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GENERIC FORMULATION PROCEDURE FOR LARGE DEFORMATION
ANALYSIS OF STRUCTURAL ELEMENTS

By Worsak KANOK-NUKULCHAI*, Akio HASEGAWA** and Fumio NISHINO***

A general Lagrangian formulation of structural finite elements is presented, in the
context of nonlinear continuum mechanics. The element characteristics are ‘degenerated’
from 3D field equations, using kinematic characteristics of the structural member.
Consistent linearization is performed to establish a Newton-Raphson solution scheme.
Numerical examples are tested and the results clearly indicate the effectiveness of the
present formulation.

1. INTRODUCTION

In the past decade, large deformation of common structural members such as beam, plate and shell has
become a subject of increasing interest. A variety of finite elements developed for nonlinear analysis of
such structures are based on classical theories. These theories, in pre-computer age, were established
usually in a form suitable for hand-calculations for specific types of structures. Various assumptions and
approximations with respect to global geometry and deformation of the structure were already imbedded.
Disadvantages adherent to this ‘classical’ approach are . (a) the element application could be severely
limited by the modest application scope of the underlying classical theory ; (b) the element could be
subjected to a higher order continuity requirement. Such elements appear to be rather complicated as well
as time-consuming.

A new approach is to treat structural member as a special case of 3D continuum, Structural element is
essentially ‘degenerated’ from 3D field equations using appropriate kinematic constraints characteristic of
the structural member. The conceptual difference of this ‘degeneration’ approach?-? from the classical one
is illustrated in Fig. 1 for shell. Both approaches involve the entire process of reducing a shell-like
continuum into finally a consistent surface patch of shell elements, The process uses two classes of
approximation . one resulting from the finite element discretization and the other from enforcing shell
assumptions, For example, 'a classical element for shells of a specific shape can be derived by discretizing
the governing differential equations of a relevant shell theory, in which shell assumptions have already
been taken into account. On the other hand, the degeneration approach directly discretizes the shell-like
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STRATEGIES FOR SHELL ELEMENT DERIVATION low computational cost.

Fig.1 Two approaches for shell element formulation, In nonlinear analysis, computa-

tional cost is a prime concern due to
the requirement for frequent formation of element characteristics. The use of complex but too expensive
high order elements is an extravagence if one considers the uncertainty of many nonlinear material
characteristics in existence. Thus, degenerate elements, being conceptually simple but rigorous, should
be an ideal alternative for applications in practice,

This paper presents a generic formulation procedure for establishing degenerate structural elements for
large-deformation analysis. The element characteristics are established from the balance equations in the
Lagrangian mode of description,

The proposed procedure to establish an element model for a specific class of structures involves (a)
appropriate selection of element geometry, nodes as well as nodal variables . (b) employment of element
shape functions which incorporate all the kinematic characteristics of the applied class of structures, and
(¢) reduction of the three-dimensional constitutive model into a suitable form,

2. LAGRANGIAN FORMULATION OF A LARGE-DEFORMATION ELEMENT

The motion of a body B is a one-parameter family of its configuration B, in the Euclidean space. The
spatial Cartesian coordinate system x serves to describe motions of particles in the space. Another set of
Cartesian coordinates X, known as the reference coordinates, describes the material framework of a
configuration B, which is employed as a deformation reference. Motion of a particle P can be given in
terms of a displacement vector g from its reference position, X(P), in configuration B, as

.I‘_;(X, t)-“—b\yXJ‘f'd;‘}‘uj(X, t) ..................................................................................... ( 1 )
where §;, denotes the Cartesian shifter between x and X systems and d is the position vector to the origin
of X system., Throughout this presentation, upper-case and lower-case subscripts are used to
differentiate between the components associated with x and X respectively. Also, a repeated index in a
term implies summation over its range, according to tensor notation.

