/ Py lkm+(0.48: 4,0, ku<1—(0.48- 1,7
Pe,/ Py is the buckling strength for A, in Eq. (12), which can be calculated by the column strength curve
of JSHBY as follows; :

Po/Py=1.0, 2,=0.2
=1.0=0.545 (g —0.2), 0.2<C Ay 1.0 b wrereeememmemmeeiemeieieeeeeeeeeeteee et ein e, (15) a-e
=1/{0.773+ 2, 1.0< A
Thus, the critical strength, P¥./P, can be obtained by the following equation ;
P?r/Py:min{Pco/Py; Pﬂ/py} ..................................................................................... (16)

(3) Verification of approximate method

The final critical strength P¥./ P,, approximated by Egs. (12) ~ (16), was compared with the analytical
results in Table 6 and experimental ones in Table 4. The results are summarized in Fig, 13.

The values of P¥,/P, given by Eq. (16) are well coincided with the analytical ones within the errors +
4 % and somewhat underestimate the test results by 3~10 %, but give the lower bound of them.

Thus, this proposition seems to be practical and it is, therefore, concluded that an approximate method
to estimate the lower bounds of critical strength, predicated in this paper, will be useful for establishing
the limit state design methods of thin-walled steel frames.

6. CONCLUSION

In this paper, the critical strength of thin-walled pértal frames subjected to vertical loads were clarified
by analytical and experimental studies. The main conclusions can be summarized as follows:

(1) The lower bounds of critical strength of frames were clarified, i, e. the ultimate strength for
local buckling of a column section was predominant in the range of smaller slenderness parameter A,
whereas the overall buckling was governed by the strength of frames with larger A,

(2) The formulae for effective column length of portal frames within the ranges of 0<<K <5 and
0<7\0y§0.9 were proposed on the basis of buckling instability of frame,

(3) An approximate method for estimating the critical strength of portal frames by considering the
local buckling of column sections was proposed through the applications of the column strength curves of
JSHB.

(4) The critical strengths calculated by the above propesitions well coincided with the analytical
and experimental results. :

(5) These propositions will be able to apply to the limit state design of thin-walled frames.
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