Physical principles governing the motion and thermal responses of deformable bodies include
conservation of mass, balance of linear and angular momenta, balance of energy and the entropy production
inequality?. Restricting our interest to elastic bodies under isothermal deformation, the balance of angular
momentum is satisfied through symmetric propertry of stress tensor. Finally, the conservation of mass is
satisfied through o,= g,/ J, where g, and p, are mass densities of the body at B, and B, respectively and J, is
the determinant of the deformation gradient matrix which maps B, into B,. With a constitutive model
constructed to comply with the entropy production inequality, the elastodynamic problem reduces to the
determination of deformation and stress responses that satisfy the balance equation of linear momentum,

The balance of linear momentum, together with constitutive equations, strain-displacement relations,
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and appropriate initial and boundary conditions, constitutes an initial boundary value problem. The
Galerkin weak form (or virtual work expression) of this initial boundary value problem can be used to
establish the discretized equations of motion by the finite element method.
First, the local balance of linear momentum governing particle in B is expressed in Lagrangian mode? as
(SuyF 30 B0 by Dy MLm= (0 - v e nee s e e (2)
in which p is the body force vector, § the second Piola-Kirchhoff stress tensor and F' the deformation
gradient associated with a motion from B, to B, Assuming that the motion is sufficiently smooth for
differentiation, F is given by

ax,-
F‘”_?—X; U s ( 3 )
The traction boundary conditions associated with the boundary surface 3B, is as follows,
nSuFr— f*jzo ...................................................................................................... (4)

where n is the unit normal vector of 9B, and T is the prescribed traction acting on 3B,

The Galerkin weighted residual method is applied to (2) and (4) to construct a Galerkin’s weak form of
the problem, i.e.

Glu, 77)= _L(SIJFJ'J),I Uidv“l;o(ﬂobj“ﬂoﬁj)njdv+£so(nlsuFu“‘ T;)’?idA """""""""""" (5)

in which 7 denotes a weight field over B,. One can easily récognize that {5) can be interpreted as virtual
workdone if 5 is viewed as the virtual displacement field. Applying the Gauss-Green Theorem to the first
integral leads to a corresponding canonical form of (5). If both i and 5 are continuous over the element
domain, the Galerkin function can be written as an accumulation of individual element contributions, i. e.,
Glu, 7)=2 G%u, n) where the canonical form of a typical G¢ associated with (5) is

c

Gu, n)zlg S”F’m"’dv—_ﬂg (pnbj"‘poﬁj)de“/;Bg i"jﬂjdA ........................................ (6)

For a finite element, if 5 is the number of nodes in the element and U is the element nodal variables,
shape functions are constructed in such a way that the three-dimensional displacement field y over the
element body can be expressed in terms of U as

u(X):ngNa(X)Ua FOT  P(X)@ B -rrvrrerreerrerrenstsesttti sttt ettt (7)

These shape functions must be established such that they incorporate all the imposed constraints to reflect
the proper characteristic behaviour of the applied structure. The same set of shape functions may also be
used to represent the element geometry if element isoparametry is desired.

The Galerkin method employs the weight field 5 which belongs to the same function space as the
displacement field. In addition, 7 is chosen to satisfy homogeneous essential boundary conditions, Thus,
7 can be represented by

77(‘X):CL§:1 Na(X)Ha for P(X)G Bg ............................................................................ (8 )
where H denotes element nodal values of 5. Substituting (7) and (8) into (6) leads to
Ge(U,H)zélgHg(Myg L - - P SR PRI (9)
in which the internal force vector, the mass matrix and the generalized force vector are respectively
K?:ﬁe S]JFJJN(;dV .............. (10)
0
M??:feNaNde&-j .................................................................................................. (11)
By
and
b ’ b L I A
Ri= [ TuN*dA+ [ mbNaV (12)
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Observe that superscript refers to a node number while subscript refers to a spatial basis, For example,
K denotes the j-component of the internal force vector at node ‘a’. Assembling all individual element
contributions leads to ;

GU,H)=H'[M 0+K(U)—'R]=O .............................................................................. (13)
in which H is a vector of nonprescribed weight parameters associated with global nodes. Since } can be
arbitrary, (13) reduces to

Mﬁ‘f’K(U)*R:O ................................................................................................... (14)

which represents the system of discretized equations of motion in terms of generalized variables 7.
3. LINEARIZATION OF INTERNAL FORCE VECTOR

By dropping the inertia term for quasi-static analysis, (14) reduces to a nonlinear algebraic system to be
solved for U corresponding to an applied load. Solving these nonlinear equations by the Newton-Raphson
technique requires the linearization of the nonlinear term K(U/) with respect to /. A typical linearized
equilibrium system associated with (14) is

DK(Un) AUP=R,— K(Uﬂ) ........................................................................................ (15)
where DK(U7) denotes tangent stiffness matrix about a trial displacement {/” (assumed at the sm-th
iteration for U, the solution corresponding to the n-th load step). The iterative increment, AUT, is
computed from (15) and used to update /7. It is very convenient to evaluate DK from the componential

form, i.e.,
4
DK (U™)= 253 R (16)
The expression for the element tangent stiffness is obtained by substituting (10) into (16) as
8Su aFJJ
bag prm BT |
DKSHUR= [ (Ggs FuNi+ SuggaNt)av | (17)
In view of (1), (3) and (7), the deformation gradient F can be evaluated from
Fjjzajj'*—i Na a ................................................................................................... (18)

Using the cham rule 3S,,/0U¢=(88,,/3Ew)3Ew/0UY in (17), the Green strain definition
E,= I(Fk,Fm &1, and (18), the tangent stiffness can be obtained as

oS
DK(U)= f [F“ b][ 8E” ][FLL x}dV'*'f é‘UNaS,J(U) JdV .......................... (19)
The first term on the right-hand side of (19) constitutes an elastic tangent stiffness with the effect of
finite motion included, and the other term represents the effect of initial stresses,

4. CONSTITUTIVE MODEL

So far, the formulation is valid for any material model in which § is a function of E. To avoid
distractions from our main scope, only the class of hyperelastic solids will be considered, of which the
constitutive equation takes the form?®

Su=p a%‘/’”( )t mee e e e (20)

where ¢ is the strain energy function. For convenience, a fourth-order elasticity tensor is introduced,

138y _1 9

G B T E P B BB (21)

from which on can show that C, .= Cyr=Cix.=Crs. In practice, constitutive relation can be obtained
by assuming ¢ as a function of E. From (21), if ¢ is taken as a quadratic function of £, all elements of C
are constant parameters. This class of material constitution corresponds to the first-order theory of

Ci.JKL

elasticity?. For isotropic, linear elastic materials under infinitesimal strains, the elasticity tensor can be
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described by 2 Lame’s constants, A and g, as
2C ko= A0krOunt 1S uuG Ly GrnOpp) v eemrersreens ettt e et (22)

5. SPECIALIZATION TO STRUCTURAL ELEMENTS

Table 1 lists the conditions necessary for specializing the general expressions of K and DK to four
classes of nonlinear structural members as shown in Fig.2;namely (a) truss/cable element, (b)
straight/curved beam element, (c) plane/membrane element and (d) plate/shell element. Some special
treatments needed for bending elements (beam, plate/shell) will be noted ; (1) The conventional
rotational degree-of-freedom is replaced here by the relative displacement at the top fibre. Finite rotation
normally requires unorthodox treatment for its coordinate transformation leading to complex expressi-
ons?® of trigonomatric functions, In this formulation, a ‘top-fibre node’ is used to house the relative
displacement degrees-of-freedom. An appropriate set of shape functions will be established so that the
displacement field over the element body can be
interpolated from degrees-of-freedom at the mid-
surface nodes as well as those at nodes on the top
fibre. After that, a standard nonlinear continuum
procedure already described can be used to formu-
late the characteristics of the element straightfor-
wardly. To maintain element isoparametry and thus
enable the use of the same set of shape functions for
describing element geometry, relative position
vectors can be input for these relative nodes,

(2) A fictitious coefficient ¢ is employed for
the transverse normal stress-strain relationship.
Theoretically, ¢ should be zero to comply with the

plane-stress assumption. However, a minute value
(c) PLANE/MEMBRANE ELEMENT () PLATE/SHELL ELEMENT of ¢ is necessary to restrain the otherwise free
thickness pinching mode due to the inclusion of the

® RELATIVE NODES 1,8,f : NATURAL COORDINATE . .
transverse relative displacement component, The
© REFERENCE NODES X : SPATIAL COORDINATES . .ye
X : REFERENGE COORDINATES range of ¢ which provides numerical stability and
Fig.2 Four Classes of Degenerate Elements does not adversely affect the general element

Table1 Four Classes of Degenerate Elements : Kinematic Field and Element Shape Functions.

TYPE OF KINEMATIC - ELEMENT SHAPE FUNCTIONS CONSISTENT
ELEMENT CONSTRATNT CONSTITUTIVE MODEL WITH THE KINEMATIC CONSTRAINT
1. Truss/ Axial strain s - £ For a quadratic element
cable is uniform o 11 2
element over cross i " M (r,s,t) = —2(c*+r_r)-(1-r?) (1-r?) a=1,3
(Fig. 2a) section Other Sij S except S“ are neglected (r,s,t) 2( a ) a »
2. Straight/ | A plane S1, A [’E ¢ 07 E”} For a aguadratic element
curved section s | - o o | £ N
beam remains 22 ? € 22 N(r,s,t) = 5 r?(r+r_r)-(1-r*) (1-r?) a=1,3
element plane after Sy, ) 0 0 «xG 2E,, a aia 2 N
(Fig. 2b) deformation Yoz N (r,s,t) = sN for relative nodes a=4,6
. =8 =0; € = fictitious coeff.
23
3. Plane/ Inplane s Y ri+2u X 0] ( £ ) For a bilinear element
membrane | deformation pon L I = = o B
element is uniform b 522 = | A At2u 0 j Eyp Na(r s,t) = (1+r_r)(l+s_s) a=1,4
: - [e 4 a a ’
(Fig. 2¢) across the [s | "o 0 u 12E,
thickness L2y L EE
fio Plate/ A straight $;;) 20X o o 0 07 [ 5, For a bilinear element
shell normal s : i 3 Temo o ! v
i ! +2u 0 0 l E i
element remains 22 1 2z | (3@ (r,s,t) = l(l-ﬁ-r r) (1+s,_s) a=1,4
(Fig. 2d) straight S..,) 10 0 ¢ 0 0 o0 i E 4 a a
after ﬁ 33 }=j i < 33 72 @k .
deformarion iS“ ! i 0 0 0 u 0 0 x [2E, N (r,s,t) = N fog relative nodes a =5-8
S350 |0 0 0 0w o E :m” | fMorer  w(rs,e) = f ¥ (r,s,0p:
s, 1] 0 2k a =1,4); Uis -
[ OSSR o0 0 0wk 31 b 'greference (a=1,4); U "grelative (a=5,8)
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behaviour was found”® to be between (.1~
100 times a factor of (h¢/[%?% E where (h¢/1°) is
the element thickness/characteristic length aspect
ratio, and E is Young’s modulus,

6. COMPUTATIONAL IMPLEMENTA-
TION

Fig. 3 shows a configuration B, at time ¢ and also
an initial configuration denoted by B,. During the

xa

CONVERGED CONF IGURATION
. AT TIME = ¢
FEFERENCE CONFIGURATION

LINEARIZED 1
INCREMENTAL
MOT ION {
% PIVOTAL CONFIGURATION

~ FOR LINEARIZATION

e

o

= X ~ FEFERENCE COCRDINATES

’ Xy x = SPATIAL COORDINATES

the con- By
figuration B}*' is obtained by solving the linearized

(n+1)st Newton-Raphson iteration,

equilibrium system based upon the last known

configuration B?. Distinction should be made Fig.3 Motion of a shell finite element.

between the configuration about which linearization

is performed (B?) and the configuration that is employed for deformation reference (B;), into which all
state variables are mapped. The total Lagrangial formulation takes B, as B, where as the updated
Lagrangian formulation employs B} as B,;. For continua, there is no obvious, clear-cut advantage for
choosing one formulation over the other. For structural members of which the generalized stress-strain
relationship is not fully three-dimensionally isotropic, the total Lagrangian formulation appears to be
superior, The elasticity tensor in its elementary form with respect to B, can be used in the formulation of
tangent stiffness at all states of motion without a need for updating. Also, the reference frame X can be
constructed locally to conveniently facilitate energy splitting in the evaluation of K and DK, when
selective reduced integration is required for ‘thin’ beam, plate or shell problems”?. For this reason, the
total Lagrangian formulation is generally preferable for structural elements,

For computer implementation, both K and DK of (10) and (19) can be expressed in matrix form as

b & el D 7 3 LR T T T T T
= [(FSVN*aV (b=1,n) (23)
DKab:‘L‘g[Ba}TDBbdv+-/-e[VNa]TS VN2 AV I (U,, b:]_, n) ........................................ (24)
Bg

where [ is the identity matrix; F=[F,]; 8=[S,]; VN°={N%; B® is a matrix relating the vector of
Green strain components to {/%;and J) is a matrix deduced from C. To employ a selective reduced
integration scheme, K and DK are partitioned into 2 parts . the transverse shear effect and the rest.
Table 2 show the appropriate orders of Gauss quadratures for the 4 degenerate elements considered, More
details should be referred to a previous paper?.

Table2 Orders of Gauss Quadrature for X and DK.

Element Type Membrane/Bending Transverse Shear

| Partiof K and DK Part of K and DX

T

Truss/cable quadratic element IR -
(Fig. 2a) - (Exact)
Straight/curve beam quadratic 2% 2 %1 2% 2%}
element (Fig. 2b) (Exact) (Exact = 3 % 2 % 1)
Plane/membrane bilinear element 2% 2 %02 -
(Fig. 2¢) L (Exact)
Plate/shell bilinear element 2k 2 %2 1% 1 %1
(Fig. 2d) (Exact) (Bxact = 2 * 2 % 2)
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7. NUMERICAL EXAMPLES

Numerical examples are solved to test the effectiveness of the present formulation. All solutions are
obtained by using the Newton-Raphson iterations within each load increment. The Euclidean norm of
incremental displacements smaller than 10 times the current displacement norm is the criterion for
convergence, The respective number of iterations required to meet this criterion is stated in each problem.,
All problems were solved with the FEAP macroprogramming language!®,

(1) A prestressed cable under uniform dead load (11b=0.453kg; 1 inch=2. 54 cm)

The 3-node truss/cable element is employed to idealize this cable problem, The cable, with
cross-sectional area=(, 065 in® and E=2. 107 Ib/in?, is pretensioned to 1300 b before the uniform dead
load is imposed. Two meshes are used, one with 2 and the other with 4 elements. The solutions are
presented in Table 3, which shows good agreement with the results by Jayaraman et al ! using the
catenary cable element, About 7 iterations are required to pass the convergence criterion in each individual
load step.

(2) A cantilever beam under transverse tip load

This commonly used ‘test example’ is solved to test the accuracy of the degenerate beam element. The
analytical solution of this problem can be obtained by means of elliptic integrals. In this example, §
degenerate beam elements are used in the mesh, The result in Table 4 agrees exceptionally well with the
analytical solution. In most cases, discrepancy only shows at the fourth decimal place. In average, 7
iterations are required for the convergence in a load step.

(3) Square frame subjected to two opposite point loads

A quarter of the square frame in Fig, 4(a ) is modelled by 4 degenerate beam elements and a special rigid
joint element, as shown in Fig. 4(b ), which serves to properly transmit plane rotation at rigid joint, This
rigid joint element is formed by using the penulty function to enforce the continuity of the tangential
components of the top-node relative displacements of the two connecting elements as shown in Fig. 4(b ).
This penulty function is in the form 1/2 «(U}/h’— UL/R'? in which ¢ can be intepreted as a “joint
modulus”, An artificially large magnitude of ¢ is required to signify the high rigidity of the joint.
Analytical solution’ for this problem is also available by elliptic integrals. Despite the crude mesh, the
solution agrees very well with the analytical solution as shown in Fig.4(c).

Table3 Vertical Displacement(in.) of the Cable Midspan vs. Uniform Load.

Uniform Load Present Solutions Jayaraman et al.u)
(1b) 2 elements |4 elements solution
0.02 131.60 131.61 131.63
0.06 234.16 234,17 234.19
0.10 292.68 292.71 292.79
0.14 335.74 335.93 336.03
0.18 370.63 370.92 371.13

(Note: 11b=0.453kg and linch=2.54cm)

Table4 Tip Deflections of the Cantilever Beam by 8 Quadratic Beam Elements versus Analytical

Large Deflection Solution!¥.

Load |Vertical Displ. (w/L) Horizontal Displ. (u/L) [End Rotation (radians)
PLz/EI Exact Present FEM Exéct Present FEM Exact Present FEM'
1.0 .30172 .3016 .05643 . .0564 .46135 L4613
2.0 .49346 L4931 .16064 L1605 .78175 L7815
3.0 .60325 .6026 .25442 . .2540 .98602 L9857
4.0 .66996 L6691 .32894 L3284 1.12124 1.1210
5.0 .71379 L7027 .38763 " .3869 1.21537 1.2151
6.0 L74457 L7433 .43459 i .4337 1.28370 1.2834
7.0 .76737 L7660 L47293 o .4720 1.33496 1.3347

+ . . .
Note Values of rotations are recomputed from relative displacements.
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respectively)
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Fig.6 Load vs. Central Deflection of Cylindrical Shell.
(1 1b=0.453 kg and 1 inch=2. 54 cm)

(4) Square clamped plate subjected to a uniform pressure

Fig. 5 shows a 16 degenerate plate/shell element model of a quadrant of the square clamped plate. Finite
deflection of the plate center is plotted versus the magnitude of uniform pressure for comparison with other
solutions. The present solution shows better agreement with the analytical solution'¥ than the solution of
16 cubic plate elements, reported by Kawai et al. ™ The extreme fibre stresseés are also plotted in Fig, 5.

(5) A cylindrical shell subjected to normal pressures

In this problem, 16 degenerate plate/shell elements are employed for a quadrant of a cylindrical shell
shown in Fig, 6. Four iterations are needed in each load step to pass the convergence criterion. In the same
figure, the present solution is compared with those due to Gallagher'®, Brebbia et al.'” and Dhatt", The
comparison shows overall good agreement between the present solution and Gallagher’s solution,

8. CONCLUSIONS

Highlight of the present formulation for large deformation analysis of structural elements is its rigorous
as well as straightforward procedure. The formulation is consistent with physical principles governing the
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motion of deformable bodies. The total Lagrangian mode of description is chosen because of its efficiency
in establishing the structural element characteristics. Tests of numerical examples indicate that the
present formulation is very effective. The resulting degenerate elements for truss/cable, beam,
plate/shell structures are believed to be economic, versatile and yet very competitive in accuracy for large
deformation analysis.
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